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Abstract. We derive upper bounds on the fluctuations of a class of random surfaces of the ∇ϕ-
type with convex interaction potentials. The Brascamp-Lieb concentration inequality provides an
upper bound on these fluctuations for uniformly convex potentials. We extend these results to twice
continuously differentiable convex potentials whose second derivative grows asymptotically like a
polynomial and may vanish on an (arbitrarily large) interval. Specifically, we prove that, when the
underlying graph is the d-dimensional torus of side length L, the variance of the height is smaller
than C lnL in two dimensions and remains bounded in dimension d ≥ 3.

The proof makes use of the Helffer-Sjöstrand representation formula (originally introduced by
Helffer and Sjöstrand (1994) and used by Naddaf and Spencer (1997) and Giacomin, Olla Spohn
(2001) to identify the scaling limit of the model), the anchored Nash inequality (and the corre-
sponding on-diagonal heat kernel upper bound) established by Mourrat and Otto (2016) and Efron’s
monotonicity theorem for log-concave measures (Efron (1965)).

1. Introduction

The aim of this paper is to obtain fluctuations upper bounds for a class of random surfaces
subject to ∇ϕ type interaction arising in statistical physics. These models are used to model phase
separation in Rd+1, and are defined as follows. For any fixed dimension d ≥ 2 and integer L ≥ 1,
we let TL := (Z/(2L + 1)Z)d be the d-dimensional torus of side length 2L + 1. We endow the
edges of the torus with an orientation, let E (TL) be the set of positively oriented edges of TL, and
let V be a potential, i.e., a measurable function V : R → R satisfying suitable properties. The
random surface on TL with potential V is then the probability measure µTL

on the set of functions
Ω◦
TL

:=
{
ϕ : TL → R :

∑
x∈TL

ϕ(x) = 0
}

defined by

µTL
(dϕ) :=

1

ZL
exp

−
∑

e∈E(TL)

V (∇ϕ(e))

 dϕ, (1.1)
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where the discrete gradient is defined by ∇ϕ(e) := ϕ(y) − ϕ(x) for the positively oriented edge
e = (x, y), dϕ denotes the Lebesgue measure on the space Ω◦

TL
(equipped with the L2 scalar

product) and the normalization constant (or partition function)

ZL :=

ˆ
Ω◦

TL

exp

−
∑

e∈E(TL)

V (∇ϕ(e))

 dϕ

is chosen so that µTL
is a probability distribution. The model (1.1) is known as the ∇ϕ inter-

face model or discrete Ginzburg-Landau model and has received considerable attention since its
introduction in the seminal work of Brascamp et al. (1975) (see Funaki (2005); Velenik (2006) and
Section 1.2). A natural property to investigate on the model is the question of its localization or
delocalization, that is, to establish whether the variance VarµTL

[ϕ(0)] remains bounded or diverges
to infinity as L tends to infinity. Explicit computations available in the case V (x) = x2, i.e., in the
case of the discrete Gaussian free field, show that this variance diverges as the size L of the torus
tends to infinity in two dimensions (the random surface is said to be delocalized, and the divergence
is in fact logarithmic in L), and remains bounded uniformly in L in higher dimensions (the random
surface is then said to be localized). Brascamp et al. (1975) conjectured that this result should
remain valid for any potential V satisfying

´
R exp (−pV (x)) dx < ∞ for all p > 0 and obtained

a sharp (up to multiplicative constant) upper bound on the fluctuations of the random surface,
using the celebrated Brascamp-Lieb concentration inequality, for twice-continuously differentiable
potentials satisfying inf V ′′ > 0 and for a class of convex potential with quadratic growth. Since
the results of Brascamp et al. (1975), the localization and delocalization upper bounds have been
extended to various settings including:

• Non-convex potentials arising as a perturbation of uniformly convex potentials by Cotar
et al. (2009); Cotar and Deuschel (2012);

• Non-convex potentials which are a perturbation of uniformly convex potentials and are
amenable to renormalization group analysis by Adams et al. (2016, 2019), Hilger (2016,
2020b,a), Adams and Koller (2023) and Bauerschmidt et al. (2024+a,+) (for the discrete
Gaussian model in the latter case);

• Potentials which can be written as a mixture of Gaussians by Biskup and Kotecký (2007),
Biskup and Spohn (2011), Brydges and Spencer (2012) and Ye (2019);

• Convex potentials satisfying that the set {x ∈ R : V ′′(x) = 0} has Lebesgue measure 0
by Magazinov and Peled (2022);

• The potential V (x) = |x| using the infra-red bound of Bricmont et al. (1982) (this case is
also covered in Brydges and Spencer (2012)).

Lower bounds on the fluctuations of the random surface have been established in a much more gen-
eral setting, and Mermin-Wagner type arguments have been used successfully to prove logarithmic
lower bounds for the variance of the height in two dimensions for a large class of potentials includ-
ing all the twice-continuously differentiable V by Brascamp et al. (1975); Dobrushin and Shlosman
(1980); Fröhlich and Pfister (1981); Ioffe et al. (2002), as well as for models with hard-core con-
straint Miłoś and Peled (2015). Section 1.2 discusses additional results beyond the questions of
localization and delocalization (such as hydrodynamic limit, scaling limit, strict convexity of the
surface tension, decay of covariances, large deviations) which have been proved for this model.

In this article, we are interested the class of convex potentials whose second derivative grows like
a polynomial, formally defined in Assumption 1.1 below.

Assumption 1.1. We assume that V : R → R is a potential satisfying the assumptions:
(i) Regularity and convexity: we assume that V is twice-continuously differentiable and convex;
(ii) Growth of the second derivative: we assume that the second derivative of V satisfies a power-

law growth condition: there exist an exponent r > 2 and two constants c+, c− ∈ (0,∞) such
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that

0 < c− ≤ lim inf
|x|→∞

V ′′(x)

|x|r−2
≤ lim sup

|x|→∞

V ′′(x)

|x|r−2
≤ c+ < ∞.

The main theorem of this paper establishes that the variance of the random surface grows at
most logarithmically fast in two dimensions and remains bounded in dimensions 3 and higher for
the class of potentials satisfying Assumption 1.1.

Theorem 1.2 (Localization and Delocalization). Under Assumption 1.1, there exists a constant
C := C(d, V ) < ∞ such that, for any L ≥ 2,

VarTL
[ϕ(0)] ≤

{
C lnL if d = 2,

C if d ≥ 3.

Remark 1.3. The convexity of the potential V implies that the measure (1.1) is log-concave. Since
log-concavity is a property which is closed under marginalization (by the Prékopa-Leindler inequal-
ity Prékopa (1971, 1973); Leindler (1972)), this implies that the distribution of the height ϕ(0) is
also log-concave. Since the tail of a log-concave distribution decays at least exponentially fast on
the scale of its standard deviation, the result of Theorem 1.2 can be extended from a bound on the
variance to a bound on exponential moments.

Remark 1.4. It is plausible that the techniques developed in this article can be further extended to
obtain more precise properties on the behavior of the model (such as its hydrodynamic and scaling
limits). These questions are further discussed in Section 1.3 below.

1.1. Outline of the proof. In order to highlight the main ideas and techniques used to prove Theo-
rem 1.2, we present below a sketch of the argument for potentials satisfying the following assump-
tions: we assume that V : R → R is twice-continuously differentiable, convex and that there exists
c1 ∈ (0, 1) such that

0 < c1 ≤ lim inf
|x|→∞

V ′′(x) and sup
x∈R

V ′′(x) ≤ 1. (1.2)

Note that this is more restrictive than Assumption 1.1; the full argument will require some notational
and technical adjustments.

1.1.1. The Helffer-Sjöstrand representation formula. One of the main tools used to prove fluctuation
upper bounds is the Helffer-Sjöstrand representation formula, initially introduced by Helffer and
Sjöstrand (1994) and used by Naddaf and Spencer (1997) and Giacomin et al. (2001) in order to
identify the scaling limit of the model, and by Deuschel et al. (2000) to establish a large deviation
principle for the model (among other results, see Section 1.2). In the setting of this paper, the
formula reads as follows. Let ϕL be the stationary Langevin dynamic associated with the Gibbs
measure µTL

, i.e., the solution of the system of stochastic differential equations{
dϕL(t, x) = ∇ · V ′ (∇ϕL) (t, x) +

√
2dBt(x) for (t, x) ∈ (0,∞)× TL,

ϕL(0, x) = ϕ(x) for x ∈ TL,
(1.3)

where {Bt(x) : t ≥ 0, x ∈ TL} is collection of independent Brownian motions, and the initial con-
dition ϕ is sampled according to µTL

independently of the Brownian motions. Then, one has the
identity

VarµTL
[ϕ(0)] = E

[ˆ ∞

0
Pa(t, 0) dt

]
, (1.4)
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where Pa is the heat kernel associated with the discrete parabolic equation (using the notation of
Section 2) 

∂tPa(t, x)−∇ · a∇Pa(t, x) = 0 for (t, x) ∈ (0,∞)× TL,

Pa(0, x) = δ0(x)−
1

|TL|
for x ∈ TL,

with the environment a(t, e) := V ′′(∇ϕL(t, e)).
As has been observed in Helffer and Sjöstrand (1994); Naddaf and Spencer (1997); Deuschel

et al. (2000); Giacomin et al. (2001), the Helffer-Sjöstrand representation formula can be combined
with tools of elliptic regularity, in the form of on-diagonal heat kernel estimates, to prove upper
bounds on the fluctuations on the random surface. For instance, if the potential V is assumed to
be uniformly convex, i.e., if 0 < c− ≤ V ′′ ≤ 1, then one has the bound c− ≤ a(t, e) ≤ 1. In this
setting the parabolic equation arising from the Helffer-Sjöstrand representation formula is uniformly
elliptic, and this property is sufficient to prove the following on-diagonal upper bound on the heat
kernel

Pa(t, 0) ≤
C

(1 + t)
d
2

exp

(
− t

CL2

)
. (1.5)

Integrating the bound (1.5) over the times t ∈ [0,∞) and using the identity (1.4) yields the variance
estimate stated in Theorem 1.2.

