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Abstract. Allelopathy refers to a type 0/− biological interaction that is neutral for a so-called in-
hibitory species but detrimental for a so-called susceptible species. To model this type of interaction
in a spatially-structured environment, Durrett and Levin introduced a variant of the multitype con-
tact process in which the death rate of the susceptible species is density-dependent, increasing with
the local density of the inhibitory species. Their work combines mean-field analysis and simulations
of the spatial model, and our main objective is to give rigorous proofs of some of their conjectures.
In particular, we give a complete description of the behavior of the mean-field model, including the
global stability of the fixed points. Our main results for the interacting particle system show the
existence of two regimes depending on the relative fitness of the individuals. When the inhibitory
species is the superior competitor, the inhibitory species always wins, whereas when the susceptible
species is the superior competitor, the susceptible species wins if and only if the inhibitory effects do
not exceed some critical threshold. We also prove that, at least in dimensions d ≥ 3, the transition
between these two regimes is continuous in the sense that, when both species are equally fit, the
inhibitory species wins even in the presence of extremely weak inhibitory effects.

1. Introduction

Biological interactions among species can be beneficial (+), neutral (0) or detrimental (−) for each
of the interacting species. Biological interactions that are neutral for one species and detrimental
for another species are referred to as amensalism. Allelopathy is a particular case of amensalism
called antibiosis amensalism in which one species produces toxic biochemicals called allelochemicals
that inhibit the growth and survival of the other species. The species producing the allelochemicals
is called the inhibitory species while the other species is called the susceptible species. Because
the inhibitory species is immune to the allelochemicals it produces, this mechanism provides a
selective advantage to the inhibitory species. To model allelopathy in a spatially-structured envi-
ronment, Durrett and Levin (1997) introduced an interacting particle system in which each lattice
point can be empty or occupied by an individual of one of the two species. The system is charac-
terized by the natural birth and death rates of the species as well as the strength of the inhibitory
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effects. Space is included in the form of local interactions assuming that the offspring are sent from
the parent’s location to nearby lattice points but also that the individuals of the inhibitory species
only affect nearby susceptible individuals. Their model assumes in addition that offspring can only
survive when sent to an empty site, which also models competition for space. More precisely, the
Durrett-Levin model is a variant of the multitype contact process (Neuhauser (1992)), that models
allelopathy by including a density-dependent death rate for the susceptible species. Like in the
multitype contact process, each site of the d-dimensional lattice is in state

0 = empty 1 = occupied by a type 1 individual (inhibitory species)
or 2 = occupied by a type 2 individual (susceptible species)

so the state of the entire system at time t is a spatial configuration

ξt : Zd −→ {0, 1, 2} where ξt(x) = state at site x at time t.

To describe the dynamics (local interactions), we let

Nx = {y ∈ Zd : 0 < ||x− y|| ≤M} for all x ∈ Zd

be the neighborhood of site x, where || · || refers to the Euclidean norm and M is interpreted as a
dispersal range. For every species i, site x and configuration ξ, we let

fi(x, ξ) =
1

card(Nx)

∑
y∈Nx

1{ξ(y) = i}

be the fraction of neighbors of site x that are occupied by an individual of type i. Then, the spatial
allelopathic model evolves according to the local transitions

0→ 1 at rate β1f1(x, ξ), 1→ 0 at rate 1,

0→ 2 at rate β2f2(x, ξ), 2→ 0 at rate 1 + γf1(x, ξ).
(1.1)

The two transitions on the left indicate that type i individuals give birth at rate βi to individuals
of their own type. The offspring is sent to a site chosen uniformly at random from the parent’s
neighborhood, and takes place in the system if and only if the target site is empty, which models
competition for space. The two transitions on the right indicate that the individuals die naturally
at rate one regardless of their type but the overall death rate of the susceptible individuals is
density-dependent, increasing with respect to the local density of the inhibitory species, which
models allelopathy whose strength is measured by the parameter γ. The particular case γ = 0
corresponds to the multitype contact process which was introduced by Neuhauser (1992). Another
spatial model of allelopathy based on the framework of interacting particle systems was studied
more recently by Lanchier (2005) using a different modeling approach. His model is also a variant
of Neuhauser’s multitype contact process but, contrary to the Durrett-Levin model, the death rates
are both spontaneous. Instead, the model includes an additional state interpreted as a frozen
site, and allelopathy is modeled by assuming that individuals of the inhibitory species produce
metabolites at their location, leaving after their death a frozen site that remains inaccessible to the
susceptible species (but not to the inhibitory species) for a random amount of time.

Returning to the Durrett-Levin model (1.1), assuming that the population is homogeneously
mixing, and letting u1 be the density of the inhibitory species and u2 be the density of the susceptible
species, the process is described by the following deterministic mean-field model:

u′1 = F1(u1, u2) = β1u1(1− u1 − u2)− u1,

u′2 = F2(u1, u2) = β2u2(1− u1 − u2)− (1 + γu1)u2.
(1.2)

Durrett and Levin (1997) proved that, whenever

β1, β2 > 1 and β1 < β2 < (1 + γ)β1 − γ, (1.3)
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Figure 1.1. Solution curves of the mean-field model for two different values of γ
and the same birth rates. The boundary fixed points are the same but the basin
of attraction of the boundary fixed point in which only the inhibitory/susceptible
species is present increases/decreases with γ.

the system has two locally stable boundary fixed points, one with a positive density of 1s and one
with a positive density of 2s, as well as one interior fixed point. Their numerical simulations also
show that the system is bistable in the sense that the interior fixed point is a saddle point and the
system converges to one of the two boundary fixed points, which is also suggested by the solution
curves in Figure 1.1. In particular, in the parameter region (1.3), none of the species can invade the
other species in its equilibrium, and the outcome of the competition depends on the initial density
of each species. In Section 2, we will identify all the fixed points, study their local stability, and use
the Bendixson–Dulac theorem to give a rigorous proof of this result and a complete picture of the
phase structure of the mean-field model.

Our analysis together with numerical simulations shows that the spatial model has a number of
similarities with its mean-field approximation but also one major difference: the parameter region
where the mean-field model is bistable is turned into a region where there is a strong type that
wins even when starting at low density in the spatial model. In particular, the outcome of the
competition depends on the parameters of the system but not on the initial densities. To state our
results and explore the phase structure, we say that species i

survives when lim inft→∞ P (ξt(x) = i) > 0 for all x ∈ Zd,

dies out when limt→∞ P (ξt(x) = i) = 0 for all x ∈ Zd,

and wins when it survives, while the other species dies out. In addition, we say that both species
coexist when they both survive. Letting βc be the critical value of the basic single-type contact
process described below, the behavior of the allelopathic model outside the parameter region in
which β2 ≥ β1 > βc can be easily deduced from coupling arguments to compare the spatial al-
lelopathic model with Harris’ contact process and Neuhauser’s multitype contact process. In the
absence of one species, the other species, say species 1, behaves like the basic single-type contact
process introduced by Harris (1974). The contact process is the interacting particle system in which
sites can be either 0 = empty or 1 = occupied, with local transitions

0→ 1 at rate β1f1(x, ξ) and 1→ 0 at rate 1.

As one of the most popular models of interacting particle systems, this process was intensively
studied, and we refer to Liggett (1985, 1999) for a review of the main results. In particular,
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there exists a nondegenerate (positive and finite) critical value βc that depends on both the spatial
dimension and the range of the interactions such that, starting with infinitely many 1s,

β1 ≤ βc =⇒ species 1 dies out,
β1 > βc =⇒ species 1 survives.

