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The variance of the graph distance in the infinite cluster
of percolation is sublinear
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Abstract. We consider the standard model of i.i.d. bond percolation on Zd of parameter p. When
p > pc where pc denotes the critical parameter, there exists almost surely a unique infinite cluster
C∞. Using the recent techniques of Cerf and Dembin (2022), we prove that the variance of the
graph distance in C∞ between two points of C∞ is sublinear. This result extends the works of
Benjamini et al. (2003), Benaïm and Rossignol (2008) and Damron et al. (2015) for the study of the
variance of passage times in first passage percolation without moment conditions on the edge-weight
distribution.

1. Introduction

Bernoulli percolation. The model of Bernoulli percolation is formally defined as follows. Let Ed

be the set of all pairs of nearest neighbours in Zd. We consider i.i.d. Bernoulli random variables
(Be)e∈Ed of parameter p ∈ [0, 1]. If Be = 1, then the edge e is called open; otherwise, the edge is
called closed. Let Gp be the graph of the open edges:

Gp := (Zd, {e ∈ Ed : Be = 1}) .
The graph Gp is called the percolation graph. A path is said to be open if the path consists only
of open edges. This model exhibits a phase transition. Indeed, when d ≥ 2, there exists a critical
parameter pc ∈ (0, 1) such that for p > pc (supercritical regime), there almost surely exists a
unique infinite connected component C∞ in Gp. In contrast, for p < pc (subcritical regime), there
are no infinite open clusters. We refer to Grimmett (1989) for general backgrounds and known
results on Bernoulli percolation. We denote by DC∞ the graph distance in the cluster C∞ that is

∀x, y ∈ Zd DC∞(x, y) := inf
{
|r| : r is a path from x to y in C∞

}
(1.1)

where |r| denotes the number of edges in the path r and we use the convention that inf ∅ = +∞. In
particular, if x and y are not connected in C∞, then we have DC∞(x, y) = ∞. To deal with the fact
that DC∞(x, y) is infinite with positive probability, we will use the technique of Cerf and Théret
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(2016) and introduce regularized points. For x in Zd, we define x̃ to be the closest point in C∞
for the ℓ2-norm to x with a deterministic rule to break ties. The advantage of defining regularized
points is that for any x, y ∈ Zd, DC∞(x̃, ỹ) < ∞ almost surely. A geodesic between x̃ and ỹ is
a path achieving the infimum in DC∞(x̃, ỹ). Note that the geodesics are not necessarily unique.
From now on, if there are several possible geodesics, we will choose one according to
a deterministic rule to break ties. When we refer to the geodesic, we will refer to the geodesic
chosen according to this deterministic rule.

First passage percolation. The model of first passage percolation may be seen as a generalization
of the model of percolation. Let G be a distribution on R+∪{+∞}. To each edge e ∈ Ed, we assign
a random variable te such that the family (te, e ∈ Ed) is independent and identically distributed
with distribution G. The random variable te may be interpreted as the time needed to cross the
edge e. We define a random pseudo-metric T on this graph: for any pair of vertices x, y ∈ Zd, the
random variable T (x, y) is the shortest time to go from x to y, i.e.,

T (x, y) := inf

{∑
e∈r

te : r is a path joining x to y

}
.

Note that for the distribution

Gp := pδ1 + (1− p)δ∞, p > pc (1.2)

the travel time T (x, y) for the law Gp coincides with the graph distance between x and y in Gp where
the edges with infinite passage time correspond to the closed edges. Thanks to classical tools used in
first passage percolation, in particular the subadditive ergodic theorem, we can study DC∞(0̃, ñx).
In particular, Cerf and Théret proved in Cerf and Théret (2016) a law of large numbers for the
regularized graph distance: there exists a deterministic function µp : Zd → [0,+∞) such that

∀x ∈ Zd lim
n→∞

DC∞(0̃, ñx)

n
= µp(x) a.s. and in L1.

The function µp is the so-called time constant. This was first proved by Garet–Marchand without
introducing the regularized points in Garet and Marchand (2004).

Fluctuations of the travel time. The question of the fluctuations of T (0, x) for general dis-
tributions G is a very central question. It has been conjectured by physicists that the variance
Var(T (0, x)) should scale as ∥x∥α1 for some constant α < 1 depending on the dimension. In par-
ticular, in dimension 2, it is conjectured that the model belongs to the KPZ universality class that
was introduced by Kardar et al. (1986) in 1986, and that α = 2/3. However, beyond some related
integrable models, the results obtained in this direction are still very modest. The first upper-bound
on the variance was obtained by Kesten (1993). He proved that there exists a constant C such that
for all x ∈ Zd

Var(T (0, x)) ≤ C∥x∥1
under some integrability condition on the distribution G. In their seminal paper Benjamini et al.
(2003), Benjamini–Kalai–Schramm proved that the fluctuations are sublinear there exists a constant
C such that for all x ∈ Zd, ∥x∥ ≥ 2