The proof of Theorem 1.2 follows the strategy described in the previous paragraph, but some
additional arguments are required to take into account that the second derivative of a potential V
satisfying (1.2) can vanish.

1.1.2. The on-diagonal heat kernel upper bound in degenerate environment of Mourrat and Otto.
Under Assumption (1.2), the upper bound on the fluctuations of the random surface can be obtained
by first extending the on-diagonal upper bound for the heat kernel (1.5) to degenerate environments,
i.e., environments a : (0,∞) × E (TL) → [0, 1] which may vanish (or take values arbitrarily close
to 0). This question has received significant attention from the mathematical community (see
Section 1.2), and, in this article, we rely on the approach of Mourrat and Otto (2016) and of Biskup
and Rodriguez (2018) who respectively proved an on-diagonal upper bound for the heat kernel and
a quenched invariance principle for a large class of dynamic degenerate environments. The exact
result of the former (stated in infinite volume) can be found in Mourrat and Otto (2016, Theorem
4.2). Their proof could be adapted to the setting considered here, and would show the following
result. Given an environment a : (0,∞)× E (TL) → [0, 1], if we define the moderated environment
by

w(t, e) :=

ˆ ∞

t

a(s, e)

(1 + s− t)4
ds, (1.6)

then there exists a function t 7→ Mt ∈ [1,∞] depending only on the dimension d and the moderated
environment w such that, for any t ≥ 0,

Pa(t, 0) ≤
Mt

(1 + t)
d
2

exp

(
− t

MtL2

)
. (1.7)

The dependency of the function M on the parameter w is explicit and it satisfies the following
property: if we assume that the environment a is random, that its law is stationary with respect to
both space and time translations and reversible, and if, for any k ∈ Z+ and any (t, e) ∈ (0,∞) ×
E(TL),

E
[
w(t, e)−k

]
< ∞, (1.8)
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then (Mt)t≥0 is a stationary process and, for any k ∈ N,

E
[
M k

t

]
< ∞. (1.9)

The result of Mourrat and Otto can thus be applied to establish upper bounds on the fluctuations
of random surfaces as follows: by the Helffer-Sjöstrand representation formula (noting that the law
of the environment a(t, e) := V ′′(∇ϕL(t, e)) is stationary with respect to both the space and time
variables), we see that, if the moment assumption (1.8) can be verified, then the inequality (1.9)
implies that

VarTL
[ϕ(0)] = E

[ˆ ∞

0
Pa(t, 0) dt

]
≤ E

[ˆ ∞

0

Mt

(1 + t)
d
2

exp

(
− t

MtL2

)
dt

]

≤
{
C lnL if d = 2,

C if d ≥ 3.

In other words, the question of establishing upper bounds on the fluctuations of the random surface
can be reduced to proving the moment condition (1.8) on the moderated environment w. The
strategy will thus be to prove (1.8), and the argument is outlined in the following sections.

1.1.3. A fluctuation estimate for the Langevin dynamic and stochastic integrability of the moderated
environment. In order to prove the moment condition (1.8), we will prove the following fluctuation
estimate for the Langevin dynamic: for any R > 0, there exists a constant CR depending only on d
and R such that, for any time T ≥ 0 and any edge e ∈ E (TL),

P [∀t ∈ [0, T ], |∇ϕ(t, e)| ≤ R] ≤ CR exp

(
− T

CR

)
. (1.10)

Combining this result with assumption (1.2) and the definition a(t, e) := V ′′ (∇ϕ(t, e)) shows that
there exists a constant CV depending only on d and V such that, for any T ≥ 0 and any edge
e ∈ E (TL),

P [∀t ∈ [0, T ], a(t, e) = 0] ≤ CV exp

(
− T

CV

)
. (1.11)

The estimate (1.11) implies that the environment arising from the Helffer-Sjöstrand representation
cannot remain equal to 0 for a long time; it can in fact be generalized (the argument is the one of
Proposition 4.4 below) so as to obtain the following stretched exponential stochastic integrability
on the moderated environment: there exist an exponent s > 0 and a constant CV such that, for
any R ≥ 0,

P
[
w(t, e) ≤ 1

R

]
≤ CV exp

(
−Rs

CV

)
,

which then implies the moment condition (1.8).
In the rest of this section, we give an outline of the proof of (1.10) for potentials satisfying (1.2).

The argument relies on three observations:
(i) The Langevin dynamic ϕL defined in (1.3) can be seen as a deterministic function of the

initial condition ϕ and the Brownian motions {Bt(x) : t ≥ 0, x ∈ TL}.
(ii) For any x ∈ TL, the Brownian motion Bt(x) can be decomposed into a sum of independent

increments and Brownian bridges as follows: if, for any n ∈ Z+ and any t ∈ [n, n + 1], we
define

Xn(x) := Bn+1(x)−Bn(x) and Wn(t, x) := Bt(x)−Bn(x)− (t− n)Xn(x), (1.12)

then the random variables {Xn(x) : n ∈ Z+} form a collection of independent Gaussian
random variables (of variance 1), and the stochastic processes {Wn(·, x) : n ∈ Z+} form a
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collection of independent Brownian bridges. Additionally, the increments are independent
of the Brownian bridges.

(iii) Since the trajectory of the Brownian motion Bt(x) can be reconstructed from the values
of the increments {Xn(x) : n ∈ Z+} and the Brownian bridges {Wn(·, x) : n ∈ Z+}, we
can see the Langevin dynamic ϕL as a deterministic function of the initial condition, the
increments and the Brownian bridges. Using the definition (1.12), we see that the Langevin
dynamic solves the system of stochastic differential equations, for any n ∈ Z+,{

dϕL(t, x) = ∇ · V ′ (∇ϕL) (t, x) +
√
2Xn(x) +

√
2dWn(t, x) for (t, x) ∈ (n, n+ 1)× TL,

ϕL(0, x) = ϕ(x) for x ∈ TL.
(1.13)

The strategy is then to study the partial derivative of the Langevin dynamic with respect to the
increment Xn(x). To this end, we differentiate both sides of (1.13) with respect to the increment
Xn(x), and obtain that the partial derivative w := ∂ϕL/∂Xn(x) solves the parabolic equation{

∂tw(t, y) = ∇ · a∇w(t, y) +
√
21{n≤t≤n+1}1{y=x} for (t, y) ∈ (n, n+ 1)× TL,

w(0, x) = 0 for x ∈ TL,

where a(t, e) := V ′′(∇ϕL(t, e)) is the same environment as the one appearing in the Helffer-Sjöstrand
representation formula. The Duhamel’s principle then yields the identity (using the definition of
the heat kernel (2.3))

w(n+ 1, x) =
√
2

ˆ n+1

n
Pa (n+ 1, x; s, x) +

1

|TL|
ds.

The right-hand side of the previous display can be lower bounded as follows. We first note that
Pa (t, x; s, x) +

1
|TL| ∈ [0, 1] by the maximum principle. Combining these bounds with the upper

bound a ≤ 1, the identity ∂tPa = ∇ · a∇Pa and the definition of the discrete elliptic operator, we
deduce that, for any t, s ∈ (0,∞) with t ≥ s,

Pa(s, x; s, x) +
1

|TL|
= 1 and |∂tPa(t, x; s, x)| ≤ 2d, (1.14)

which then implies

w(n+ 1, x) ≥
√
2

ˆ 1

0
max(1− 2ds, 0) ds =

√
2

4d
> 0.

In words, the partial derivative of the value ϕL(n+1, x) with respect to the increment Xn(x) is lower
bounded by

√
2/(4d) uniformly over all the realizations of the Brownian motions. This implies that

ϕL(n+1, x) is an increasing function of the increment Xn(x), and more specifically, that increasing
the value of the increment Xn(x) by a value X ≥ 0 (while keeping the other increments and the
Brownian bridges unchanged), causes the value of ϕL(n+ 1, x) to increase by at least X/(4d).

The previous argument can be refined so as to prove that, for any edge e = (x0, x) ∈ E (TL), the
derivative of the discrete gradient ∇ϕL(n+1, e) with respect to the increment Xn(x) is lower bounded
by a positive real number uniformly over the realizations of the increments and the Brownian bridges.

This property can then be used to prove the following result: for any R > 0, there exists
ε := ε(R) > 0 such that, if we denote by Fn,x the σ-algebra generated by the initial condition ϕ,
the Brownian bridges {Wm(·, y) : m ∈ Z+, y ∈ TL} and the increments {Xm(y) : m ̸= n orx ̸= y},
then one has the almost sure upper bound on the conditional probability

P [|∇ϕL(n+ 1, e)| ≤ R | Fn,x] ≤ 1− ε. (1.15)

In other words, the probability of the event {|∇ϕL(n+ 1, e)| ≤ R} conditionally on all the random-
ness except the increment Xn(x) is almost surely smaller than 1− ε.
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The inequality (1.15) can then be iterated (making use of the independence between the incre-
ments and the Brownian bridges) to prove that, for any N ∈ Z+,

P [∀n ∈ {1, . . . , N}, |∇ϕL(n, e)| ≤ R] ≤ (1− ε)N ,

which implies the exponential decay stated in (1.10).

1.1.4. Extension of the argument to the potentials satisfying Assumption 1.1. In the case of poten-
tials satisfying Assumption 1.1, the second derivative of the potential V is unbounded from above,
and thus the environment a appearing in the Helffer-Sjöstrand representation formula can take ar-
bitrarily large values. This implies that the argument written above needs to be modified in two
aspects:

• The proof of Mourrat and Otto (2016, Theorem 4.2) is written in infinite volume for degen-
erate dynamic environments satisfying the upper bound a ≤ 1. Their argument needs to
be adapted the torus, and to cover a class of environments which may take arbitrarily large
values. This is the subject of Section 4.

• In the situation where the environment a can take arbitrarily large values, the inequality on
the time derivative of the heat kernel (1.14) does not hold uniformly over all the realizations
of the Brownian motions, and thus the derivative of ϕL(n+1, x) with respect to the increment
Xn(x) cannot be lower bounded (by a strictly positive real number) uniformly over all the
realizations of the Brownian motions. This difficulty is handled by first establishing a sharp
stochastic integrability estimate on the discrete gradient of a random surface distributed
according to µTL

(see Proposition 3.1). Once equipped with this result, we are able to adapt
the argument outlined in Section 1.1.3 to this setting (see Proposition 3.3), at the cost
of more technicalities and a deterioration of the stochastic integrability in the fluctuation
estimate (from exponential rate to the super-polynomial rate in Proposition 3.3).