The proof of extinction at β = βc is due to Bezuidenhout and Grimmett (1990). To study the
competition between both species, we now assume that the process starts from a translation invariant
measure with a positive density of both species, so the initial configuration contains infinitely many
individuals of both types. In this case, the set of occupied sites is dominated by a contact process
with parameter β1 ∨ β2 from which it follows that

β1 ≤ βc and β2 ≤ βc =⇒ both species die out. (1.4)

Using another result of Bezuidenhout and Grimmett (1991) about the exponential decay of the
subcritical contact process implies that, when a species is subcritical, say species 2, it dies out fast
enough that species 1 behaves eventually as in the absence of species 2. In particular,

(a) β1 > βc and β2 ≤ βc =⇒ species 1 wins,
(b) β1 ≤ βc and β2 > βc =⇒ species 2 wins.

(1.5)

We now assume that the two birth rates are supercritical, in which case the long-term behavior
depends on the relative fitness of the two species and the strength of allelopathy. Standard cou-
pling arguments show that the set of 1s is nondecreasing with respect to the birth rate β1 and
the parameter γ and nonincreasing with respect to the birth rate β2, and similarly but with the
monotonicity reversed for the set of 2s. This implies that, two of the parameters being fixed, there
is at most one phase transition from extinction to survival of a given species in the direction of the
third parameter. In addition, in the absence of inhibitory effects γ = 0, the process reduces to the
multitype contact process, and a result of Neuhauser (1992) based on duality techniques shows that
the species with the larger birth rate wins. This, together with the monotonicity with respect to γ,
implies that the inhibitory species wins whenever it is the fittest:

β1 > β2 > βc =⇒ species 1 wins. (1.6)

Combining (1.4)–(1.6) gives a complete description of the long-term behavior of the spatial stochastic
model outside the parameter region β2 ≥ β1 > βc.

We now look at the behavior of the process in the parameter region β2 ≥ β1 > βc, which is
represented by the gray rectangle in Figure 1.3 and the gray triangle in Figure 1.4. In this case, the
long-term behavior also depends on the strength of allelopathy: there is a critical value for γ below
which the susceptible species wins and above which the inhibitory species survives. Neuhauser’s
results were later improved by Durrett and Neuhauser (1997) using a block construction to control
the rate of invasion of the superior competitor. Applying a standard perturbation argument to their
construction in the scenario where the susceptible species is the superior competitor implies that
the susceptible species still wins when the inhibitory effects are sufficiently weak:

Theorem 1.1. For all β2 > β1 > βc, there is γ− > 0 such that

γ < γ− =⇒ species 2 wins. (1.7)

In contrast, using that the inhibitory species does not feel the presence of the susceptible species in
the limiting case γ = ∞, together with a block construction and a perturbation argument, shows
that the inhibitory species survives when the inhibitory effects are sufficiently strong:

Theorem 1.2. For all β2 > β1 > βc, there is γ+ <∞ such that

γ > γ+ =⇒ species 1 survives. (1.8)

Species 1 wins if in addition M = d = 1.
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β1 = 2.8 and γ = 0.45

β1 = 2.2 and γ = 2.7 β1 = 2.2 and γ = 3.2

β1 = 2.8 and γ = 0.25

Figure 1.2. Snapshots at time 200 of the allelopathic model starting from the
product measure with a density one-half of each species on a 300× 300 lattice with
periodic boundary conditions. In all the pictures, the birth rate of the susceptible
species is equal to β2 = 3, the black sites represent the inhibitory species, and the
white sites represent the susceptible species. The simulations show that, even if the
inhibitory species is less competitive (β1 < β2), the inhibitory species outcompetes
the susceptible species if the strength of allelopathy γ is large enough.

Numerical simulations suggest that clusters quickly form and either the susceptible species or the
inhibitory species wins. In particular, we conjecture that, like in the mean-field model, coexistence
is not possible except maybe for a parameter region with measure zero. This, together with the
previous two theorems and the monotonicity with respect to γ, implies that for all β2 > β1 > βc,
there exists a nondegenerate critical value γc such that

γ < γc =⇒ species 2 wins,
γ > γc =⇒ species 1 wins.

(1.9)

Figure 1.2 shows realizations of the process near the phase transition, with γ slightly subcritical in
the two pictures on the left where the susceptible species wins and γ slightly supercritical in the two
pictures on the right where the inhibitory species wins. Combining (1.6) and (1.9) shows that when
the susceptible species is the better competitor there is a phase transition at some nondegenerate
critical value γc whereas when the inhibitory species is the better competitor the critical value γc is
degenerate, equal to zero. We conjecture that the transition between these two regimes is continuous
at point β1 = β2 in the sense that, when the species are equally fit, the inhibitory species wins even
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Figure 1.3. Phase structure of the process for a fixed β2 > βc.

in the presence of very weak inhibitory effects, meaning that the critical value γc is again degenerate
in the symmetric case. Using duality techniques inspired from Neuhauser (1992) (tree structure of
the dual process, ancestor hierarchy, renewal points, etc.) and the transience of the first ancestor
in high dimensions, we were able to prove this conjecture when d ≥ 3.

Theorem 1.3. Assume that β1, β2 > βc. Then,

β1 = β2 and γ > 0 =⇒ species 1 wins in d ≥ 3. (1.10)

We now look at the effects of the birth rate of the susceptible species. In the limiting case β2 =∞,
connected components of 2s with at least two individuals can only expand because each time a
type 2 individual dies the resulting empty site is instantaneously reinvaded by the offspring of a
nearby type 2 individual. This implies that, even if the inhibitory effects are strong, the susceptible
species still wins provided it is a good enough competitor:

Theorem 1.4. For all β1, γ > 0, there is β+ <∞ such that

β2 > β+ =⇒ species 2 wins. (1.11)

The theorem only gives the existence of a finite (possibly very large) critical value β+. Our last result
shows that, in the presence of long range interactions, the allelopathic model can be coupled with
the grass-bush-tree system (Durrett and Schinazi (1993); Durrett and Swindle (1991)) to identify
an explicit parameter region in which the susceptible species survives. More precisely, we have the
following where M refers to the range of the interactions.

Theorem 1.5. For all β2 > β2
1 > 1 and γ ≤ β1, there is M0 <∞ such that

M > M0 =⇒ species 2 survives. (1.12)
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Figure 1.4. Phase structure of the process for a fixed γ > 0.

The phase structure obtained from (1.4)–(1.12) is depicted in Figures 1.3 and 1.4. The gray rectangle
in the first picture and the gray triangle in the second picture represent the parameter region covered
in our theorems. The phase structure does not show any coexistence phase because this is what our
numerical simulations suggest. However, the absence of a phase of coexistence in the spatial model
is still an open problem.

The rest of this paper is organized as follows. Section 2 gives a complete description of the phase
structure of the mean-field model. In preparation for the analysis of the spatial model, Section 3
explains how to construct the process from a graphical representation and deduce the monotonicity
with respect to each of the parameters. The proofs of Theorems 1.1, 1.2, 1.4 and 1.5 can be found
in Sections 4–6 and rely on coupling arguments and/or block constructions. Finally, the proof of
the more involved Theorem 1.3 will be carried out in Section 7.