Var(T (0, x)) ≤ C
∥x∥1

log ∥x∥
for the case of a distribution G that takes only two values. The results of Benjamini et al. (2003) were
later extended to continuous distributions that satisfied a modified logarithmic Sobolev inequality
by Benaïm and Rossignol (2008) and to more general distributions under moment conditions using
a Bernoulli encoding by Damron et al. (2015). In this paper, we aim to extend these results to
the case of the distribution Gp defined in (1.2). Namely, we are interested in the variance of the
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graph distance DC∞(0̃, ñx). The main obstacle to overcome is that the distribution Gp has no finite
moment. We obtain that the variance of the graph distance in C∞ is sublinear.

Theorem 1.1. Let p > pc. There exists a positive constant C0 depending on p and d such that

∀x ∈ Zd \ {0} ∀n ≥ 1 Var(DC∞(0̃, ñx)) ≤ C0
n

log n
. (1.3)

Let us first explain the proof strategy used in Benjamini et al. (2003). To prove that the variance
of T (0, nx) is sublinear, Benjamini–Kalai–Schramm use an inequality of Talagrand (1994) related
to hypercontractivity. They need to study the influence of the edges that is the expected impact
on the passage time T (0, nx) of changing the value of a given edge. To get the logarithm in the
denominator using Talagrand’s inequality, they need that almost all the edges have a small influence.
In this context, the influence of an edge e is related to the probability that the geodesic γ between
0 and nx goes through the edge e. Since there exists no result controlling the probability that the
geodesic goes through a given edge, the authors use a trick to circumvent this issue. They randomize
the starting point of the geodesic in such a way that the new random variable has a variance that is
still close to the original one and such that all the edges of the lattice have a small influence. This
trick of randomizing the starting point was later replaced by Damron–Hanson–Sosoe by a geometric
average in Damron et al. (2015).

In Benjamini et al. (2003); Benaïm and Rossignol (2008); Damron et al. (2015), moment con-
ditions on the distribution are needed. A first reason why a moment condition is needed, is that
without it, we have Var(T (x, y)) = +∞. Note that even if we don’t have a good moment condition,
this problem may be solved by the use of regularized points. This is exactly in the same spirit as
the use of regularized points for the study of the graph distance to ensure that the graph distance is
finite and has good moment properties. But, the main reason why moment conditions are needed, is
that it enables to obtain a good control on the impact of resampling an edge. When the distribution
is bounded by M , resampling an edge on the geodesic cannot affect the passage time by more than
M . We can easily upperbound the maximum impact of changing the value of an edge. However,
in the context of the graph distance in the infinite cluster of percolation, closing one edge on the
geodesic can greatly increase the graph distance and we cannot get a good uniform control of the
impact of closing an edge, This is the main issue to extend the previous results to the distribution
Gp that can take infinite value. To solve this issue, we use here the recent technology developed
by Cerf and Dembin (2022). Before stating the key ingredient of the proof, let us introduce some
definitions. Let p > pc. Let Ce

p be the infinite connected component of C∞ \ {e}, it is almost surely
unique. For x ∈ Zd, denote by x̃e the closest point to x in Ce

∞. Let us denote by Re the following
event

Re := {0̃ = 0̃e, ñx = ñxe} . (1.4)
The event Re is the event that the regularized points are unchanged when closing the edge e. We
will need the following theorem that is the key result to prove the main theorem.

Theorem 1.2. Let p > pc. There exists a positive constant c0 depending on p and d such that for
any x ∈ Zd and n ≥ 1, let γ be the geodesic from 0̃ to ñx, we have

E

[∑
e∈γ

(DC∞\{e}(0̃, ñx)−DC∞(0̃, ñx))21Re

]
≤ c0n .

Roughly speaking, this result says that on average, closing an edge on the geodesic modifies the
graph distance by at most a constant. This theorem is a consequence of the work of Cerf and
Dembin (2022). This theorem together with the Efron–Stein inequality leads to an upper-bound
on the variance of order n which is already a new result in the context of the graph distance in
the infinite cluster (with some additional technical details due to the use of regularized points). To
prove that the variance is sublinear we will use the geometric averaging trick and concentration
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inequalities used by Damron et al. (2015). This geometric average will ensure that every edge in the
lattice has a small influence. Once the key result Theorem 1.2 is proved, the remaining of the proof
uses the concentration inequalities in the same way as Damron et al. (2015) with some additional
technical difficulties due to the fact that we use regularized points.

Remark 1.3. We believe that our proof strategy together with the Bernoulli encoding used by
Damron–Hanson–Sosoe in Damron et al. (2015) can also work for any distribution G on R+∪{+∞}
such that G({+∞}) < 1− pc.