1.2. Discussion and background.

1.2.1. Random surfaces. The study of random surfaces was initiated in the 1970s by Brascamp
et al. (1975) who obtained sharp localization and delocalization estimates for potentials satisfying
inf V ′′ > 0 and for a class of convex potentials with quadratic growth. Since then, the result of
localization and delocalization has been extended to different classes of potentials as mentioned
above, and various other aspects of the model have been studied by the mathematical community
(see Funaki (2005); Velenik (2006)).

The hydrodynamic limit of the ∇ϕ-model for uniformly convex potentials was established by Fu-
naki and Spohn (1997). The result was later extended to various settings: the hydrodynamic limit
with Dirichlet boundary condition and with a conservation law was proved by Nishikawa (2003,
2002). More recently, the hydrodynamic limit was established for a class on non-convex potentials
by Deuschel et al. (2019).

On the level of fluctuations, it is expected that the scaling limit of the ∇ϕ-model is a continuum
Gaussian free field under mild integrability conditions on the potential V . On a rigorous level, a
general convergence result has been established for twice continuously differentiable and uniformly
convex potentials by Brydges and Yau (1990), Naddaf and Spencer (1997) and Giacomin et al.
(2001). In particular, the contributions Naddaf and Spencer (1997); Giacomin et al. (2001) used
the Helffer-Sjöstrand representation formula (introduced in Helffer and Sjöstrand (1994)), which has
become well-used technique to study the model, and is a central tool in the proof of Theorem 1.2.
The scaling limit has then been established in various different settings. A finite-volume version of
the result was established by Miller (2011), a local limit theorem was established in two dimensions
by Wu (2022) and the scaling limit of the square of the field was identified by Deuschel and Rodriguez
(2022). The scaling limit was proved for a class of convex potentials satisfying the assumption
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inf V ′′ > 0 by Andres and Taylor (2021). In the nonconvex setting, it was established in the high
temperature regime by Cotar and Deuschel (2012), in the low temperature regime by renormalization
group arguments by Hilger (2016, 2020b) (buiding upon the techniques of Adams et al. (2016)), and
in the case of non-convex potentials which can be written as a mixture of Gaussian by Biskup and
Spohn (2011) and Ye (2019).

Besides the hydrodynamic and scaling limits, other aspects of the model which have been the
subject of consideration from the community include: the strict convexity of the surface tension for
non-convex potentials by Adams et al. (2016) (the Cauchy-Born rule was also investigated in Adams
et al. (2019)), Cotar et al. (2009), its C2-regularity by Armstrong and Wu (2022), the decay of
covariances for the gradient of the field by Delmotte and Deuschel (2005), Cotar and Deuschel
(2012), and Hilger (2020a), large deviations by Deuschel et al. (2000), Funaki and Nishikawa (2001),
entropic repulsion by Deuschel and Giacomin (2000), the maximum of the field by Belius and Wu
(2020) and Wu and Zeitouni (2019), uniqueness (or lack of thereof) of shift-ergodic infinite-volume
gradient Gibbs states by Biskup and Kotecký (2007) and Buchholz (2021). A more detailed account
of the literature can be found in the review articles Funaki (2005); Velenik (2006).

We complete this section by mentioning some results and recent progress which have been ob-
tained on a related model: the integer-valued random surfaces (formally obtained by replacing the
Lebesgue measure by the counting measure on Z in the right-hand side of (1.1)). In this setting,
a temperature is usually incorporated in the definition of the model. A different phenomenology
is then observed and the model is known to exhibit a phase transition in two-dimensions between
a localized regime (at low temperature where the variance of the field remains bounded) and a
delocalized regime (at high temperature where the variance of the field grows logarithmically). The
existence of this phase transition was originally established in the celebrated article of Fröhlich
and Spencer (1981); Kharash and Peled (2017) (we also refer to the work of Wirth (2019) on the
maximum of the field based on these techniques), and has been the subject of recent developments
in a series of works by Lammers (2022b,a, 2023), van Engelenburg and Lis (2023a,b) and Aizenman
et al. (2021). In the high temperature regime and in the case of the discrete Gaussian model (i.e.,
when V (x) = x2/2), the scaling limit of the model was recently identified by Bauerschmidt et al.
(2024+a,+) by implementing a delicate renormalization group argument.

1.2.2. Parabolic equations with degenerate random coefficients and the random conductance model.
In the uniformly elliptic setting, upper bounds on the heat kernel were obtained in the celebrated
work of Nash (1958). Due to the connections between heat kernels and reversible random walks,
it has been an active line of research to extend these heat kernel estimates to random degenerate
environments, and two cases can be distinguished: the static environments and the dynamic envi-
ronments. A typical example of static random degenerate environment is the supercritical Bernoulli
(bond) percolation cluster. In that case, the upper bounds on the heat kernel were established
by Barlow (2004) and Mathieu and Remy (2004). These bounds (or the ingredient developed to
prove it) became one of the ingredients in the proof of the quenched invariance principle for the
random walk on the percolation cluster by Sidoravicius and Sznitman (2004), Berger and Biskup
(2007), Mathieu and Piatnitski (2007), the parabolic Harnack inequality and the local limit theo-
rem by Barlow, Barlow and Hambly (2009). The existence of heat kernel upper and lower bounds
(matching the ones of the lattice) have been established for more general degenerate environments
satisfying suitable moments assumptions by Andres et al. (2016, 2019, 2020) and Andres and Halber-
stam (2021), but this phenomenon is not generic and anomalous heat kernel decay has been proved
for some random degenerate environments by Berger et al. (2008), Boukhadra (2010), Biskup and
Boukhadra (2012) and Buckley (2013). Besides the question of the behavior of the heat kernel,
the invariance principle has been established for degenerate conductances by Biskup and Prescott
(2007), Andres et al. (2013), Mathieu (2008), Procaccia et al. (2016) and Bella and Schäffner (2020).
We refer to to Biskup (2011) for a survey of the literature on the random conductance model



Localisation and delocalisation for a class of degenerate ∇ϕ-interface models 393

Significant progress have been achieved in the case of dynamic environments (which is the rel-
evant one for the problem considered in this article). In this setting, the invariance principle has
been proved under various assumptions on the environment by Boldrighini et al. (1997); Boldrigini
et al. (2007), Rassoul-Agha and Seppäläinen (2005), Bandyopadhyay and Zeitouni (2006),Dolgo-
pyat et al. (2008), Avena (2012) and Redig and Völlering (2013), and for general ergodic degenerate
conductances with moment conditions by Andres et al. (2018) (a local limit theorem was further
established in Andres et al. (2021)).

Finally, heat kernel upper bounds were established for a class of degenerate dynamic environments
satisfying a moment assumption on the moderated environment introduced above by Mourrat and
Otto (2016). The proof of Theorem 1.2 strongly relies on their techniques. Combining and enhancing
the techniques of Andres et al. (2018) and Mourrat and Otto (2016), Biskup and Rodriguez (2018)
established the quenched invariance principle for random walks evolving in a dynamic degenerate
environment satisfying an assumption related to the one used in Mourrat and Otto (2016). In
this line of research, we finally mention the recent contribution of Biskup and Pan (2023) which
establishes a quenched invariance principle for a class of ergodic degenerate environments in the
one-dimensional setting.

1.3. Further comments and perspective. It is plausible that the techniques developed in this article
can be further developed to obtain more precise information on the behavior of the random surfaces
with an interaction potential satisfying Assumption 1.1. It seems for instance reasonable to us that
the fluctuation estimate of Proposition 3.3 can be used to prove that the surface tension of the
model is strictly convex (i.e., that the eigenvalues of its Hessian are always strictly positive). The
strict convexity of the surface tension plays an important role in the proof of the hydrodynamic
limit in Funaki and Spohn (1997), and we further believe that this result could be combined with
the estimate of Theorem 1.2 to prove a quantitative version of the hydrodynamic limit following
the techniques of Armstrong and Dario (2024). Once the quantitative hydrodynamic limit has
been established, it should be possible to develop a large-scale regularity theory for the model
(see Armstrong and Dario (2024, Theorem 1.5)). This result would then be useful to quantify the
ergodicity of the environment appearing in the Helffer-Sjöstrand representation formula and would
be helpful to establish a quantitative version of the scaling limit of the model (following the insight
of Naddaf and Spencer (1997); Giacomin et al. (2001)). We refer to the introduction of Armstrong
and Dario (2024) for a more detailed description of this line of research. We plan to investigate
this in a future work. On a qualitative level, we mention that it would be interesting to investigate
whether the techniques of Biskup and Rodriguez (2018) can be adapted to the framework considered
here to also identify the scaling limit of the model.

1.4. Organization of the paper. The rest of the paper is organized as follows. Section 2 collects
some notation and preliminary results. In Section 3, we prove a stochastic integrability estimate for
the gradient of a random surface distributed according to the periodic Gibbs measure µTL

(Propo-
sition 3.1), and deduce from it a fluctuation estimate for the Langevin dynamic (Proposition 3.3).
Section 4 combines the results of Section 3 with the techniques and results of Mourrat and Otto
(2016) (essentially adapting their argument to obtain an on-diagonal upper bound for the heat ker-
nel in the case of the torus, and when the environment is not bounded from above but possesses
strong stochastic integrability properties), and completes the proof of Theorem 1.2 by using the
Helffer-Sjöstrand representation formula.

1.5. Convention for constants and exponents. Throughout this article, the symbols C and c denote
positive constants which, except if explicitly stated, may vary from line to line, with C increasing and
c decreasing. We will always assume that C ∈ [1,∞) and c ∈ (0, 1]. These constants may depend
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on various parameters which will be made explicit in the statements by the following convention:
we will write C := C(d, V ) to specify that the constant C depends only on d and V .