2. Mean-field analysis

This section is devoted to the analysis of the mean-field model (1.2). In particular, we give a
complete description of the phase structure with the limiting density of each type based on the
parameters of the system. The key parameter regions that appear in our analysis are

B0 = {(β1, β2, γ) ∈ R3
+ : β1 < 1 and β2 < 1},

B1 = {(β1, β2, γ) ∈ R3
+ : β1 > 1 and β2 < (1 + γ)β1 − γ},

B2 = {(β1, β2, γ) ∈ R3
+ : β2 > 1 and β2 > β1}.

Setting the right-hand side of (1.2) equal to zero gives the three trivial fixed points

p0 = (0, 0), p1 =

(
1− 1

β1
, 0

)
, p2 =

(
0, 1− 1

β2

)
,
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and the nontrivial fixed point p12 = (ū1, ū2) where

ū1 =
1

γ

(
β2
β1
− 1

)
and ū2 = 1− 1

β1
− ū1 = 1− 1

β1
− 1

γ

(
β2
β1
− 1

)
. (2.1)

The first step is to identify the sets of parameters for which each of the four fixed points belongs
to the biologically relevant two-dimensional simplex ∆2. The fixed point p0 is always in the two-
dimensional simplex, the fixed point p1 belongs to the simplex if and only if β1 > 1, and the fixed
point p2 belongs to the simplex if and only if β2 > 1. In addition,

p12 ∈ ∆2 ⇐⇒ 0 < ū1, ū2 < 1

⇐⇒ β1 < β2 < (1 + γ)β1 − γ ⇐⇒ (β1, β2, γ) ∈ B1 ∩B2.
(2.2)

To study the local stability, note that the Jacobian matrix is given by

J(u1, u2) =

(
β1(1− 2u1 − u2)− 1 −β1u1
−(β2 + γ)u2 β2(1− u1 − 2u2)− 1− γu1

)
.

In particular, the Jacobian matrices at p0, p1 and p2 are triangular, of the form

J(p0) =

(
β1 − 1 0

0 β2 − 1

)
, J(p1) =

(
1− β1 ×

0 −γū2

)
, J(p2) =

(
β1/β2 − 1 0

× 1− β2

)
.

Using that ū2 > 0 if and only if β2 < (1 + γ)β1 − γ and looking at the sign of the two eigenvalues
on the diagonal of each of the Jacobian matrices, we deduce that

p0 is locally stable ⇐⇒ β1 < 1 and β2 < 1, i.e., (β1, β2, γ) ∈ B0,

p1 is locally stable ⇐⇒ β1 > 1 and β2 < (1 + γ)β1 − γ, i.e., (β1, β2, γ) ∈ B1,

p2 is locally stable ⇐⇒ β2 > 1 and β2 > β1, i.e., (β1, β2, γ) ∈ B2.

Using numerical simulations, Durrett and Levin noticed that p12 is a saddle, which we now prove
rigorously. First, notice that, because 1− ū1 − ū2 = 1/β1,

β1(1− 2ū1 − ū2)− 1 = β1(1− ū1 − ū2)− β1ū1 − 1 = −β1ū1,

showing that the two coefficients on the first row of the Jacobian matrix at the fixed point p12 are
in fact equal. It follows that the expression of the determinant reduces to

Det (J(p12)) = −β1ū1(β2(1− ū1 − 2ū2)− 1− γū1 + (β2 + γ)ū2)

= −β1ū1(β2(1− ū1 − ū2)− 1− γ(ū1 − ū2)

= −β1ū1(β2/β1 − γ(ū1 − ū2)− 1).

Then, replacing ū1 and ū2 by their values in (2.1), we get

Det (J(p12)) = −ū1((1 + γ)β1 − γ − β2) < 0

when the equivalent conditions in (2.2) hold. This shows that the two eigenvalues have opposite
signs therefore the interior fixed point is always a saddle. To deduce the limiting behavior from the
local stability of the fixed points, the last step is to apply the Bendixson–Dulac theorem to exclude
the existence of periodic orbits. More precisely, recalling that

F1(u1, u2) = β1u1(1− u1 − u2)− u1,

F2(u1, u2) = β2u2(1− u1 − u2)− (1 + γu1)u2,
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Figure 2.5. Phase structure of the mean-field model (1.2).

the objective is to find a smooth function ϕ(u1, u2) such that the sign of ∇ · (ϕF1, ϕF2) is constant
almost everywhere in the simplex. Using the function ϕ = 1/(u1u2), we get

∇ · (ϕF1, ϕF2) =
∂(ϕF1)

∂u1
+

∂(ϕF2)

∂u2

=
∂

∂u1

(
β1(1− u1 − u2)− 1

u2

)
+

∂

∂u2

(
β2(1− u1 − u2)− 1− γu1

u1

)
= −β1

u2
− β2

u1
< 0

for all β1, β2 > 0 and all u in the interior of the simplex. This proves the absence of periodic orbits
which, together with the local stability of the fixed points, give the following limiting behavior. In
the parameter region B0, the population goes extinct in the sense that u → p0. In the parameter
region B1 \ B2, the inhibitory species wins in the sense that u → p1 when starting with a positive
density of 1s. Similarly, in the parameter region B2 \ B1, the susceptible species wins. Finally, in
the parameter region B1∩B2, the system is bistable: for almost all initial conditions in the simplex,
the densities converge to either p1 or p2, indicating that the outcome of the competition depends
on the initial densities. Figure 2.5 shows a picture of the phase structure.

3. Harris’ graphical representation

The starting point to study the stochastic spatial model and prove our results is to use an idea
due to Harris (1972) to construct the process graphically from a collection of independent Poisson
processes/exponential clocks. In the case of the allelopathic model, we use four collections corre-
sponding to the following four updates: birth of a 1, birth of a 2, natural death, death of a 2 due
to inhibitory effects. To construct the process, it is convenient to think of the lattice Zd as the
vertex set of a directed graph in which there is a directed edge x⃗y if and only if vertices x and y
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Figure 3.6. Graphical representation of the allelopathic model. The black lines
represent the space-time region occupied by the inhibitory species and the gray lines
the region occupied by the susceptible species.

are neighbors, and we let N be the common size of the interaction neighborhoods. The exponential
clocks are attached to the vertices and directed edges of the graph as follows.

• Inhibition. Place an exponential clock with rate γ/N along each directed edge x⃗y. Each
time the clock rings, say at time t, draw an arrow (x, t)→ (y, t) labeled with a 0 to indicate
that if the tail of the arrow is occupied by a 1 and the head of the arrow is occupied by a 2
then the head of the arrow becomes empty.
• Birth of a 1. Place an exponential clock with rate β1/N along each directed edge x⃗y. Each

time the clock rings, say at time t, draw an arrow (x, t)→ (y, t) labeled with a 1 to indicate
that if the tail of the arrow is occupied by a 1 and the head of the arrow is empty then the
head of the arrow becomes occupied by a 1.
• Birth of a 2. Place an exponential clock with rate β2/N along each directed edge x⃗y. Each

time the clock rings, say at time t, draw an arrow (x, t)→ (y, t) labeled with a 2 to indicate
that if the tail of the arrow is occupied by a 2 and the head of the arrow is empty then the
head of the arrow becomes occupied by a 2.
• Natural death. Place an exponential clock with rate one at each vertex x. Each time the

clock rings, say at time t, put a cross at (x, t) to indicate that site x becomes empty.

Figure 3.6 shows an example of realization of this graphical representation and how to construct
the process starting from a given initial configuration. An argument of Harris (1972) based on
techniques from percolation theory shows more generally that the allelopathic model on the infinite
integer lattice starting from any initial configuration is well-defined and can be constructed using
the collection of independent exponential clocks above.