In Section 2, we present some standard facts about supercritical percolation and we present the
concentration inequalities we will use. In Section 3, we prove Theorems 1.1 and 1.2.

2. Background

2.1. Background on percolation. We will need the following standard facts about percolation. For
x ∈ Zd, let C(x) be the p-open cluster of x. We denote by ∥ · ∥2 the ℓ2 norm. We have the following
theorem that controls the probability of having a large and finite open cluster.

Theorem 2.1 (Theorems 8.18 and 8.19 in Grimmett (1989)). Let p > pc. There exist positive
constants A1 and A2 such that

∀n ≥ 1 P(0 /∈ C∞, C(0) ∩ ∂Λn ̸= ∅) ≤ A1 exp(−A2n)

where Λn := [−n, n]d ∩ Zd and ∂Λn := {y /∈ Λn : ∃x ∈ Λn, {x, y} ∈ Ed}.

The following theorem controls the probability of having a big hole in the infinite cluster.

Theorem 2.2 (Theorem 7 in Grimmett (1989)). Let p > pc. There exist positive constants A3 and
A4 such that

∀n ≥ 1 P(C∞ ∩ Λn = ∅) ≤ A3 exp(−A4n) .

The following theorem gives a control on the graph distance.

Theorem 2.3 (Antal and Pisztora (1996)). Let p > pc. There exist positive constants β, A5 and
A6 such that

∀x, y ∈ Zd ∀m ≥ β∥x− y∥2 P(m ≤ DC∞(x, y) < ∞) ≤ A5 exp(−A6m) .

We will need in what follows the two following estimates that are consequences of Theorem 2.3.

Lemma 2.4. Let p > pc. Let k ≥ 2. There exists a constant κ > 0 (depending on k) such that

∀x, y ∈ Zd E[DC∞(x̃, ỹ)k] ≤ κ∥x− y∥k2 .

The following lemma controls the expected intersection of the geodesic with a box.

Lemma 2.5. Let p > pc. There exists α > 0 such that for any geodesic γ between two points in
C∞, we have

∀z ∈ Zd ∀m ≥ 1 E|γ ∩ (z + Λm)| ≤ αm .

Let us now prove these two lemmas.

Proof of Lemma 2.4: Set l = ∥x̃ − x∥2 + ∥ỹ − y∥2. Let m ≥ 2β∥x − y∥2, we have using Theorems
2.2 and 2.3

P(DC∞(x̃, ỹ) ≥ m) ≤ P
(
l ≥ m

4dβ

)
+ P(∃w ∈ (x+ Λ m

4dβ
) ∃z ∈ (y + Λ m

4dβ
) : m ≤ DC∞(w, z) < ∞)

≤ 2A3 exp

(
−A4

m

8dβ

)
+ 2m2dA5 exp(−A6m)
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where we use that for any w ∈ (x+ Λm/(4dβ)) and z ∈ (y + Λm/(4dβ))

β∥w − z∥2 ≤
m

2
+ β∥x− y∥2 ≤ m.

Hence, it yields that for k ≥ 2,

E[DC∞(x̃, ỹ)k] ≤ (2β∥x− y∥2)k +
∑

j≥2β∥x−y∥2

jkP(DC∞(x̃, ỹ) ≥ j)

and the result follows. □

Proof of Lemma 2.5: Let γ be a geodesic between two points in C∞. Let z ∈ Zd and m ≥ 1. Let us
assume γ ∩ (z + Λm) ̸= ∅, otherwise the result follows trivially. Let us denote by w and y the first
and last intersection of γ with z + Λm. The portion of γ between w and y is a geodesic inside C∞,
its length is equal to DC∞(w, y). Let us denote by E the following event

E :=
{
∀u, v ∈ (z + Λm) ∩ C∞ : DC∞(u, v) ≤ 2dβm

}
.

Thanks to Theorem 2.3, we have

P(Ec) ≤ (2m)2dA5 exp(−A6m) .

Hence, we have
E[|γ ∩ (z + Λm)|] ≤ E[|γ ∩ (z + Λm)|1E ] + E[|γ ∩ (z + Λm)|1Ec ]

≤ 2dβm+ (2m)3dA5 exp(−A6m) .

The result follows.
□

2.2. Concentration inequalities. Let f be a real-valued function on {0, 1}Ed in L2. Let us enumerate
the edges of the lattice {e1, e2, . . . }, we can write the following martingale decomposition

f − Ef =

∞∑
k=1

E(f |Fk)− E(f |Fk−1)

where Fk is the σ-algebra generated by the first k edge weights te1 , . . . , tek and F0 is the trivial
σ-algebra. Set

Vk = E(f |Fk)− E(f |Fk−1) .