Acknowledgments: The author is indebted to S. Armstrong, M. Harel, P. Lammers, J.-C.
Mourrat, R. Peled, F. Schweiger, O. Zeitouni for encouragement and helpful conversations on the
topic of this work, and is specifically grateful to F. Schweiger, O. Zeitouni for suggesting to prove
Proposition 3.1, to P. Lammers for explaining a short proof of this result in the case of symmetric
potentials (on which the proof below is based), and to J.-C. Mourrat for explaining the arguments
of Mourrat and Otto (2016).

2. Notation and preliminary results

2.1. General notation. We fix an integer L ∈ Z+ with L ≥ 1, consider the torus TL := (Z/(2L +
1)Z)d, and denote by π : Zd → TL the canonical projection. Given a subset U ⊆ TL or U ⊆ Zd,
we let E(U) be the set of positively oriented edges of U (for some pre-determined orientation). For
r ∈ Z+, we let Λr := {−r, . . . , r}d ⊆ Zd and identify these boxes as subsets of the torus using the
canonical embedding π. We note that the canonical embedding π|TL

restricted to the box ΛL is a
bijection, whose inverse will be denoted by π−1

|TL
. We denote by |·| be the Euclidean norm on Zd,

and, for x ∈ TL, we write |x| := |π−1
|TL

(x)|.
Given an edge e ∈ E (TL) , and a vertex x ∈ ΛL, we write x ∈ e if x is one of the endpoints of e.

Given two edges e, e′ ∈ E (TL), we write e∩e′ ̸= ∅ if e and e′ have at least one endpoint in common.
Given an edge e ∈ TL, we write

∑
x∈e and

∑
e′∩e̸=∅ to respectively sum over the endpoints of e

and over the edges which have (at least) one endpoint in common with e. Given a vertex x ∈ TL,
we write

∑
e∋x to sum over the edges which have x as an endpoint.

Given two real numbers a, b, we denote by a ∧ b = min(a, b) and by a ∨ b = max(a, b), and by
⌊a⌋ and ⌈a⌉ the floor and ceiling of a. We denote by 1A the indicator function of a set A and, for
x ∈ TL, we let δx be the function defined on the torus by the formula: δx(y) = 0 if y ̸= x ans
δx(x) = 1.

For any potential V : R → R satisfying Assumption 1.1, we denote by

RV := 2 inf

{
R ≥ 1 : inf

|x|≥R
V ′′(x) ≥ 1

}
. (2.1)

Assumption 1.1 guarantees that RV is a finite nonnegative real number.

2.1.1. Functions. Given a subset U ⊆ TL or U ⊆ Zd, we denote by |U | the cardinality of U . We
have in particular |TL| = (2L + 1)d. For any function f : U → R, and any exponent p ≥ 1, we
define the Lp-norm and the normalized Lp-norm of f by the formulae

∥f∥pLp(U) :=
∑
x∈U

f(x)p and ∥f∥pLp(U) :=
1

|U |
∑
x∈U

f(x)p.

We denote the discrete gradient of a function f : TL → R over a positively oriented edge e = (x, y) ∈
E (TL) by the formula

∇f(e) := f(y)− f(x).

We also define f(e) = (f(x) + f(y))/2. This definition is motivated by the following identity: for
any pair of functions f, g : TL → R and any e ∈ E(TL),

∇(fg)(e) = f(e)∇g(e) + g(e)∇f(e).
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We extend the definition of Lp-norms to functions defined on edges by writing, for any function
u : E(TL) → R,

∥u∥pLp(U) :=
∑

e∈E(U)

|u(e)|p and ∥u∥pLp(U) :=
1

|U |
∑

e∈E(U)

|u(e)|p.

We define the nonlinear elliptic operator ∇ · V ′(∇u) by the formula

∇ · V ′(∇u)(x) :=
∑

e∈E(TL)
e=(x,y)

V ′(∇u(e))−
∑

e∈E(TL)
e=(y,x)

V ′(∇u(e)).

This definition takes into account the set E (TL) is defined to be the set of positively oriented edges.
Making this distinction is useful to cover the case of potentials V which are not symmetric. The
main property of this operator is that it satisfies the following discrete integration by parts property:
for any pair of functions u, v : TL → R,∑

x∈TL

∇ · V ′(∇u)(x)v(x) = −
∑

e∈E(TL)

V ′ (∇u(e))∇v(e).

2.1.2. Parabolic equations and heat kernel. An environment is a measurable map a : (0,∞) ×
E(TL) → [0,∞). Given an environment, we denote by ∇·a∇ the dynamic elliptic operator defined
by the formula: for any map u : (0,∞)× TL → R and any (t, x) ∈ (0,∞)× TL,

∇ · a∇u(t, x) =
∑

e∈E(TL)
e=(x,y)

a(t, e)∇u(e)−
∑

e∈E(TL)
e=(y,x)

a(t, e)∇u(e). (2.2)

This operator satisfies the discrete integration by parts property: for any pair of functions u, v :
(0,∞)× TL → R, ∑

x∈TL

∇ · a∇u(t, x)v(t, x) = −
∑

e∈E(TL)

a(t, e)∇u(t, e)∇v(t, e).

For (s, y) ∈ [0,∞)×TL, we define the heat kernel Pa(·, ·; s, y) : (s,∞)×TL → R to be the solution
of the parabolic equation

∂tPa(t, x; s, y)−∇ · a∇Pa(t, x; s, y) = 0 for (t, x) ∈ (0,∞)× TL,

Pa(s, x; s, y) = δy(x)−
1

|TL|
for x ∈ TL.

(2.3)

To simplify the notation, we write Pa(t, x) instead of Pa(t, x; 0, 0).

Remark 2.1. The preservation of mass for parabolic equations shows that the sum
∑

x∈TL
Pa(t, x)

is constant in time. The normalizing term 1/ |TL| in (2.3) ensures that this sum is equal to 0, and
in fact ensures that the heat kernel Pa converges to 0 as the time tends to infinity.

Remark 2.2. The maximum principle for parabolic equation ensures that, for any (t, x) ∈ (0,∞)×
TL,

− 1

|TL|
≤ Pa(t, x) ≤ 1− 1

|TL|
. (2.4)

Using these inequalities and the identity
∑

x∈TL
Pa(t, x) = 0 for any t ≥ 0, we see that, for any

t ≥ 0,
∥Pa(t, ·)∥L1(TL)

≤ 2. (2.5)
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2.2. The Langevin dynamic and the Helffer-Sjöstrand representation formula. The Gibbs measure
µTL

is naturally associated with the Langevin dynamic defined below. In the following definition,
we let L ∈ Z+ be an integer, consider a collection {Bt(x) : t ≥ 0, x ∈ TL} of independent Brownian
motions, and let ϕ : TL → R be a random surface sampled according to the Gibbs measure µTL

independently of the Brownian motions.

Definition 2.3 (Langevin dynamic in the torus). We define the Langevin dynamic associated with
the Gibbs measure µTL

to be the solution ϕL : TL → R of the system of stochastic differential
equations {

dϕL(t, x) = ∇ · V ′ (∇ϕL) (t, x) +
√
2dBt(x) for (t, x) ∈ (0,∞)× TL,

ϕL(0, x) = ϕ(x) for x ∈ TL.
(2.6)

We note that the dynamic ϕL can be seen as a deterministic function of the initial condition ϕ
and of the Brownian motions {Bt(x) : t ≥ 0, x ∈ TL}. To highlight this dependency, we will use
the notation

ϕL(t, x) (ϕ, {Bt(x) : t ≥ 0, x ∈ TL}) .
This will be useful in Section 3.1.2, as the dynamic can then be differentiated with respect to the
increments of the Brownian motions.

The law of the dynamic ϕL is not exactly stationnary as the spatially averaged value of the
dynamic is not constant: summing the first equation of (2.6) over x ∈ TL (and using a discrete
integration by parts on the torus to cancel the term involving the nonlinear elliptic operator) shows
the identity ∑

x∈TL

ϕL(t, x) =
∑
x∈TL

Bt(x).

In particular, the law of ϕL(t, ·) is not equal to µTL
(if t ̸= 0), as the sum would have to be equal

to 0. Nevertheless, this is the only obstruction and the process

ϕL(t, ·)−
1

|TL|
∑
x∈TL

ϕL(t, x)

is stationnary both with respect to the space and time variables. It is also reversible. Note that,
since the second term in the right-hand side is spatially constant, the discrete gradient ∇ϕL is a
stationnary process.

We next state the Helffer-Sjöstrand representation which allows to express the variance of linear
functionals of a random surface distributed according to µTL

in terms of the solution of a random
parabolic equations defined in terms of the Langevin dynamic. The formula was initially introduced
in Helffer and Sjöstrand (1994); Naddaf and Spencer (1997); Deuschel et al. (2000); Giacomin et al.
(2001) and is stated below in the case of the torus for the specific observable ϕ(0).

Proposition 2.4 (Helffer-Sjöstrand representation formula on the torus). Let Pa be the solution of
the parabolic equation in the torus

∂tPa(t, x)−∇ · a∇Pa(t, x) = 0 for (t, x) ∈ (0,∞)× TL,

Pa(0, x) = δ0(x)−
1

|TL|
for x ∈ TL,

where a : (0,∞)×E (TL) → [0,∞) is the random dynamic environment defined by the formula, for
any (t, e) ∈ (0,∞)× E(TL)

a(t, e) := V ′′(∇ϕL(t, e)).

Then one has the identity

VarTL
[ϕ(0)] = E

[ˆ ∞

0
Pa(t, 0) dt

]
.
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2.3. Efron’s monotonicity theorem for log concave measures. In this section, we state the Efron’s
monotonicity theorem for a pair of independent log-concave random variables due to Efron (1965).

Theorem 2.5 (Efron’s monotonicity theorem Efron (1965)). Let (X,Y ) be a pair of independent,
real-valued and log-concave random variables and let Ψ : R2 → R be a function which is nondecreas-
ing in each of its arguments, then the conditional expectation

E [Ψ(X,Y ) |X + Y = s] is nondecrasing in s.