The graphical representation can also be used together with the superposition properties of the
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exponential distribution to couple processes with different parameters or different dynamical struc-
tures, and deduce some monotonicity results. For instance, fix γ1 ≤ γ2, and let ξit be the process with
birth rates β1 and β2, and parameter γi for i = 1, 2. Think of the first process as being generated
from the graphical representation described above with γ = γ1 while, according to the superposition
property, the second process can be constructed from the same graphical representation as the first
process by also adding type 0 arrows along the directed edges at rate (γ2 − γ1)/N , which results in
a joint construction (coupling) of the two processes. In addition, starting both processes from the
same initial configuration, one can easily check that

ξ1t (x) = 1 =⇒ ξ2t (x) = 1 and ξ2t (x) = 2 =⇒ ξ1t (x) = 2.

Using also the monotonicity of the expectation, we deduce that, the birth rates being fixed, survival
of the inhibitory species when γ = γ1 implies survival of the inhibitory species when γ = γ2,
and survival of the susceptible species when γ = γ2 implies survival of the susceptible species
when γ = γ1. The monotonicity with respect to each of the birth rates mentioned in the introduction
can be proved similarly by coupling the birth arrows.

Recalling that the multitype contact process corresponds to the special case γ = 0, the previous
monotonicity result also implies that if the 1s win in the multitype contact process then they also
win in the allelopathic model with the same birth parameters for all γ ≥ 0. This, together with a
result of Neuhauser (1992, Theorem 1) which states that

β1 > β2 > βc =⇒ species 1 wins

for the multitype contact process, implies that the same result (1.6) also holds for the allelopathic
model. The graphical representation will also be used later to couple the process with the grass-
bush-tree system (Durrett and Schinazi (1993); Durrett and Swindle (1991)), define good events in
certain space-time regions when using block constructions, and study the dual process.

4. Proofs of Theorems 1.1 and 1.2

This section is devoted to the proofs of Theorem 1.1 and 1.2. Assuming that the susceptible species
is a better competitor than the inhibitory species, recall that the theorems state that the susceptible
species wins if the inhibitory effects are sufficiently weak whereas the inhibitory species survives if
the inhibitory effects are sufficiently strong. The proofs of both theorems consist in comparing the
process in the two extreme cases γ = 0 and γ = ∞ with well-known interacting particle systems,
and then using a block construction along with a perturbation argument to prove the existence of
a phase transition at a nondegenerate critical value γc. Throughout this section, Pγ will refer to
the probability for the process with parameter γ, not to be confused with Pp where p refers to the
density of open sites in the context of oriented percolation.

The block construction technique first appeared in the work of Bramson and Durrett (1988) and
is reviewed in detail in the lecture notes of Durrett (1995). The general idea of this approach is to
couple the process properly rescaled in space and time with oriented site percolation, which we now
briefly describe. To begin with, we let

L = {(m,n) ∈ Zd × Z+ : m1 + · · ·+md + n is even},
which we turn into a directed graph by placing arrows

(m,n)→ (m′, n′) if and only if |m1 −m′
1|+ · · ·+ |md −m′

d| = 1 and n′ = n+ 1.

The sites in L are assumed to be open or closed with probability p and 1 − p, respectively, and
whether a finite collection of sites are open or closed are assumed to be independent events when
these sites are sufficiently far apart. We say that a site is wet if it can be reached from a directed
path of open sites starting at level n = 0, we let C0 be the cluster of sites that can be reached from
a directed path of open sites starting at the origin, and we call the event that this cluster is infinite
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the percolation event. Using a so-called contour argument, it can be proved that there exists a
nondegenerate critical value pc ∈ (0, 1) for the density of open sites such that

p > pc =⇒ Pp(|C0| =∞) > 0,

and we refer to Durrett (1984, Section 10) for the details of the proof. A consequence of this result
is that, in the supercritical phase p > pc and starting with infinitely many open sites at level n = 0,
the density of wet sites at level n converges to a positive limit as n→∞.

To prove Theorem 1.1, the basic idea is to observe that, under the assumptions of the theorem,
the allelopathic model consists of a small perturbation of a multitype contact process in which type 2
individuals win. To turn our intuition into a rigorous proof, we will apply a perturbation argument
to the block construction Durrett and Neuhauser (1997, Section 3) used to study the multitype
contact process, the particular case γ = 0. Changing a little bit the notation in their construction,
for each site (m,n) ∈ L , we define the space-time boxes

Am,n = (mL,nT ) + ([−L,L]d × {T}),
Bm,n = (mL,nT ) + ([−L,L]d × [T, 2T ]),

Cm,n = (mL,nT ) + ([−3L, 3L]d × [0, 2T ]), where T = L2.

Note that Am,n is flat and represents the bottom of the space-time box Bm,n. We partition Am,n

into small cubes of size L0.1 × · · · × L0.1, and define the events

Em,n = each of the small cubes in Am,n contains at least one type 2 individual,
Fm,n = the space-time box Bm,n does not contain any type 1 individual.

Durrett and Neuhauser’s proof, which relies on duality techniques along with a repositioning algo-
rithm, implies that, for the multitype contact process with β2 > β1 > βc and for all ϵ > 0, there
exists a collection of good events Gm,n that only depend on the graphical representation in the
larger space-time box Cm,n such that, for all L sufficiently large,

(a) P0(Gm,n) ≥ 1− ϵ/2,

(b) Em,n ∩Gm,n =⇒ Em′,n′ ∩ Fm′,n′ for all (m′, n′)← (m,n).

In words, if the bottom of a space-time box contains many 2s then, with high probability, not only
the bottom of the boxes immediately above contains many 2s but also these boxes do not contain
any 1s, as shown in Figure 4.7 in the one-dimensional case. In order to apply a perturbation
argument, we now think of the allelopathic model as being generated from the same graphical
representation as the multitype contact process along with type 0 arrows starting from each site at
rate γ, as shown in Figure 3.6. The scale parameter L being fixed, there exists γ− > 0 small such
that the probability that the graphical representation of the allelopathic model coincides with that
of the multitype contact process in the box Cm,n is given by

Pγ(no type 0 arrows in the space-time box Cm,n)

= P (Poisson(γVol(Cm,n)) = 0) = exp(−2L2(6L+ 1)d γ) ≥ 1− ϵ/2

for all γ < γ−. In particular, for all γ < γ−,

Pγ(Gm,n) = 1− Pγ(G
c
m,n) ≥ 1− P0(G

c
m,n)− ϵ/2 ≥ 1− ϵ/2− ϵ/2 = 1− ϵ.

Calling site (m,n) ∈ L a good site whenever Em,n ∩ Fm,n occurs, Durrett (1995, Theorem A.4)
implies that there is a coupling of the process and oriented site percolation with parameter p = 1−ϵ
such that the set of good sites in the interacting particle system dominates the set of wet sites in the
percolation model. Choosing ϵ < 1 − pc then implies that the density of good sites converges to a
positive limit as n→∞, which proves survival of the susceptible species. This does not fully prove
the theorem because there is still a positive density ϵ > 0 of closed sites, and the corresponding
space-time box Bm,n can potentially contain 1s. To prove extinction of the inhibitory species, the
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Am,n

Bm−1,n+1 Bm+1,n+1

no 1s in this
space-time box

no 1s in this
space-time box

one 2 in each small cube
no 1s and at least

one 2 in each small cube
no 1s and at least

one 2 in each small cube
no 1s and at least

Bm,n

Figure 4.7. Illustration of the block construction used by Durrett and Neuhauser (1997).

last step is to use a result due to Durrett (1992) which shows that, when ϵ is small enough, not only
the open sites percolate but also the closed sites do not percolate. Because the 1s cannot appear
spontaneously, the presence of an individual of type 1 in box Bm,n implies the existence of a directed
path of closed sites from level zero to site (m,n), an event whose probability decays exponentially
fast with n due to the lack of percolation of the closed sites. This shows extinction of the inhibitory
species and completes the proof of Theorem 1.1.