We have the following inequality that is proved in Damron et al. (2015) using an inequality proved
by Falik and Samorodnitsky (2007). Note that all the content of this section was already present
in the work of Benaïm and Rossignol (2008).

Lemma 2.6 (Lemma 3.3. in Damron et al. (2015)).

Var(f) log

(
Var(f)∑∞

k=1 E(|Vk|)2

)
≤

∞∑
k=1

Ent(V 2
k ) (2.1)

where Ent denotes the entropy.

We recall that the entropy of a function f ≥ 0, f ̸= 0 on {0, 1}Ed given a distribution π on
{0, 1}Ed is defined as follows

Entπ(f) := Eπ

[
f log

f

Eπ(f)

]
.

Let p ∈ (0, 1). We will omit π when π is ⊗e∈EdBer(p) where Ber(p) denotes the Bernoulli distribution
of parameter p. For e ∈ Ed, we define σ1

e (respectively σ0
e the function that for t ∈ {0, 1}Ed changes

te into 1 (respectively into 0). Set

∆ef := f ◦ σ0
e − f ◦ σ1

e .
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Remark 2.7. The edges with value 0 will correspond to the closed edges and the edges with value
1 to the open edges. For f a non-increasing functions on {0, 1}Ed we have ∆ef ≥ 0.

We will need the following lemma to control the entropy.

Lemma 2.8. Let f be such that E[f2] < ∞. There exists a constant C > 0 depending on p such
that

∞∑
k=1

Ent(V 2
k ) ≤ C

∞∑
k=1

E[(∆ekf)
2] . (2.2)

For short, we will write ∆k instead of ∆ek . The proof of this lemma follows the same idea as in
Lemma 6.3 in Damron et al. (2015) but in a simpler context. Note that the proof of this lemma can
also be deduced from the proofs in Benaïm and Rossignol (2008). For the sake of completeness, we
include the proof of this lemma here. To prove this lemma we need the following lemma.

Lemma 2.9 (Bernoulli log-Sobolev inequalities). Let p ∈ (0, 1). There exists a positive constant C
depending on p such that for any function g ≥ 0 on {0, 1}

EntBer(p)[g
2] ≤ C(g(0)− g(1))2 .

We will also need the following theorem.

Theorem 2.10 (Tensorization of the entropy, Theorem 2.3 in Damron et al. (2015)). Let p ∈ (0, 1).
Let f be a non-negative L2 random variable on {0, 1}Ed . Let (te)e∈Ed be a family of i.i.d. Bernoulli
random variables of parameter p and denote π the distribution of the family. For t ∈ {0, 1}Ed, denote
by πk(t) be the distribution with respect to the kth coordinate, all the other coordinates remain fix.
We have

Entπ(f) ≤
∞∑
k=1

Eπ[Entπk
(f)] .

We have now all the ingredients to prove Lemma 2.8.

Proof of Lemma 2.8: Let k ≥ 1. The random variable Vk only depends on te1 , . . . , tek . Using
Theorem 2.10 and Lemma 2.9, we have

Entπ(V
2
k ) ≤

k∑
j=1

Eπ[Entπj (V
2
k )] ≤ C

k∑
j=1

Eπ[(∆jVk)
2]

It follows that

E[(∆jVk)
2] =

{
E[E[(∆kf)|Fk]

2] if j = k
E[(E[∆jf |Fk]− E[∆jf |Fk−1])

2] if j < k .

Hence

∞∑
k=1

k∑
j=1

E[(∆jVk)
2] =

∞∑
j=1

E[E[(∆jf)|Fj ]
2] +

∑
k≥j+1

E[(E[∆jf |Fk]− E[∆jf |Fk−1])
2]


=

∞∑
j=1

lim
N→∞

E[E[∆jf |FN ]2] =
∞∑
j=1

E[(∆jf)
2]

where we used the orthogonality of the martingale increments in L2 and the convergence of closed
martingales. The result follows. □
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3. Proofs

3.1. Proof of Theorem 1.1. Let p > pc. Let (Be)e∈Ed be an i.i.d. family of Bernoulli random
variables of parameter p. Let n ≥ 1 and x ∈ Zd. Set m be the largest integer such that m ≤ n1/4

and

f((Be)e∈Ed) :=
1

|Λm|
∑
z∈Λm

DC∞(z̃, ñx+ z) (3.1)

where edges that have value 1 correspond to edges that are open. The function f is a geometric
average of the graph distance, the interest of considering such a function is that it is simpler to
prove that all the edges have a small influence. We can prove that the variance of f is close to the
original variance we aim to estimate. This is the purpose of the following lemma.

Lemma 3.1. We have for n large enough

VarDC∞(0̃, ñx) ≤ 2Var(f) + n3/4 .