2.4. The discrete Gagliardo-Nirenberg-Sobolev inequality. We state below the discrete version of the
standard Gagliardo-Nirenberg-Sobolev inequality in the torus. The proof can be deduced from the
standard Gagliardo-Nirenberg inequality in bounded domain for which we refer to Nirenberg (1959).

Proposition 2.6 (discrete Gagliardo-Nirenberg-Sobolev inequality on the torus). Fix three expo-
nents κ, λ, µ ∈ (1,∞) and let θ ∈ [0, 1] be such that the relation

1

κ
= θ

(
1

λ
− 1

d

)
+

1− θ

µ

holds. Then there exists a constant C := C(d, κ, λ, µ, θ) < ∞ such that for any L ≥ 1 and any
function f : TL → R,

∥f∥Lκ(TL)
≤ CLθ ∥∇f∥θLλ(TL)

∥f∥1−θ
Lµ(TL)

+ C ∥f∥L2(TL)
.

If f : TL → R satisfies the additional assumption
∑

x∈TL
f(x) = 0, then

∥f∥Lκ(TL)
≤ CLθ ∥∇f∥θLλ(TL)

∥f∥1−θ
Lµ(TL)

.

In the proofs below, we will apply the discrete Gagliardo-Nirenberg-Sobolev inequality and the
Hölder inequality with the following collections of exponents:

λd :=
2d+ 2

d+ 2
, κd :=

dλd

d− λd
, σd :=

2κd
κd − 2

and τd =
2λd

2− λd
, (2.7)

and

λ′
d :=

2d+ 3

d+ 2
, τ ′d :=

2λ′
d

2− λ′
d

and θd :=
2

3

2d+ 3

2d+ 2
. (2.8)

They are chosen so as to satisfy the following properties:
(1) For any dimension d ≥ 2, 1 < λd < 2 < κd < ∞, and the Gagliardo-Nirenberg-Sobolev

inequality can be applied with the exponents κ = κd, λ = λd and θ = 1 (and arbitrary µ).
(2) The pair of exponents (λd, τd) and (κd, σd) are chosen so as to satisfy Hölder inequalities,

and we have
1

τd
+

1

2
=

1

λd
and

1

κd
+

1

σd
=

1

2
.

We also note that the following identities hold
1

σd
+

1

τd
=

1

d
and

1

τ ′d
+

1

2
=

1

λ′
d

. (2.9)

(3) For any function f : TL → R, one has the inequality

∥f∥Lκd (TL)
≤ CLθd ∥∇f∥θd

L
λ′
d (TL)

∥f∥1−θd
L2(TL)

+ C ∥f∥L2(TL)
.

Applying Young’s inequality for product, we deduce that, for any ε ∈ (0, 1],

∥f∥Lκd (TL)
≤ εL ∥∇f∥

L
λ′
d (TL)

+ Cε
− θd

1−θd ∥f∥L2(TL)
.
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Remark 2.7. The same inequalities hold on more general subsets than the torus, we will use it below
in annuli of the form Ar := Λ2r \Λr with r ∈ {1, . . . , L2 } which can be seen as a subset of the torus
(using the identification mentioned in Section 2.1). In this setting, we have, for any f : Ar → R
and any ε ∈ (0, 1],

∥f∥Lκd (Ar)
≤ εr ∥∇f∥

L
λ′
d (Ar)

+ Cε
− θd

1−θd ∥f∥L2(Ar)
.

2.5. Maximal inequalities. In this section, we recall some classical properties of maximal functions.
We let (Ω,F ,P) be a probability space, and let (θx)x∈Zd be a measure preserving action of Zd on
this space. For every measurable function f : Ω → R, we define the maximal function

M(f) := sup
r∈Z+

1

|Λr|
∑
x∈Λr

f(θxω). (2.10)

We next record the Lp maximal inequality, which can be obtained as a consequence of the weak
type (1, 1) estimate Akcoglu and Krengel (1981, Theorem 3.2) with the Marcinkiewicz interpolation
theorem (see Taylor (2006, Appendix D)). The result is stated and used in Mourrat and Otto (2016,
Appendix A).

Proposition 2.8 (Lp Maximal inequality). For any p ∈ (1,∞], there exists a constant C :=
C(p, d) < ∞ such that, for any f ∈ Lp(Ω),

∥M(f)∥Lp(Ω) ≤ C ∥f∥Lp(Ω) .

2.6. The anchored Nash estimate of Mourrat and Otto. In this section, we record the anchored Nash
estimate proved by Mourrat and Otto (2016, Theorem 2.1). In the statement below and later, we
will make use of the notation | · |∗ = | · |+ 1.

Theorem 2.9 (Anchored Nash inequality, Theorem 2.1 of Mourrat and Otto (2016)). Let p ∈
(d,∞), p′ ∈ (d,∞], and θ ∈ [θc, 1], where θc ∈ [0, 1) is defined by

1

θc
= 1 +

dp+ 2p

dp+ 2d

(
p′

d
− 1

)
. (2.11)

Define α, β, γ ∈ [0, 1) by

α := (1− θ)
d

d+ 2
+ θ

p

p+ 2
, β := (1− θ)

2

d+ 2
, and γ := θ

2

p+ 2
. (2.12)

There exists C := C(d, p, q, θ) < ∞ such that, for any function f : Zd → R, and w : E(Zd) → (0,∞),

∥f∥L2(Zd) ≤ C
(
M(w−p′)

1
p′ ∥w∇f∥L2(Zd)

)α
∥f∥β

L1(Zd)
∥|x|p/2∗ f∥γ

L2(Zd)
.

Remark 2.10. The statement of the maximal function M(w−p′) is defined with respect to (Euclidean)
balls in Mourrat and Otto (2016, Theorem 2.1) and with boxes in (2.10). The two statements are
equivalent, but writing it with boxes will be convenient to state the periodic version of the result
in Proposition 4.6 below.

Remark 2.11. By Mourrat and Otto (2016, (3.7)) (or explicit computations), we have α+β+γ = 1
as well as the identity

α− (p− d)γ

2
=

d

2
(β + γ) =

d

2
(1− α) =⇒ 1− (p− d)γ

2α
= −d

2

(
1− 1

α

)
. (2.13)
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2.7. Stochastic integrability for random variables. We collect the following elementary property re-
garding the stochastic integrability stochastic processes.

Lemma 2.12. Let (Xt)t≥0 be a continuous stochastic process and assume that there exists two
constants C0 < ∞ and c0 > 0 and an exponent a ≥ 1 such that, for any t ≥ 0 and any K ≥ 0,

P (|Xt| ≥ K) ≤ C0 exp (−c0K
a) . (2.14)

Then there exist two constants c1 := c1(C0, c0) > 0 and C1 := C1(c0, C0) < ∞ such that for any
nonnegative function f : (0,∞) → R satisfying

´∞
0 f(x) dx = 1, and for any K ≥ 0,

P
(ˆ ∞

0
f(t)|Xt| ≥ K

)
≤ C1 exp (−c1K

a) . (2.15)

Proof : The proof is based on an application of Jensen inequality. Assumption (2.14) implies that
there exists two constants c1 := c1(C0, c0) > 0 and C1 := C1(c0, C0) < ∞ such that, for any t ≥ 0,

E [exp (c1|Xt|a)] ≤ C1.

Using the convexity and monotonicity of the map x 7→ exp(c1x
a) on [0,∞), we see that

E
[
exp

(
c1

(ˆ ∞

0
f(t)|Xt| dt

)a)]
≤ E

[ˆ ∞

0
f(t) exp (c1|Xt|a) dt

]
≤ C1,

from which we deduce the bound (2.15). □

3. Fluctuation estimates for the Langevin dynamic

This section is devoted to the proofs of two properties of the Langevin dynamic. The first one
provides a stochastic integrability estimate on the gradient of the Langevin dynamic, the second one
provides a fluctuation estimate for the Langevin dynamic, arguing that it can only remain contained
in a fixed interval for a long time with small probability.

3.1. Stochastic integrability estimate for the discrete gradient of the field. In this section, we estab-
lish stochastic integrability estimates on the gradient of the Langevin dynamic. We first prove in
Section 3.1.1 that the tail of the distribution of the discrete gradient of a random surface distributed
according to the measure µTL

decays at least like K 7→ exp(−cKr) (where r is the exponent of As-
sumption 1.1 encoding the growth of V ). We then transfer this stochastic integrability from the
Gibbs measure to the Langevin dynamic in Section 3.1.2.

3.1.1. Stochastic integrability for the Gibbs measure.

Proposition 3.1. There exist two constants c := c(d, V ) > 0 and C := C(d, V ) < ∞ such that, for
any L ≥ 1 and any edge e ∈ E (TL), if ϕ is a random surface sampled according to µTL

, then

P [|∇ϕ(e)| > K] ≤ C exp (−cKr) .

We present below a proof of this proposition based on the Efron’s monotonicity theorem for
log-concave measure and a coupling argument (originally due to Funaki and Spohn (1997)) for
the Langevin dynamic. We mention that, in the case when the potential V is symmetric (i.e.,
V (x) = V (−x) for all x ∈ R), an alternative approach, relying on reflection positivity in the form of
the chessboard estimate (following Miłoś and Peled (2015) and Magazinov and Peled (2022, Lemma
3.9)), would yield the same result.

Proof : We first prove the upper bound: there exists a constant C := C(d, V ) < ∞ such that, for
any L ∈ Z+, any e ∈ E (TL), if we let ϕ be a random surface sampled according to µTL

, then

E
[
|∇ϕ(e)|2

]
+ E

[∣∣V ′ (∇ϕ(e))
∣∣2] ≤ C. (3.1)



400 Paul Dario

The proof of the inequality (3.1) is based on the following identity: for any x ∈ TL,

E
[
ϕ(x)∇ · V ′(∇ϕ)(x)

]
= −|TL| − 1

|TL|
. (3.2)

To prove the identity (3.2), we use the following result: for any probability density f : Rn → [0,∞)
which is continuously differentiable, such that |y|f(y) tends to 0 at infinity and y → (1+ |y|)∇f(y)
is integrable, and for any index i ∈ {1, . . . , n},ˆ

Rn

yi
df

dyi
(y) dy = −1.