To prove Theorem 1.2, we observe that, under the assumptions of the theorem, the set of 1s in
the allelopathic model consists of a small perturbation of a supercritical contact process. The first
work showing that the supercritical contact process properly rescaled in space and time dominates
oriented site percolation with parameter arbitrarily close to one is the paper of Bezuidenhout and
Grimmett (1990) where they used this coupling together with a perturbation argument to prove
extinction of the critical contact process. Instead of explaining their construction, we simply reuse
the result of Durrett and Neuhauser (1997) exchanging the roles of the two types of particles, in
the absence of 2s. Using the same space-time boxes but redefining the events

Em,n = each of the small cubes in Am,n contains at least one type 1 individual,

their result implies that, for the (supercritical) contact process with β1 > βc and for all ϵ > 0,
there exists a collection of good events Gm,n that only depend on the graphical representation in
the larger space-time box Cm,n such that, for all L sufficiently large,

(a) P∞(Gm,n) ≥ 1− ϵ/2,

(b) Em,n ∩Gm,n =⇒ Em′,n′ for all (m′, n′)← (m,n).
(4.1)

In words, if the bottom of a space-time box Bm,n contains many 1s then, with high probability, the
bottom of the boxes immediately above also contains many 1s. Returning to the allelopathic model,
observe that, in the limiting case γ = ∞, the 2s in the neighborhood of a 1 are instantaneously
killed, which implies that the 1s only attempt to give birth onto empty sites or sites already occupied
by a type 1 particle. This shows that the 1s do not feel the presence of the 2s and therefore evolve
according to a supercritical contact process. The next step is to apply a perturbation argument to
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prove that the good events Gm,n above still occur with probability arbitrarily close to one when γ
is large but finite, which is done in the following lemma.

Lemma 4.1. For all ϵ > 0, there exist good events Ḡm,n and large L and γ+ such that

(a) Pγ(Ḡm,n) ≥ 1− ϵ for all γ > γ+,

(b) Em,n ∩ Ḡm,n =⇒ Em′,n′ for all (m′, n′)← (m,n).

Proof : Think of the allelopathic model as being generated from the same graphical representation
as the contact process along with type 0 arrows starting from each site at rate γ and type 2 arrows
starting from each site at rate β2, as shown in Figure 3.6. Then, the set of 1s in the space-time
box Cm,n evolves as if there were no 2s if each time a 2 gives birth onto a site x next to a 1, the
offspring dies before any of the surrounding 1s tries to send an offspring to x. This happens in
particular if each time there is a type 2 arrow pointing at (x, t) ∈ Cm,n, there are N type 0 arrows
starting from each site in Nx and pointing at x before any type 1 arrow pointing at x. Calling this
event Fm,n, part (b) of the lemma holds for the events

Ḡm,n = Fm,n ∩Gm,n for all (m,n) ∈ L .

To estimate the probability of Ḡm,n, define the events

Hm,n = there are less than 2hL = 4β2L
2(6L+ 1)d type 2 arrows pointing at Cm,n.

Because type 2 arrows occur at rate β2 at each site,

P (Hc
m,n) = P (Poisson(β2Vol(Cm,n)) ≥ 2hL) = P (Poisson(hL) ≥ 2hL)) ≤ ϵ/4 (4.2)

for all L sufficiently large. Now, let

X1, X2, . . . , XN = Exponential(γ/N) and Y = Exponential(β1)

be independent. The parameter L being fixed so that (4.1) and (4.2) hold, recalling the rate of the
type 0 arrows and type 1 arrows, and using the superposition property, we get

Pγ(F
c
m,n |Hm,n) ≤ 2hLPγ(max(X1, X2, . . . , XN ) > Y )

≤ 2NhLPγ(X1 > Y ) = 2NhLβ1/(β1 + γ/N) ≤ ϵ/4

for all γ sufficiently large. In particular, there exists γ+ <∞ such that

Pγ(F
c
m,n) = Pγ(F

c
m,n |Hm,n)P (Hm,n) + Pγ(F

c
m,n |Hc

m,n)P (Hc
m,n)

≤ Pγ(F
c
m,n |Hm,n) + P (Hc

m,n) ≤ ϵ/4 + ϵ/4 = ϵ/2
(4.3)

for all γ > γ+. Combining (4.1) and (4.3), we conclude that

Pγ(Ḡm,n) ≥ 1− Pγ(F
c
m,n)− P∞(Gc

m,n) ≥ 1− ϵ/2− ϵ/2 = 1− ϵ

for all γ > γ+, which proves part (a) of the lemma. □

As previously, calling site (m,n) ∈ L a good site when Em,n occurs, it follows from the lemma
that there is a coupling with oriented site percolation with parameter p = 1− ϵ such that the set of
good sites dominates the set of wet sites in the percolation model. Choosing ϵ small enough implies
that the density of good sites converges to a positive limit as n → ∞, which shows survival of the
inhibitory species. The stochastic domination also implies that there is a site (in fact infinitely many
sites) (m, 0) such that the cluster of good sites starting at (m, 0) expands linearly in all directions.
Because invasion paths cannot jump over or go around each other in the presence of one-dimensional
nearest neighbor interactions, we deduce that this cluster is void of 2s and therefore species 1 wins
when M = d = 1. This completes the proof of Theorem 1.2.
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5. Proof of Theorem 1.4

This section focuses on the effects of the competitiveness of the susceptible species, measured by the
birth rate β2. Recall from (1.6) that the inhibitory species wins whenever it is a better competitor
than the susceptible species. In contrast, Theorem 1.4 states that, even when the inhibitory effects
are strong, the susceptible species wins if it is highly competitive. This and monotonicity imply the
existence of a unique phase transition from extinction to survival of the susceptible species in the
direction of the parameter β2 as shown in Figure 1.4. To prove the theorem, let

Λ− = {0, 1}d and Λ+ = {−1, 0, 1, 2}d,

and let ξ̄t be the allelopathic model starting from

ξ̄0(x) = 2 for all x ∈ Λ− and ξ̄0(x) ̸= 2 for all x /∈ Λ+,

and modified so that births of 2s outside the larger cube Λ+ are suppressed. The next lemma shows
that, in the limiting case β2 =∞, the set of 2s fully invades Λ+ in a finite deterministic time with
probability arbitrarily close to one.

Lemma 5.1. Let β2 =∞. Then, for all ϵ > 0, there exists T <∞ such that

P∞(ξ̄T (x) = 2 for all x ∈ Λ+) ≥ 1− ϵ/2.