Let e ∈ Ed. We recall that Ce
∞ is the infinite connected component of C∞ \ {e}. For z ∈ Zd,

denote by z̃e the closest point to z in Ce
∞. For short, set

ℓ(e) := DCe
∞(0̃e, ñxe)−DC∞(0̃, ñx) . (3.2)

We will need the two following lemmas that give an upper-bound on ℓ(e). Recall that Re was
defined in (1.4).

Lemma 3.2. Let k ≥ 1. There exists κ1 (depending on k) such that for any x ∈ Zd, n ≥ 1 and
e ∈ Ed

E[ℓ(e)k1e∈γ1Re ] ≤ κ1

where γ is the geodesic between 0̃ and ñx in C∞.

The following lemma upperbounds the total influence of the edges that change the regularized
points.

Lemma 3.3. There exists C > 0 such that for any x ∈ Zd, n ≥ 1

∞∑
k=1

E[ℓ(ek)21Rc
ek
] ≤ C logd n .

Lemma 3.4. We have for n large enough
∞∑
k=1

E(|Vk|)2 ≤ n15/16.

Before proving all these lemmas, let us show how togteher with Theorem 1.2 they imply Theorem
1.1.

Proof of Theorem 1.1: If Var(f) ≤ n31/32, then thanks to Lemma 3.1, the result follows. Otherwise,
we have thanks to Lemma 2.6

Var(f) log

(
n31/32∑∞

k=1 E(|Vk|)2

)
≤

∞∑
k=1

Ent(V 2
k )

and using Lemma 3.4 we get

Var(f) ≤ 32

log n

∞∑
k=1

Ent(V 2
k ). (3.3)
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Thanks to Lemma 2.4, we get E(f2) < ∞. Finally using Lemma 2.8, we get
∞∑
k=1

Ent(V 2
k ) ≤ C

∞∑
k=1

E((∆ekf)
2) ≤ C

∞∑
k=1

1

|Λm|
∑
z∈Λm

E((∆ekD
C∞(z̃, ñx+ z))2)

where we use the Cauchy-Schwarz in the second inequality. Using the invariance by translation in
distribution, it follows that

∞∑
k=1

Ent(V 2
k ) ≤ C

1

|Λm|
∑
z∈Λm

∞∑
k=1

E((∆ekD
C∞(z̃, ñx+ z))2) = C

∞∑
k=1

E((∆ekτ)
2)

where for short we write τ = DC∞(0̃, ñx). Let e ∈ Ed. Note that ∆eτ is independent of Be, it
follows that

E((∆eτ)
2) =

1

p
E((∆eτ)

21Be=1) .

Let us denote by γ the geodesic between 0̃ and ñx. We recall that Re was defined in (1.4) as the
event where closing the edge e does not modify the regularized points. Let us assume that we are on
the event Re and that e is originally open and outside the geodesic γ, then closing e has no impact
on the geodesic and ∆eτ = 0. It yields that

(∆eτ)
21Be=11Re = (∆eτ)

21Re1e∈γ1Be=1 .

Besides, we have
∆eτ1Be=1 = ℓ(e)1Be=1 .

Hence, we have
∞∑
k=1

Ent(V 2
k ) ≤

C

p

∞∑
k=1

E((∆ekτ)
21Rek

1ek∈γ) + E((∆ekτ)
21Rc

ek
1Bek

=1)

≤ C

p
E

[∑
e∈γ

(DC∞\{e}(0̃, ñx)−DC∞(0̃, ñx))21Re

]
+

C

p

∞∑
k=1

E(ℓ(ek)21Rc
ek
) .

Thanks to Theorem 1.2 and Lemma 3.3, we have for n large enough
∞∑
k=1

Ent(V 2
k ) ≤ 2c0

C

pc
n .

Using inequality (3.3) and Lemma 3.1, the result follows.
□

Let us now prove the lemmas.

Proof of Lemma 3.1: We have

|DC∞(0̃, ñx)−DC∞(z̃, z̃ + nx)| ≤ DC∞(0̃, z̃) +DC∞(ñx, z̃ + nx) .

Hence,

|f −DC∞(0̃, ñx)| ≤ 1

|Λm|
∑
z∈Λm

(DC∞(0̃, z̃) +DC∞(ñx, z̃ + nx)) (3.4)

Recall that f was defined in (3.1). It is easy to check using the invariance by translation in
distribution that

E(f) = E(DC∞(0̃, ñx)) .
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We recall that m ≤ n1/4. It follows that

Var(DC∞(0̃, ñx)) = E((DC∞(0̃, ñx)− E(f))2) ≤ 2E((f −DC∞(0̃, ñx))2) + 2Var(f)

≤ 4

|Λm|
∑
z∈Λm

E(DC∞(0̃, z̃)2) + 2Var(f)

≤ 2Var(f) + 4d2κm2 ≤ 2Var(f) + n3/4

where in the second inequality we use the Cauchy Schwarz inequality together with (3.4) and in the
second to last inequality, we used Lemma 2.4. The result follows. □

Theorem 1.1 trivially holds for p = 1. We here work for p ∈ (pc, 1).