Applying this result when the underlying space is Ω◦
TL

and noting that the function δx− 1
|TL| ∈ Ω◦

TL

has an L2(TL)-norm equal to ( |TL|−1
|TL| )

1
2 , we obtain

|TL|
|TL| − 1

ˆ
Ω◦

TL

ϕ(x)∇ · V ′(∇ϕ)(x)µTL
(dϕ) = −1,

which is the identity (3.2). Summing the inequality (3.2) over the vertices x ∈ TL and performing
a discrete integration by parts, we deduce that

E

 ∑
e′∈E(TL)

V ′(∇ϕ(e′))∇ϕ(e′)

 = |TL| − 1.

Using Assumption 1.1 on the potential V , we see that the previous inequality implies

E

 ∑
e′∈E(TL)

∣∣∇ϕ(e′)
∣∣2 ≤ C |TL| .

Using that the spatial stationarity of the distribution µTL
(since we consider the Gibbs measure

µTL
in the torus), we deduce that, for any edge e ∈ TL,

E
[
|∇ϕ(e)|2

]
≤ C

|TL|
E

 ∑
e′∈E(TL)

∣∣∇ϕ(e′)
∣∣2 ≤ C.

We next note that, since the Gibbs measure µTL
is log-concave, the Prékopa-Leindler inequal-

ity Prékopa (1971, 1973); Leindler (1972) implies that the distribution of the random variable
∇ϕ(e) is also log-concave. This implies that the tail of its distribution decays exponentially fast on
the scale of its standard deviation, and thus all the moments of ∇ϕ(e) are bounded uniformly in L.
In particular, since the map V ′ grows at most like a polynomial, we obtain the bound (3.1). We
then fix an edge e ∈ E (TL) and introduce the collection of potentials (Ve′)e′∈E(TL)

Ve′(x) :=


V (x) if e′ ̸= e,

V (x)

2
if e′ = e.

We then denote by ϕe : TL → R be a random surface distributed according to the Gibbs measure

µe
TL

(dϕ) :=
1

Ze
TL

exp

−
∑

e′∈E(TL)

Ve′
(
∇ϕ(e′)

) dϕ. (3.3)

Since the measure (3.3) is log-concave, the random variable ∇ϕe(e) is also log-concave. We next
prove the following estimate: there exists a constant C := C(d, V ) < ∞ such that

E
[
|∇ϕe(e)|2

]
≤ C. (3.4)
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The proof of (3.4) is based on a coupling argument for Langevin dynamic. To this end, we introduce
the Langevin dynamic associated with the measure µe

TL
, i.e.,{

dϕe
L(t, x) = ∇ · V ′

e′(∇ϕe
L)(t, x)dt+

√
2dBt(x) for (t, x) ∈ [0,∞]× TL,

ϕe
L(0, x) = ϕe(x) for x ∈ TL,

(3.5)

where the initial data ϕe is distributed according to the measure µe
TL

and is independent of the
Brownian motions. We note that, as it was the case for (2.6), the process ∇ϕe

L is stationary with
respect to the time translations. We next couple the dynamic (3.5) to the one of (2.6) by assuming
that they are driven by the same Brownian motions and that the initial conditions ϕe and ϕ are
independent. Subtracting the two dynamics, we observe that the difference u := ϕL−ϕe

L solves the
parabolic equation

∂tu(t, x)−∇ · ae∇u(t, x) = ∇ ·
[(
V ′
e′ − V ′) (∇ϕL)

]
(t, x) for (t, x) ∈ [0,∞]× TL, (3.6)

with the definition

ae(t, e
′) :=

ˆ 1

0
V ′′
e′ (s∇ϕL(t, e

′) + (1− s)∇ϕe
L(t, e

′)) ds.

Noting that the potentials Ve′ and V are only different at the edge e, we may use an energy estimate
on the equation (3.6) and obtain, for any T ≥ 0,
ˆ T

0

∑
e′∈E(TL)

ae(t, e
′)
∣∣∇u(t, e′)

∣∣2 dt ≤ C

ˆ T

0

∣∣V ′ (∇ϕL(t, e))∇u(t, e)
∣∣ dt+ C

∑
x∈TL

|u(0, x)|2 . (3.7)

The inequality (3.7) implies the following (weaker) estimate
ˆ T

0
ae(t, e) |∇u(t, e)|2 ≤

ˆ T

0

∣∣V ′ (∇ϕL(t, e))∇u(t, e)
∣∣ dt+ ∑

x∈TL

|u(0, x)|2 .

Assumption 1.1 on the potential V implies that there exists a constant C := C(V ) < ∞ such that

ae(t, e) |∇u(t, e)|2 ≥ |∇u(t, e)|2 − C. (3.8)

Substituting (3.8) into (3.7) and applying the Cauchy-Schwarz inequality, we deduce that
ˆ T

0
|∇u(t, e)|2 dt ≤ CT + C

ˆ T

0
V ′(∇ϕL(t, e))

2 dt+ C
∑
x∈TL

|u(0, x)|2 .

Using the definition u := ϕL − ϕe
L, we thus obtain

ˆ T

0
|∇ϕe

L(t, e)|
2 dt ≤ CT + C

ˆ T

0

(
V ′(∇ϕL(t, e))

2 + |∇ϕL(t, e)|2
)
dt+ C

∑
x∈TL

|u(0, x)|2 .

Taking the expectation in both sides of the previous inequality, and using the stationarity of the
gradients ∇ϕL and ∇ϕe

L, we deduce that, for any T > 0,

E
[
|∇ϕe

L(0, e)|
2
]
≤ C + CE

[
V ′(∇ϕL(0, e))

2 + |∇ϕL(0, e)|2
]
+

C

T

∑
x∈TL

E
[
|u(0, x)|2

]
.

Taking the limit T → ∞ and using the bound (3.1) completes the proof of (3.4).
We next let Y be a real-valued random variable whose law is given by

µY :=
1

ZY
exp

(
−1

2
V (y)

)
dy with ZY :=

ˆ
R
exp

(
−1

2
V (y)

)
dy.
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We couple the random variables Y and ϕe by assuming that they are independent. Using that the
law of the random variable Y is explicit, the independence of Y and ∇ϕe(e) and the bound (3.4),
we deduce that there exists a constant c := c(d, V ) > 0 such that

P [Y ≥ ∇ϕe(e)] ≥ P [{Y ≥ 2E [|∇ϕe(e)|]} ∩ {∇ϕe(e) ≤ 2E [|∇ϕe(e)|]}] (3.9)
= P [{Y ≥ 2E [|∇ϕe(e)|]})P ({∇ϕe(e) ≤ 2E [|∇ϕe(e)|]}]
≥ c.

We next rely on the observation that the law of ∇ϕ(e) (where ϕ is distributed according to the mea-
sure µTL

) is equal to the law of the random variable Y conditionally on the event {Y −∇ϕe(e) = 0}.
This property is a consequence of the following observation: if X and Z are two independent real-
valued random variables with bounded continuous densities f and g then the law of X conditionally
on the event {X − Z = 0} has a density proportional to the function fg. In particular, for any
non-negative function F : R → [0,∞), one has the identity

E [F (∇ϕ(e))] = E [F (Y ) |Y −∇ϕe(e) = 0] . (3.10)

We then introduce the constant c3 := c−
4r(r−1) > 0 (where c− is the constant appearing in Assump-

tion 1.1) and the function

F (x) :=

{
0 if x ≤ 0,

exp (c3x
r) if x ≥ 0.

Assumption 1.1 on the potential V implies that there exists a constant C := C(V ) < ∞ such that

E [F (Y )] =
1

ZY

ˆ
R
F (y) exp

(
−1

2
V (y)

)
dy ≤ C. (3.11)

We then note that the Efron’s monotonicity theorem applied to the pair of independent random
variables (Y,∇ϕe), the nonnegativity and monotonicity of the function F imply the almost sure
inequality

E [F (Y ) |Y −∇ϕe(e) = 0]1{Y−∇ϕe(e)≥0} ≤ E [F (Y ) |Y −∇ϕe(e)] . (3.12)

Combining the bound (3.11) with the identity (3.11), the lower bound (3.9) and the inequality (3.12)
yields the existence of a constant C := C(d, V ) < ∞ such that

E [F (∇ϕ(e))] = E [F (Y ) |Y −∇ϕe(e) = 0] (3.13)

≤ 1

P (Y −∇ϕe(e) ≥ 0)
E [E [F (Y ) |Y −∇ϕe(e)]]

≤ 1

P (Y −∇ϕe(e) ≥ 0)
E [F (Y )]

≤ C.

The inequality (3.13) implies that there exist two constants C := C(d, V ) < ∞ and c := c(d, V ) > 0
such that, for any K ≥ 1,

P [∇ϕ(e) > K] ≤ C exp (−cKr) . (3.14)

The same argument can be applied with the potential Ṽ (x) := V (−x) to obtain the upper bound,
for any K ≥ 1,

P [∇ϕ(e) < −K] ≤ C exp (−cKr) . (3.15)

Combining (3.14) and (3.15) completes the proof of Proposition 3.1. □
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3.1.2. Stochastic integrability for the Langevin dynamic. In this section, we extend the result of the
previous section to the Langevin dynamic (using essentially a union bound and the stationarity of
the dynamic).