Proof : Each time a 2 dies at some site x ∈ Λ+, there is a 2 at some site in Nx that can send
instantaneously an offspring to site x, which shows that the set of 2s can only increase. To prove
full invasion of the 2s, we need to deal with two problems:

• potential 1s in the set Λ+ \ Λ− that block the 2s,
• the fact that particles in Λ− might not be able to send their offspring to a corner of Λ+,

which is the case for instance in the presence of nearest neighbor interactions.
However, regardless of the range, there exist x1, x2, . . . , xK with K = 4d − 2d such that

Λ+ \ Λ− = {x1, x2, . . . , xK} and (Λ− ∪ {x1, . . . , xi−1) ∩Nxi ̸= ∅.

In particular, the time it takes for the 2s to invade Λ+ is smaller than the time S it takes to have
one death mark at x1 then one death mark at x2, and so on. By memoryless, this is the sum of K
independent exponential random variables Xi with mean one therefore, for all ϵ > 0,

P∞(ξ̄T (x) = 2 for all x ∈ Λ+) ≥ P (S < T )

≥ P (Xi < T/K for all i = 1, 2, . . . ,K) = (1− e−T/K)K ≥ 1− ϵ/2

for all T sufficiently large. This completes the proof. □

Applying a perturbation argument like in the proof of Lemma 4.1, we deduce that for all ϵ > 0,
there exist sufficiently large T <∞ and β+ <∞ such that

Pβ2(ξ̄T (x) = 2 for all x ∈ Λ+) ≥ 1− ϵ for all β2 > β+. (5.1)

Because the set of 2s in the modified process ξ̄t is dominated by its counterpart in the original
allelopathic model with the same parameters and because the evolution rules of the allelopathic
model are translation invariant in space, it follows from (5.1) that the set of 2s in the process ξt
properly rescaled in space and time dominates supercritical oriented site percolation. More precisely,
call site (m,n) ∈ L a good site whenever the following two events occur:

Em,n = the box m+ Λ− is fully occupied by 2s at time nT ,

Fm,n = the space-time box (m,nT ) + (Λ− × [0, T ]) does not contain any 1s.
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Then, it follows from (5.1) that for all β1 and γ, and for all ϵ > 0, there exists a collection of good
events Gm,n such that, for all T and β+ large,

(a) Pβ2(Gm,n) ≥ 1− ϵ,

(b) Em,n ∩Gm,n =⇒ Em′,n′ ∩ Fm′,n′ for all (m′, n′)← (m,n),

for all β2 > β+. In addition, because Lemma 5.1 applies to the modified process ξ̄t, the event Gm,n

can be made measurable with respect to the graphical representation of the process in

(m,nT ) + ([−M − 1,M + 2]d × [0, 2T ]).

As previously, this shows that the set of good sites dominates the set of wet sites in an oriented site
percolation process with parameter p = 1 − ϵ. Choosing ϵ > 0 small enough to ensure percolation
of the open sites and the lack of percolation of the closed sites, we conclude that the susceptible
species survives whereas the inhibitory species goes extinct.

6. Proof of Theorem 1.5

This section gives a coupling of the allelopathic model and the grass-bush-tree system introduced
by Durrett and Swindle (1991) from which Theorem 1.5 follows easily. Changing their labeling of
the states to facilitate the comparison with the allelopathic model, the sites in the grass-bush-tree
system can be in state 0 = grass, 1 = tree, and 2 = bush. The process, denoted by ζt, is a variant
of the multitype contact process modeling ecological successions in which the tree is a superior
competitor that can give birth onto both grass and bushes, so the transition rates are

0, 2→ 1 at rate β1f1(x, ζ), 1→ 0 at rate 1,

0→ 2 at rate β2f2(x, ζ), 2→ 0 at rate 1.

Note that the dynamical structure of the process is the same as that of the allelopathic model except
that the death rate of the 2s is no longer density dependent, which favors the 2s, but the 1s can give
birth onto the 2s, which favors the 1s. Assuming that γ ≤ β1, the two processes can be constructed
from the same graphical representation to define a coupling (ξt, ζt) as follows.

• Place an exponential clock with rate γ/N along each directed edge x⃗y. Each time the clock
rings, say at time t, draw an arrow (x, t) → (y, t) labeled with a 0. For the allelopathic
model (first coordinate), if the tail is occupied by a 1 and the head is in state 0 then the 1
gives birth through the arrow while if the tail is occupied by a 1 and the head is in state 2
then the 2 dies. For the grass-bush-tree system (second coordinate), if the tail is occupied
by a 1 and the head is in state 0 or 2 then the 1 gives birth through the arrow.
• Place an exponential clock with rate (β1−γ)/N along each directed edge x⃗y. Each time the

clock rings, say at time t, draw an arrow (x, t)→ (y, t) labeled with a 1. For the allelopathic
model, if the tail is occupied by a 1 and the head is in state 0 then the 1 gives birth through
the arrow. For the grass-bush-tree system, if the tail is occupied by a 1 and the head is in
state 0 or 2 then the 1 gives birth through the arrow.
• Place an exponential clock with rate β2/N along each directed edge x⃗y. Each time the clock

rings, say at time t, draw an arrow (x, t)→ (y, t) labeled with a 2. If the tail is occupied by
a 2 and the head is in state 0 then, for both the allelopathic model and the grass-bush-tree
system, the 2 gives birth through the arrow.
• Finally, place an exponential clock with rate one at each vertex x. Each time the clock rings,

say at time t, put a cross at (x, t) to indicate that, for both the allelopathic model and the
grass-bush-tree system, site x becomes empty.
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Note that type 0 arrows create more 0s in the allelopathic model and more 1s in the grass-bush-tree
system. In particular, starting both processes from the same initial configuration and using the
graphical representation above, one expects that, for all (x, t) ∈ Zd × R+,

ξt(x) = 1 =⇒ ζt(x) = 1 and ξt(x) = 2 ⇐= ζt(x) = 2. (6.1)

To prove this result, it suffices to prove that the set of states

S = {(0, 0), (0, 1), (1, 1), (2, 0), (2, 1), (2, 2)}

is closed under the dynamics of the coupling (ξt, ζt). Regardless of the state of the coupling, a
cross will turn this state into (0, 0) ∈ S so the crosses do not create new states not in S. Similarly,
checking the effect of each type of arrow on all possible configurations, we get

before after before after before after
(0, 1)

0−→ (0, 0) (0, 1) (0, 1)
1−→ (0, 0) (0, 1) (2, 0)

2−→ (0, 0) (2, 0)

(0, 1)
0−→ (2, 0) (2, 1) (0, 1)

1−→ (2, 0) (2, 1) (2, 0)
2−→ (0, 1) (2, 1)

(0, 1)
0−→ (2, 2) (2, 1) (0, 1)

1−→ (2, 2) (2, 1) (2, 1)
2−→ (0, 0) (2, 0)

(1, 1)
0−→ (0, 0) (1, 1) (1, 1)

1−→ (0, 0) (1, 1) (2, 1)
2−→ (0, 1) (2, 1)

(1, 1)
0−→ (0, 1) (1, 1) (1, 1)

1−→ (0, 1) (1, 1) (2, 2)
2−→ (0, 0) (2, 2)

(1, 1)
0−→ (2, 0) (0, 1) (1, 1)

1−→ (2, 0) (2, 1) (2, 2)
2−→ (0, 1) (2, 1)

(1, 1)
0−→ (2, 1) (0, 1) (1, 1)

1−→ (2, 2) (2, 1) (2, 2)
2−→ (2, 0) (2, 2)

(1, 1)
0−→ (2, 2) (0, 1) (2, 1)

1−→ (0, 0) (0, 1)

(2, 1)
0−→ (0, 0) (0, 1) (2, 1)

1−→ (2, 0) (2, 1)

(2, 1)
0−→ (2, 0) (2, 1) (2, 1)

1−→ (2, 2) (2, 1)

(2, 1)
0−→ (2, 2) (2, 1)

Because card(S) = 6, there are 36 possible pairs of states at the tail and head of the arrows before
an interaction but we have only listed the pairs for which an update indeed happens, i.e., the states
at the head of the arrow before and after the interaction are different. All the states generated by
the coupling remain in S therefore (6.1) holds. In addition, Durrett and Swindle (1991) proved the
following coexistence result for the grass-bush-tree system:

β2 > β2
1 > 1 and M large =⇒ coexistence. (6.2)

In particular, Theorem 1.5 follows from (6.2) and the second implication in (6.1) which states that
the 2s in the allelopathic model dominate the 2s in the grass-bush-tree system.

7. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 which states that, at least in d ≥ 3, when both
species are equally fit, even weak inhibitory effects drive the susceptible species to extinction. The
proof is mostly based on duality techniques even though, strictly speaking, the allelopathic model
does not have a tractable dual process. The first step is to describe the dual processes of the contact
process and the symmetric multitype contact process.

To begin with, we think of the basic contact process with birth parameter β as being generated
by the graphical representation that has unlabeled birth arrows from each site to each of their
neighbors at rate β/N and crosses/death marks at each site at rate one. Given a realization of this
graphical representation and two times 0 < s < t, we say that there is

a path (y, t− s) ↑ (x, t) or a dual path (x, t) ↓ (y, t− s)
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if we can go from one space-time point to the other one by moving forward/backward in time in
the graphical representation, crossing the birth arrows in their direction/opposite of their direction,
and avoiding the death marks. More precisely, there are sites and times

y = x1, x2, . . . , xn = x and t− s = s0 < s1 < · · · < sn = t

such that the following two conditions hold:
• there is a birth arrow (xi, si)→ (xi+1, si) for all i = 1, 2, . . . , n− 1,
• the segments {xi} × (si−1, si) are void of death marks × for i = 1, 2, . . . , n.

The dual process starting at (x, t) is the set-valued process

ξ̂(x,t)s = {y ∈ Zd : there is a dual path (x, t) ↓ (y, t− s)} for all 0 ≤ s ≤ t. (7.1)

By construction of the contact process from the graphical representation, a space-time point (x, t)
is occupied if and only if it can be reached from a path starting at (y, 0) for some y that is initially
occupied. This happens if and only if at least one of the dual paths starting at (x, t) lands on an
occupied site, which gives the duality relationship

x ∈ ξt ⇐⇒ ξ̂
(x,t)
t ∩ ξ0 ̸= ∅, (7.2)

where we have identified the configuration of the process with the set of occupied sites. In other
words, the dual process keeps track of the potential ancestors of (x, t), and we refer to the left-hand
side of Figure 7.8 for a picture. Note that the dual process exhibits a tree structure with branchings
along the birth arrows. In our example, (x, t) is occupied if and only if at least one of the four sites
in black at the bottom of the picture is occupied at time zero.

We now give a description of the dual process of Neuhauser’s multitype contact process. In the
symmetric case β1 = β2 = β, the process can be constructed from the same graphical representation
as the basic contact process assuming that both types of individuals can give birth through the
arrows. In particular, the duality relationship (7.2) still holds: space-time point (x, t) is occupied if
and only if the dual process starting at this point intersects at least one occupied site in the initial
configuration. However, when the intersection contains particles of different types, the type at
point (x, t), as opposed to its occupancy, is unclear. Neuhauser (1992) proved that the dual process
of the symmetric multitype contact process consists of the dual process of the basic contact process
along with an ancestor hierarchy in which the members can be arranged according to the order
they determine the type of (x, t). We refer to Neuhauser (1992) for a description of this ancestor
hierarchy, and to Lanchier and Neuhauser (2006) for a more formal definition using a labeling of
the tree structure and the lexicographic order. The right-hand side of Figure 7.8 shows the ancestor
hierarchy at various times. If the site labeled 1 at the bottom of the picture is initially occupied
then (x, t) is of the same type as this site, if the site labeled 1 is initially empty but the site labeled 2
is initially occupied then (x, t) is of the same type as this site, and so on. In general, (x, t) is of the
same type as the ancestor with the smallest index that is initially occupied.

The first ancestor in the hierarchy plays a key role in the analysis of the multitype contact process
and the allelopathic model. This ancestor is also called the distinguished particle, and its position
at time t − s = dual time s is denoted by ξ̂

(x,t)
s (1). Roughly speaking, the distinguished particle

starts at site x and jumps to the lowest existing branch of the tree structure each time it meets a
death mark going backward in time (see the black path in Figure 7.8). To study the evolution of
the distinguished particle, it is convenient to assume that the exponential clocks in the graphical
representation are defined for negative times so the process (7.1) is well-defined for all s > 0. Then,
we say that (x, t) lives forever if the dual process starting at this point is nonempty for all times.
Each time the distinguished particle jumps onto a point that lives forever, this point is called a
renewal point. Because the distinguished particle is trapped in the (infinite) subtree starting from a
renewal point, its evolution before and after a renewal point are determined by disjoint parts of the
graphical representation. In particular, the space-time displacements between consecutive renewal
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Figure 7.8. Dual process of the contact process on the left and dual process of the
neutral multitype contact process along with the ancestor hierarchy on the right. In
the right picture, the black line keeps track of the distinguished particle while the
numbers show the ancestor hierarchy at various times.

points are independent and identically distributed. Neuhauser also proved that these space-time
displacements have exponentially decaying tails from which she deduced that, like simple symmetric
random walks, the process that keeps track of the distinguished particle is recurrent in one and two
dimensions and transient in higher dimensions.

To study the allelopathic model when the two species are equally fit, we construct the process
using the graphical representation of the neutral multitype contact process that has birth arrows
and death marks, and also add like in Figure 3.6 type 0 arrows, that we call kill arrows from now
on, from each site to each of their neighbors at rate γ/N . The key to proving the theorem is to show
that, when (x, t) lives forever, there is a sequence of distinguished particles that start at the tail of
kill arrows pointing at the first ancestor of (x, t), live forever and never coalesce. To begin with,
we follow the path of the distinguished particle starting at (x, t) going backward in time, let σi be
the ith time we cross the head of a birth arrow, let xi be the location of the tail of this arrow, and
let yi be the location of the head of this arrow. Then, we define the events

Ai = there is one kill arrow xi → yi in the time interval (σi − 1, σi) and no
crosses at or other arrows pointing at one of those two sites in this time interval.

In case Ai occurs, we let τi ∈ (σi − 1, σi) be the time at which the kill arrow appears.

Lemma 7.1. Assume that γ > 0. Then, P (lim supi→∞Ai) = 1.

Proof : Looking at the rates of the exponential clocks in the graphical representation and using that
these exponential clocks are independent, we get

P (Ai) = P (Poisson(γ/N) = 1)× P (Poisson(2(γ + β + 1)− γ/N) = 0)

= (γ/N) exp(−2(γ + β + 1)) > 0.
(7.3)
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τi
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I1

I2

I4

I5

0

ζ iσi−2K−1 ζ0σi−2K−1xi yi

Figure 7.9. Picture of the event Ai on the left and of the event Ai ∩ Ci on the right.