Proof of Lemma 3.2: Let e = {w, z} ∈ Ed and k ≥ 1. We have

E[ℓ(e)k1Re1e∈γ ] ≤ E[DC∞\{e}(w, z)k1w,z∈Ce
∞ ]

=
1

1− p
E[DC∞\{e}(w, z)k1w,z∈Ce

∞1Be=0]

≤ 1

1− p
E[DC∞(w, z)k1w,z∈C∞ ] ≤ κ

1− p

where we use that DC∞\{e}(w, z)k1w,z∈Ce
∞ is independent of Be. In the last inequality, we used

Lemma 2.4.
□

Proof of Lemma 3.3: Let e = {w, z} ∈ Ed. Let Ce
∞ be the infinite connected component of C∞ \{e}.

For y ∈ Zd, denote by Ce(y) the connected component of y in the graph Gp \ {e}. We will need the
following estimate

E[ℓ(e)4] = E[(DC∞\{e}(0̃e, ñxe)−DC∞(0̃, ñx))4]

≤ 8(E[DC∞\{e}(0̃e, ñxe)4] + E[DC∞(0̃, ñx)4])

≤ 8
2− p

1− p
E[DC∞(0̃, ñx))4] ≤ C2n

4

(3.5)

where we use Lemma 2.4 in the last inequality and C2 is a constant depending on p. Set

l := ∥w∥∞ .

We have

E[ℓ(e)21Rc
e
] ≤ E[ℓ(e)210̸̃=0̃e ] + E[ℓ(e)21ñx̸=ñxe,0̃=0̃e ].

Let us upper-bound the probability of the event {0̃ ̸= 0̃e}. Note that if 0̃ ̸= 0̃e then 0̃ is in a
finite cluster in Ce

∞ and is connected to one of the endpoint of e. Hence, either Ce(w) is finite and
contains 0̃ or Ce(z) is finite and contains 0̃. Hence,

P(0̃ ̸= 0̃e) ≤ P(0̃ /∈ Λl/2) + P(0̃ ∈ Λl/2, 0̃ ̸= 0̃e)

≤ P(C∞ ∩ Λl/2 = ∅) + P
(
l

2
≤ |Ce(z)| < ∞

)
+ P

(
l

2
≤ |Ce(w)| < ∞

)
≤ A3 exp

(
−A4

l

2

)
+

2A1

1− p
exp

(
−A2

l

2

)
where we used Theorems 2.2 and 2.1. It follows that using the previous inequality and inequality
(3.5)

E[ℓ(e)210̸̃=0̃e ] ≤
√

E[ℓ(e)4]P(0̃ ̸= 0̃e) ≤ Cn2 exp(−c∥w∥∞)
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for some constants C, c > 0 depending on p and d. Similarly we have

E[ℓ(e)21ñx̸=ñxe ] ≤ Cn2 exp(−c∥nx− w∥∞) .

Note that these bounds are not good enough when w is close to one of the endpoint. In that case,
we use a different upperbound. On the event {0̃ = 0̃e, ñx ̸= ñxe}, we must have e ∈ γ otherwise
it would imply that 0̃ is connected to ñx in Ce

∞ and contradict ñx ̸= ñxe. Besides, we have either
ñxe ∈ Ce(w) and 0̃ ∈ Ce(w) or ñxe ∈ Ce(z) and 0̃ ∈ Ce(z). Let us consider the first case. We have

DCe
∞(0̃, ñxe) ≤ DCe

∞(0̃, w) +DCe
∞(w, ñxe) = DC∞(0̃, w) +DCe

∞(w, ñxe)

and
DC∞(0̃, ñxe) = DC∞(0̃, w) +DC∞(w, ñxe) .

Finally, we have

ℓ(e)210̃=0̃e1ñx ̸=ñxe

≤ (DCe
∞(w, ñxe)−DC∞(w, ñx))21ñxe∈Ce(w) + (DCe

∞(z, ñxe)−DC∞(z, ñx))21ñxe∈Ce(z) .

Using Lemma 2.4 and similar arguments as in the proof of Lemma 3.2, it yields that

E[ℓ(e)210̃=0̃e1ñx̸=ñxe ]

≤ 2E[DCe
∞(w, ñxe)21ñxe∈Ce(w)] + 2E[DCe

∞(z, ñxe)21ñxe∈Ce(z)]

+ 2E[DC∞(w, ñx)21ñxe∈Ce(w)] + 2E[DC∞(z, ñx)21ñxe∈Ce(z)]

≤ 2E[DCe
∞(w̃e, ñxe)2] + 2E[DCe

∞(z̃e, ñxe)2] + 2E[DC∞(w̃, ñx)2] + 2E[DC∞(z̃, ñx)2]

≤ 8κ1
1− p

.