Proposition 3.2. There exist two constants c := c(d, V ) > 0 and C := C(d, V ) < ∞ such that, for
any T ≥ 1 and any K ≥ 1,

P

[
sup

t∈[0,T ]
|∇ϕL(t, e)| ≥ K

]
≤ CT exp (−cKr) . (3.16)

Proof : Fix K ≥ 1 and let N := Kr. We have the inclusion of events{
sup

t∈[0,T ]
|∇ϕL(t, e)| ≥ K

}
⊆

{
sup

n∈{0,...,⌊TN⌋}

∣∣∣∇ϕL

( n

N
, e
)∣∣∣ ≥ K

2

}
⋃ sup

n∈{0,...,⌊TN⌋}
sup

t∈[ n
N
,n+1

N ]

∣∣∣∇ϕL (t, e)−∇ϕL

( n

N
, e
)∣∣∣ ≥ K

2

 . (3.17)

We then bound the probabilities of the two terms in the right-hand side separately. For the first
one, a union bound, Proposition 3.1, and the identity N := Kr yield

P

[
sup

n∈{0,...,⌊TN⌋}

∣∣∣∇ϕL

( n

N
, e
)∣∣∣ ≥ K

2

]
≤

⌊TN⌋∑
n=0

P
[∣∣∣∇ϕL

( n

N
, e
)∣∣∣ ≥ K

2

]
(3.18)

≤ CKrT exp (−cKr)

≤ CT exp (−cKr) ,

where we reduced the value of the constant c in the third line to absorb the polynomial factor Kr.
For the second term in the right-hand side of (3.17), we first fix n ∈ {0, . . . , ⌊TN⌋} and use the
definition of the Langevin dynamic (2.6) to write

∇ϕL (t, e)−∇ϕL

( n

N
, e
)
=

ˆ t

n
N

∇
(
∇ · V ′(∇ϕL)

)
(s, e) ds+∇Bt(e)−∇B n

N
(e).

This implies

sup
t∈[ n

N
,n+1

N ]

∣∣∣∇ϕL (t, e)−∇ϕL

( n

N
, e
)∣∣∣

≤
ˆ n+1

N

n
N

∣∣∇ (∇ · V ′(∇ϕL)
)
(s, e)

∣∣ ds+ sup
t∈[ n

N
,n+1

N ]

∣∣∣∇Bt(e)−∇B n
N
(e)
∣∣∣ . (3.19)

Using the definition of the discrete gradient and Assumption 1.1 on the potential V , we see that∣∣∇ (∇ · V ′(∇ϕL)
)
(s, e)

∣∣ ≤ ∑
e′∩e ̸=∅

∣∣V ′(∇ϕL)(t, e
′)
∣∣ ≤ C +

∑
e′∩e̸=∅

∣∣∇ϕL(t, e
′)
∣∣r−1

.

Using Lemma 2.12 (with f = N1[ n
N
,n+1

N ]), we deduce that

P

[ˆ n+1
N

n
N

∣∣∇ (∇ · V ′(∇ϕL)
)
(s, e)

∣∣ ds ≥ K

4

]
≤ C exp

(
−c(NK)

r
r−1

)
(3.20)

≤ C exp (−cKr) .
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Additionally, the supremum of the Brownian motions can be estimated by noting that the difference
of two independent Brownian motions is equal in law (up to a multiplicative constant equal to

√
2)

to a Brownian motion. We obtain

P

 sup
t∈[ n

N
,n+1

N ]

∣∣∣∇Bt(e)−∇B n
N
(e)
∣∣∣ ≥ K

4

 = P

[
sup
t∈[0,1]

Bt ≥
√
NK

4
√
2

]
(3.21)

≤ C exp
(
−cNK2

)
≤ C exp (−cKr) .

Combining (3.19), (3.20) and (3.21), with a union bound, we have obtained

P

 sup
n∈{0,...,⌊TN⌋}

sup
t∈[ n

N
,n+1

N ]

∣∣∣∇ϕL (t, e)−∇ϕL

( n

N
, e
)∣∣∣ ≥ K

2

 (3.22)

≤
⌈TN⌉∑
n=0

P

 sup
t∈[ n

N
,n+1

N ]

∣∣∣∇ϕL (t, e)−∇ϕL

( n

N
, e
)∣∣∣ ≥ K

2


≤ CNT exp (−cKr)

≤ CKrT exp (−cKr)

≤ CT exp (−cKr) .

Combining (3.17), (3.18) and (3.22) completes the proof of (3.16). □

3.2. A fluctuation estimate for the Langevin dynamic. Building upon the stochastic integrability
estimate for the dynamic established in Proposition 3.2, we prove that the dynamic cannot remain
contained in a deterministic interval for a long time. The argument follows the one outline in
Section 1.1.3, with additional technicalities to take into account that the second derivative of the
potential V is assumed to be unbounded from above. We recall the definition (2.1) of the constant
RV .

Proposition 3.3 (Fluctuation for the Langevin dynamic). There exist two constants C := C(d, V )<
∞ and c := c(d, V ) > 0 such that, for any T ≥ 1 and any edge e ∈ TL,

P [ ∀t ∈ [0, T ], |∇ϕL(t, e)| ≤ RV ] ≤ C exp
(
−c (lnT )

r
r−2

)
. (3.23)

Proof : We fix an edge e ∈ E(TL) and will prove the following estimate: there exist two constants
C := C(d, V ) < ∞ and c := c(d, V ) > 0 and a time T0 := T0(d, V ) < ∞ such that, for any T ≥ T0,

P [ ∀t ∈ [0, T ], |∇ϕL(t, e)| ≤ RV ] ≤ C exp
(
−c (lnT )

r
r−2

)
. (3.24)

The bound (3.23) can be deduced from (3.24) by increasing the value of the constant C. Let us
fix a time T ≥ 1 and let N := (lnT )/R2

V . The definition of the parameter N is motivated by the
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following inequality: for any T chosen sufficiently large (universally),

P
[∣∣B1/N

∣∣ ≥ 4

3
RV

]
= P

[
|B1| ≥

4

3

√
lnT

]
(3.25)

=
2√
2π

ˆ ∞

4
3

√
lnT

e−
x2

2 dx

≥ 2√
2π

ˆ 4
3

√
lnT+1

4
3

√
lnT

e−
x2

2 dx

≥ 2√
2π

exp

(
−1

2

(
4

3

√
lnT + 1

)2
)

≥ 1

T 9/10
.

The proof relies on the observation that a Brownian motion can be decomposed into mutually
independent Brownian bridges and increments. To be more specific, we introduce the following sets
and notation:

• For each k ∈ Z+ and each x ∈ TL, we let Wk(·;x) be the Brownian bridge defined by the
formula

∀t ∈
[
0,

1

N

]
, Wk(t;x) := Bt+ k

N
(x)−B k

N
(x)−Nt(B k+1

N
(x)−B k

N
(x)).

We will denote by W := {Wk(·;x) : k ∈ Z+, x ∈ TL} the collection of Brownian bridges.
• For each k ∈ Z+ and each y ∈ TL, we denote by Xk(y) the increment

Xk(y) := B k+1
N

(y)−B k
N
(y).

We will denote by X := {Xk(x) : k ∈ Z+, x ∈ TL} the set of all the increments. For (l, y) ∈
Z+ × TL, the set Xl,y := {Xk(x) : k ∈ Z+, x ∈ TL, k ̸= l, x ̸= y} denotes the collection of
all the increments except Xl(y).

In particular, the Brownian bridges {Bt(x) : x ∈ TL, t ≥ 0} are fully determined by the Brownian
bridges of W and the increments of X . This implies, using the discussion of Section 2.2, that the
dynamic ϕL is fully determined by the initial condition ϕ, the Brownian bridges of W and the
increments of X . We thus introduce the notation

R := (ϕ,X ,W).

The set of all possible triplets R will be denoted by

Ω := Ω◦
TL

× RZ+×TL × C

([
0,

1

N

]
,R
)Z+×TL

.

Since the dynamic {ϕL(t, x) : t ≥ 0, x ∈ TL} can interpreted as deterministic functions of R ∈ Ω,
we will write

ϕL(t, x) := ϕL(t, x) (R) .

For (l, y) ∈ Z+ × TL, we denote by Rl,y := (ϕ,Xl,y,W) and by Ωl,y the set of possible values for
Rl,y. We have the identities R = (Xl(y),Rl,y) and Ω = R× Ωl,y. To emphasize the dependency of
the dynamic on the increment Xl(y), we will write

ϕL(t, x) = ϕL(t, x) (Xl(y),Rl,y) . (3.26)

We denote by FR,l,y the σ-algebra generated by Rl,y and note that the increment Xl(y) is indepen-
dent of the σ-algebra FR,l,y. For later use, we note that the dynamic ϕL(t, x) depends only on the
increments Xk(y) and the Brownian bridges Wk(·; y) such that t ≥ k

N . This reflects the fact that
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the dynamic ϕL evaluated at the time t depends only on the realization of the Brownian motions
before the time t.

We now fix a positively oriented edge e ∈ E (TL) and let y be the second endpoint of e. For
any l ∈ Z+, we introduce the following random subset of R (depending on the collection Rl,y),

Al(Rl,y) :=

{
X ∈ R :

∣∣∣∣∇ϕL

(
l + 1

N
, e

)
(X,Rl,y)

∣∣∣∣ ≤ RV

}
⊆ R, (3.27)

where we used the notation introduced in (3.26). In words, the set Al(Rl,y) is the set of all possible
values for the increment Xl(y) such that the gradient of the dynamic ϕL computed at time (l+1)/N
at the edge e with initial condition, Brownian bridges and increments given by R = (Xl(y),Rl,y)
belongs to the interval [−RV , RV ].

We next introduce the event Al ⊆ Ω defined as follows

Al :=

{
R := (Xl(y),Rl,y) ∈ Ω : Xl(y) ∈ Al(Rl,y) and

1√
2πN

ˆ
Al(Rl,y)

e−
x2

2N dx ≤ 1− 1

T 9/10

}
.

(3.28)
Since the law of the increment Xl(y) is Gaussian of variance 1/N and since Xl(y) is independent of
the set Rl,y, we have the almost sure upper bound

E
[
1Al

∣∣FR,l,y

]
≤ 1− 1

T 9/10
. (3.29)

We next estimate the probability for the intersection of all the events Al for l ∈ {0, . . . , ⌊NT ⌋} and
prove the following stretched exponential decay in the time T ,

P

⌊NT ⌋⋂
l=0

Al

 ≤ exp
(
−T

1/10
)
. (3.30)

The proof of (3.30) is obtained by consecutive conditioning. We first note that, since the dy-
namic ϕL(t, x) depends only on the increments Xl(y) and the Brownian bridges Wl(·; y) such that
t ≥ l

N , the events (A0, , . . . , A⌊NT ⌋−1) do not depend on the increment X⌊NT ⌋(y), and are thus
measurable with respect to the σ-algebra FR,⌊NT ⌋,y. Combining this observation with the upper
bound (3.29), we obtain

P

⌊NT ⌋⋂
l=0

Al

 = E

⌊NT ⌋∏
l=0

1Al


= E

E
⌊NT ⌋∏

l=0

1Al

∣∣∣∣FR,⌊NT ⌋,y


= E

⌊NT ⌋−1∏
l=0

1Al

× E
[
1A⌊NT⌋ |FR,⌊NT ⌋,y

]
≤
(
1− 1

T 9/10

)
P

⌊NT ⌋−1⋂
l=0

Al

 .