In addition, whenever |σj − σi| > 1, the two events Ai and Aj are independent, thus showing the
existence of a subsequence of events that are independent and have a positive probability (7.3). In
particular, the result follows from the second Borel-Cantelli lemma. □

In view of Lemma 7.1, there exists a subsequence Aik of events that all occur. We again call this
subsequence Ai to avoid cumbersome notation. Note that, whenever (xi, σi) is of type 1, this 1 must
have killed earlier any potential 2 at (yi, τi) thanks to the presence of the kill arrow therefore (yi, σi)
is of type 1 as well. See the left-hand side of Figure 7.9 for an illustration where as previously black
means type 1 and gray means type 2. Because point (yi, σi) is on the path of the distinguished
particle starting at (x, t), this implies that (x, t) also is of type 1. In particular, to prove the theorem,
it suffices to show that, whenever d ≥ 3,

(xi, σi) is of type 1 for some i ∈ N. (7.4)

Now, define the new collection of events

Bi = the space-time point (xi, σi) lives forever.

Lemma 7.2. Assume that β > βc. Then, P (lim supi→∞Bi) = 1.

Proof : To begin with, note that, by self-duality of the contact process, the probability of Bi is
equal to the probability of survival of the contact process with parameter β, which is positive
because β > βc. Now, assume that Bi does not occur. Letting j be the smallest integer larger
than i such that the dual process starting at (xi, σi) dies out in less than σi−σj units of time, Bj is
determined by parts of the graphical representation that are disjoint from the parts of the graphical
representation that determine the dual process starting at (xi, σi). Because disjoint parts of the
graphical representation are independent, we deduce that

P (Bj |Bc
i ) = P (Bj) = P (ξ̂

(xj ,σj)
s ̸= ∅ for all s) > 0.

Using also that the events Bi are positively correlated implies that, with probability one, infinitely
many of the events Bi occur, which proves the lemma. □

The lemma implies that there exists a subsequence Aik ∩Bik of events that all occur. As previously,
we call this subsequence Ai ∩ Bi to simplify the notation. Because the (xi, σi) live forever, the
distinguished particles starting from those points also live forever, and the next step is to study how
these particles interact. Because these particles start at different times,

ξ(xi,σi)
s (1) and ξ

(xj ,σj)
s (1) for i ̸= j
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do not refer to positions of different distinguished particles at the same time so, to facilitate the
comparison, we reindex the processes using the actual time instead of the dual time. To also include
the distinguished particle starting at (x, t) in the list, we let

ζis = ξ̂
(xi,σi)
σi−s (1) for all i ≥ 0 where (x0, σ0) = (x, t).

The process ζis is well-defined for all i ≤ σi, including negative s since the graphical representation
has been extended to negative times. Now, observe that if the ith distinguished particle lands on
a 1 at time zero, meaning that ξ0(ζ

i
0) = 1, then space-time point (xi, σi) must be of type 1. In

particular, to prove (7.4), it suffices to show that

ξ0(ζ
i
0) = 1 for some i ∈ N. (7.5)

To prove this, the idea is to use transience in dimensions d ≥ 3 to deduce that an arbitrarily large
number of distinguished particles do not coalesce. More precisely, we will use the next result which
follows from the proof of Neuhauser (1992, Lemma 5.5).

Lemma 7.3. Let d ≥ 3. There exists C > 0 such that, for all K large,

||y − z|| ≥ K =⇒ P (||ξ̂(y,t)s (1)− ξ̂
(z,t)
s (1)|| < s1/8 for some s) ≤ CK−1/10 + 2CK−3/32.

Motivated by this lemma, we define the events

Ci = the norm ||ζiσi−2K−1 − ζ0σi−2K−1|| is larger than K but less than 2K.

Lemma 7.4. For all K > 0, we have P (lim supi→∞Ci) = 1.

Proof : Subdividing (σi − 2K − 1, σi) into 2K + 1 intervals I1, I2, . . . , I2K+1 of length one going
backward in time, the probability of Ci is bounded from below by the probability that

• the distinguished particle ζ0s does not jump between time σi and time σi − 2K − 1,
• there are no crosses at and a single birth arrow pointing at ζis whose tail is further away

from the distinguished particle in the intervals I2, I4, . . . , I2K ,
• there are no birth arrows pointing at and one cross at ζis in the intervals I3, I5, . . . , I2K+1.

See the right-hand side of Figure 7.9 for a picture of this more particular event. A direct calculation
using the rate of occurrence of the birth arrows and crosses gives

P (Ci) ≥ P (Poisson((2K + 1)(β + 1)) = 0)

× (P (Poisson(β/N) = 1)× P (Poisson(β + 1− β/N) = 0))K

× (P (Poisson(1) = 1)× P (Poisson(β) = 0))K

= (β/N)K exp(−(4K + 1)(β + 1)) > 0.

(7.6)

Note also that, when |σj −σi| > 2K +1, the two events Ai and Aj are determined by disjoint parts
of the graphical representation and so are independent. In particular, there exists a subsequence
of events that are independent and have a positive probability (7.6) therefore, like in the proof
of Lemma 7.1, we can conclude using the second Borel-Cantelli lemma. □

Lemmas 7.1, 7.2 and 7.4 imply the existence of a sequence of space-time points, that we again
denote by (xi, σi) to simplify the notation, so that the events Ai ∩ Bi ∩ Ci occur. This, together
with Lemma 7.3, implies that the number of distinguished particles ζis that do not coalesce can be
made arbitrarily large. More precisely, we have the following lemma.

Lemma 7.5. Let d ≥ 3. Then, for all integers n > 0,

lims→−∞ inf0≤k<l≤n ||ζiks − ζils || =∞ for some 0 = i0 < i1 < i2 < . . . < in.
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Proof : We prove the result by induction. Assuming that the statement of the lemma is true, for all
integers K > 0, there exists a time sK > −∞ such that

||ζiks − ζils || ≥ 4K for all 0 ≤ k < l ≤ n and s < sK .

In particular, for all j large enough that σj < sK , because the event Cj occurs,

||ζjσj−2K−1 − ζikσj−2K−1|| ≥ K for all 0 ≤ k ≤ n,

therefore it follows from Lemma 7.3 that the probability that the distinguished particle ζjs does not
coalesce with any of the other n+ 1 distinguished particles is larger than

P (lims→−∞ ||ζjs − ζiks || =∞ for all 0 ≤ k ≤ n)

= 1− P (lims→−∞ ||ζjs − ζiks || ̸=∞ for some 0 ≤ k ≤ n)

≥ 1− (n+ 1)CK−1/10 − 2(n+ 1)CK−3/32,

which can be made positive by choosing K sufficiently large. In particular, after a geometric number
of trials, we find a particle ζjs whose distance from the other n + 1 particles goes to infinity. This
shows that the statement of the lemma still holds replacing n with n+ 1. □

To complete the proof of the theorem, we let

Θt = {ζi0 : i ≥ 0 and σi > 0}
be the set of sites occupied by the distinguished particles of the (xi, σi) that are contained in
the positive time half-space. According to Lemma 7.5, this set can be made arbitrarily large by
choosing t large enough. In particular, starting from a translation invariant distribution with a
positive density of particles of type 1, it follows from Harris (1976, Lemma 9.14) that

limt→∞ P (Θt ∩ {x : ξ0(x) = 1} ≠ ∅) = 1.

This shows that (7.5) occurs with probability one in the t → ∞ limit which, in turn, implies
that (7.4) occurs with probability one in the limit, and proves the theorem.
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