As a result, we have

E[ℓ(e)21Rc
e
] ≤ E[ℓ(e)210̸̃=0̃e ] + E[ℓ(e)210̃=0̃e1ñx̸=ñxe ]

≤ Cn2 exp(−c∥w∥∞) + min

(
8κ1
1− p

, Cn2 exp(−c∥nx− w∥)∞
)

.

and similarly,

E[ℓ(e)21Rc
e
] ≤ Cn2 exp(−c∥nx− w∥∞) + min

(
8κ1
1− p

, Cn2 exp(−c∥w∥)∞
)

.

Finally, we have∑
e∈Ed

E[ℓ(e)21Rc
e
] ≤

∑
e∈(ΛC0 logn∪(nx+ΛC0 logn))

16κ1
1− p

+
∑

j≥C0 logn

cdj
d−1C exp(−cj)

where cd is a constant depending only on d. It follows that for n large enough, we have∑
e∈Ed

E[ℓ(e)21Rc
e
] = O(logd n) .

The result follows. □

Proof of Lemma 3.4: For short write τz = DC∞(z̃, z̃ + nx). Note that E[τz|Fk−1] = pE[τz ◦σ1
k|Fk]+

(1− p)E[τz ◦ σ0
k|Fk] and E[τz|Fk−1] = BekE[τz ◦ σ1

k|Fk] + (1−Bek)E[τz ◦ σ0
k|Fk]. It follows that

E|E(τz|Fk)− E(τz|Fk−1)| = E|(Bek − p)E[∆ekτz|Fk]| = 2p(1− p)E[∆ekτz].
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It yields

E[|Vk|] ≤
1

|Λm|
∑
z∈Λm

E|E(τz|Fk)− E(τz|Fk−1)|

=
2p(1− p)

|Λm|
∑
z∈Λm

E|∆ekτz|

≤ 1

|Λm|
∑
z∈Λm

E|∆ekτz|

=
1

p|Λm|
∑
z∈Λm

E[|∆ek−zτ0|1Bek−z=1]

=
1

p|Λm|
∑
z∈Λm

(E[|ℓ(ek − z)|1Rc
ek−z

] + E[ℓ(ek − z)1Rek−z1ek−z∈γ ]

(3.6)

where we used similar arguments to the ones in the proof of Theorem 1.1, in particular that ∆eτz
is independent of Be. Recall that γ is the geodesic between 0̃ and ñx Using Lemma 3.3, we get∑

z∈Λm

E[|ℓ(ek − z)|1Rc
ek−z

] ≤
∞∑
k=1

E[ℓ(ek)21Rc
ek
] ≤ C logd n . (3.7)

Using the Cauchy-Schwarz inequality and Lemma 3.2, we have

∑
z∈Λm

E[ℓ(ek − z)1Rek−z1ek−z∈γ ] ≤

(∑
z∈Λm

E[ℓ(ek − z)21Rek−z1ek−z∈γ ]

)1/2(∑
z∈Λm

E[1ek−z∈γ ]

)1/2

≤
√
κ1|Λm|

√
E|γ ∩ (Λm + ek)| .

(3.8)

Using Lemma 2.5 and the inequalities (3.6), (3.7) and (3.8), it follows that for n large enough

E[|Vk|] ≤
2d

pc

√
ακ1m

(1−d)/2 .

Besides, using Theorem 1.2, Lemma 3.3 and inequality (3.6), we have for n large enough
∞∑
k=1

E[|Vk|] ≤
1

p
E

[∑
e∈γ

(DC∞\{e}(0̃, ñx)−DC∞(0̃, ñx))21Re

]
+

1

p

∞∑
k=1

E[|ℓ(ek)|1Rc
ek
] ≤ 2

pc
c0n .

Finally, combining the two previous inequalities we get for some constant C for n large enough
∞∑
k=1

E[|Vk|]2 ≤ Cm(1−d)/2
∞∑
k=1

E[|Vk|] ≤
4

p
Cc0nm(1−d)/2 ≤ n15/16

where we use that m(d−1)/2 ≥ n1/8/2 (we recall that m is the largest integer such that m ≤ n1/4). □

3.2. Proof of Theorem 1.2. In this section, we will use results of Cerf and Dembin (2022). The
following Theorem is deduced from the results in Cerf and Dembin (2022) Set N = ⌊n1/3d⌋.

Theorem 3.5. Let p > pc. There exit positive constants C1, c2, κ such that the following holds. Let
x ∈ Zd and n ≥ 1. Let γ be the geodesic between 0̃ and ñx. Set γ = γ \ ((ΛN + 0̃) ∪ (ΛN + ñx).
There exists a random family (ce)e∈γ of positive real numbers such that

∀e ∈ γ ℓ(e)1Re = (DC∞\{e}(0̃, ñx)−DC∞(0̃, ñx))1Re ≤ ce (3.9)
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and

P

∑
e∈γ

c2e ≥ κn

 ≤ C1 exp(−c2n
1/(6d2+1)). (3.10)

Sketch of the proof of Theorem 3.5: Proposition 3.5 in Cerf and Dembin (2022) states that for any
path we can associate to each edge in γ a shell. A shell is a ∗-connected set of boxes with good
connectivity properties surrounding the edge. We refer to Cerf and Dembin (2022) for a precise
definition of the shells. Thanks to the good connectivity of the boxes in the shell, it enables us to
build a bypass of the edge e in a neighborhood of the shell of well-controlled length. In particular,
Proposition 3.6 enables to bound the size of this bypass of the edge e by κ0| shell(e)|. Knowing that
there exists a bypass of length at most κ0| shell(e)| enables us to upper-bound the number of extra
edges we need to join 0̃ and ñx when we close the edge e. Finally, Proposition 4.5 enables us to
have with very high probability a good control on the average size of the shells built in Proposition
3.5. Let ε > 0 small enough depending on p and such that p − ε > pc. Applying Proposition 3.5
in Cerf and Dembin (2022) to p− ε, p and γ, there exists a random variable NM(γ) associated to γ

and a family (shell(e), e ∈ γ̃) where γ̃ = γ \ ((Λ4NM(γ)
+ 0̃) ∪ (Λ4NM(γ)

+ ñx).

Remark 3.6. Note that here we will build (p− ε) bypass, so we implicitly work here with a coupling
of the bond percolation of parameter p − ε and p in such a way that a (p − ε)-open edge is also
p-open. Actually, the proof of Proposition 3.5 still holds true when p = q and the definition of a
good box becomes simpler.

Thanks to Proposition 3.6 in Cerf and Dembin (2022)

∀e ∈ γ ℓ(e)1Re = (DC∞\{e}(0̃, ñx)−DC∞(0̃, ñx))1Re ≤ κ0| shell(e)| (3.11)

where κ0 is a constant depending on p, d and ε. Thanks to the control on the size of the family
(| shell(e)|, e ∈ γ) in Proposition 3.5 and the Proposition 4.5 in Cerf and Dembin (2022), there exist
positive constants C1, c2 and κ such that

P(Ec
0) ≤ C1 exp(−c2n

1/(6d2+1)) . (3.12)

where

E0 :=

NM (γ) ≤ n1/3d,
∑
e∈γ

(| shell(e)|)2 ≤ κn

 .

We conclude by setting for all e ∈ γ ∩ γ̃, ce = κ0| shell(e)| and for e ∈ γ \ γ̃, ce = ∞. The result
follows. □

Proof of Theorem 1.1: Let (ce)e∈γ be the family defined in Theorem 3.5. Define

E0 :=

∑
e∈γ

c2e ≥ κn

 .

Using Theorem 3.5, it follows

E

[∑
e∈γ

ℓ(e)21Re

]
≤ E

[∑
e∈γ

ℓ(e)21Re1E0

]
+ E

[∑
e∈γ

ℓ(e)21Re1Ec
0

]

≤ κn+ E

 ∑
e∈γ∩(ΛN∪(nx+ΛN))

ℓ(e)21Re

+
∑
e∈Ed

E
[
ℓ(e)41Re1e∈γ

]1/2√P(Ec
0)
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where we use the Cauchy-Schwarz inequality in the last inequality. Besides, we have by the Cauchy-
Schwarz inequality and Lemma 3.2 that∑

e∈Ed

E
[
ℓ(e)41Re1e∈γ

]1/2 ≤ ∑
e∈Ed

E[ℓ(e)81Re1e∈γ ]
1/4P(e ∈ γ)1/4 ≤ κ

1/4
1

∑
e∈Ed

P(e ∈ γ)1/4 .

It is easy to check that the right hand side is at most polynomial in n using for instance Theorem
2.3. Using (3.12), it follows that the following quantity goes to 0 when n goes to infinity∑

e∈Ed

E
[
ℓ(e)41Re1e∈γ

]1/2√P(Ec
0) .

Thanks to Lemma 3.2, we have

E

 ∑
e∈γ∩(ΛN∪(ΛN+nx))

ℓ(e)21Re

 =
∑

e∈(ΛN∪(ΛN+nx))

E[ℓ(e)21e∈γ1Re ] ≤ 2κ1(2N)d ≤ 2d+1κ1n
1/3.

Combining the previous inequalities, we get for n large enough

E

[∑
e∈γ

(DC∞\{e}(0̃, ñx)−DC∞(0̃, ñx))21Re

]
≤ 2κn .

The result follows.
□
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