We may then iterate the previous computation, noting that, for any l ∈ {0, . . . , ⌊NT ⌋ − 1}, the
events (A1, . . . , Al) are measurable with respect to the σ-algebra FR,l+1,y. This leads to the upper
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bound, for T sufficiently large (depending only on V ) so that ⌊NT ⌋+ 1 ≥ T (lnT )/R2
V ≥ T ,

P

⌊NT ⌋⋂
l=0

Al

 ≤
(
1− 1

T 9/10

)⌊NT ⌋+1

≤ exp

(
−⌊NT ⌋+ 1

T 9/10

)
≤ exp

(
−T

1/10
)
.

We next select a time TG := TG(d, V ) < ∞ and a constant CG := CG(d, V ) < ∞ such that the
following implication holds: for any T ≥ TG,∑

e′∩e ̸=∅

∣∣∇ϕL(t, e
′)
∣∣ ≤ (lnT )

1
r−2

CG
=⇒

∑
e′∩e ̸=∅

∣∣a(t, e′)∣∣ ≤ N

2
. (3.31)

The identity N := lnT/R2
V and Assumption 1.1 ensure that the constant CG and the time TG exist

and are finite. We then define the interval IT

IT :=

[
− (lnT )

1
r−2

(16
√
2d)CG

,
(lnT )

1
r−2

(16
√
2d)CG

]
as well as the good event

GT :=

R ∈ Ω : sup
t∈[0,T ]

∑
e′∩e ̸=∅

∣∣∇ϕL(t, e
′)(R)

∣∣ ≤ (lnT )
1

r−2

2CG

⋂
⌊NT ⌋⋂
k=0

{Xk(y) ∈ IT } .

We first show that the probability of the event GT is close to 1. Using Proposition 3.2, that the law
of the increments {Xk(y) : 1 ≤ k ≤ ⌊NT ⌋} is Gaussian of variance 1/N = R2

V / lnT and a union
bound on the complement of the event GT , we obtain

P [Gc
T ] ≤ CT exp

(
−c (lnT )

r
r−2

)
+ CNT exp

(
−c (lnT )

r
r−2

)
≤ C exp

(
−c (lnT )

r
r−2

)
. (3.32)

We will now prove the inclusion of events

{R ∈ Ω : ∀t ∈ [0, T ], |∇ϕL(t, e)| ≤ RV } ⊆
⌊NT ⌋⋂
l=0

Al ∪Gc
T . (3.33)

Proposition 3.23 is then obtained by combining (3.30), (3.32), (3.33) and a union bound. The rest
of the argument is devoted to the proof of (3.33). As mentioned in Section 1.1.3, we first observe
from the definition of the Langevin dynamic that the function

(Xl(y),Rl,y) 7→ ϕL(t, x)(Xl(y),Rl,y)

is differentiable with respect to the increment Xl(y), and its derivative can be computed in terms
of a solution of a parabolic equation. To be more specific, let us introduce the notation

w(t, y)(Xl(y),Rl,y) :=
∂ϕL(t, y)

∂Xl(y)
(Xl(y),Rl,y), (3.34)

and note that, for any l ∈ Z+ and any t ∈
[

l
N , l+1

N

]
,

Bt(y) =
l−1∑
k=0

Xk(y) +N

(
t− k

N

)
Xl(y) +Wl

(
t− l

N
; y

)
,

which implies the identity, for any t ∈
[

l
N , l+1

N

]
,

dBt(y) = NXl(y)dt+ dWl

(
t− l

N
; y

)
.
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Substituting the previous identity in the definition (2.6) of the Langevin dynamic and differentiating
both sides of the identity by Xl(y), we see that the function w solves the parabolic equation{

∂tw(t, x) = ∇ · a∇u(t, x) +
√
2N1[ l

N
, l+1

N ](t)δy(x) for (t, x) ∈ [0,∞]× TL,

w(0, x) = 0 for x ∈ TL,

with the environment a(t, e′) := V ′′(∇ϕL(t, e
′)). Applying Duhamel’s principle with the definition

of the heat kernel stated in (2.3), we obtain the identity, for any t ≥ l
N ,

w(t, x) =
√
2N

ˆ min( l+1
N

,t)

l
N

(
Pa(t, x; s, y) +

1

|TL|

)
ds. (3.35)

Additionally, the upper and lower bounds (2.4) imply the following estimate on the gradient of the
heat kernel, for any edge e′ ∈ E (TL) and any pair of times (t, s) ∈ (0,∞)2 with t ≥ s,∣∣∇Pa

(
t, e′; s, y

)∣∣ ≤ 1. (3.36)

A combination of the previous displays implies the following bound, for any R = (Xl(y),Rl,y) ∈ Ω
and any (t, e′) ∈ (0,∞)× E (TL),∣∣∣∣∂∇ϕL(t, e

′)

∂Xl(y)
(Xl(y),Rl,y)

∣∣∣∣ ≤ √
2. (3.37)

We then fix a realization of the randomness R := (Xl(y),Rl,y) ∈ Ω and assume that R ∈ GT . We
first claim that, for any increment X ∈ IT ,

sup
t∈[0,T ]

∑
e′∩e ̸=∅

∣∣∇ϕL

(
t, e′
)
(X,Rl,y)

∣∣ ≤ (lnT )
1

r−2

CG
. (3.38)

To prove (3.38), we first use (3.37) and deduce that

sup
t∈[0,T ]

∑
e′∩e̸=∅

∣∣∇ϕL

(
t, e′
)
(X,Rl,y)−∇ϕL

(
t, e′
)
(Xl(y),Rl,y)

∣∣ ≤ √
2(4d) |X −Xl(y)| ≤

(lnT )
1

r−2

2CG
.

By the assumption (Xl(y),Rl,y) ∈ GT , we have that

sup
t∈[0,T ]

∑
e′∩e̸=∅

∣∣∇ϕL

(
t, e′
)
(Xl(y),Rl,y)

∣∣ ≤ (lnT )
1

r−2

2CG
.

A combination of the two previous displays with the triangle inequality yields, for any X ∈ IT ,

sup
t∈[0,T ]

∑
e′∩e ̸=∅

∣∣∇ϕL

(
t, e′
)
(X,Rl,y)

∣∣ ≤ (lnT )
1

r−2

CG
.

Using the definition of the constant CG and the implication (3.31), we have proved the following
result: for any T ≥ TG, any R := (Xl(y),Rl,y) ∈ GT , any increment X ∈ IT , one has the upper
bound

sup
t∈[0,T ]

∑
e′∩e̸=∅

∣∣a(t, e′)(X,Rl,y)
∣∣ ≤ N

2
.

The previous upper bound is useful as it can be used to control the derivative in time of the heat
kernel. Indeed, using the identity ∂tPa = ∇ · a∇Pa together with the bound (3.36), we obtain the
estimate, for any pair of times (s, t) ∈ [0,∞)2,

|∂t∇Pa(t, e; s, y)| ≤
∑

e′∩e̸=∅

a(t, e′)
∣∣∇Pa(t, e

′; s, y)
∣∣ ≤ ∑

e′∩e̸=∅

a(t, e).
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Combining the two previous displays with the identity ∇Pa(s, e; s, y) = 1 (since y is the second
endpoint of e), we obtain that, for any R := (Xl(y),Rl,y) ∈ GT and any increment X ∈ IT ,

∂∇ϕL

(
l+1
N , e

)
∂Xl(y)

(X,Rl,y) =
√
2N

ˆ l+1
N

l
N

∇Pa

(
l + 1

N
, e; s, y

)
(X,Rl,y) ds

≥
√
2N

ˆ k+1
N

k
N

1− N

2

(
k + 1

N
− s

)
ds

≥ 3

4
.

This lower bound on the derivative of the gradient of the dynamic implies that, for any (Xl(y),Rl,y) ∈
GT , the function

X 7→ ∇ϕL

(
l + 1

N
, e

)
(X,Rl,y)−

3

4
X is increasing on the interval IT .

This implies the following upper bound on the Lebesgue measure of the set Al(Rl,y) ∩ IT ,

|Al(Rl,y) ∩ IT | ≤
8

3
RV ,

which then yields the estimate, for any T sufficiently large (depending on d and V ) so that the
computation (3.25) applies

1√
2πN

ˆ
Al(Rl,y)

e−
x2

2N dx ≤ 1− 1√
2πN

ˆ
IT \[− 4

3
RV , 4

3
RV ]

e−
x2

2N dx ≤ 1− 1

T 9/10
.

From the definitions (3.27) and (3.28), the previous inequality implies the identity, for any l ∈
{1, . . . , ⌊NT ⌋},

GT ∩Al = GT ∩
{
R ∈ Ω :

∣∣∣∣∇ϕL

(
l + 1

N
, e

)
(R)

∣∣∣∣ ≤ RV

}
.

Taking the intersection over l ∈ {1, . . . , ⌊NT ⌋} completes the proof of (3.33). □

4. On diagonal upper bound for the heat kernel

In this section, we combine the result of Section 3 with the techniques developed by Mourrat
and Otto (2016) to obtain an on-diagonal upper bound for the heat kernel appearing in the Helffer-
Sjöstrand representation formula. The section is organized as follows. In Section 4.1, we collect some
preliminary definitions and results and state the main technical result of the section (pertaining to
the decay rate of the L2-norm of the heat kernel) in Theorem 4.2. Section 4.2, Section 4.4 and
Section 4.5 are devoted to the proof of Theorem 4.2 following the techniques of Mourrat and Otto
(2016). The on-diagonal upper bound on the heat kernel is deduced from Theorem 4.2 in Section 4.6.
Finally, Section 4.7 completes the proof of Theorem 1.2 by combining the on-diagonal heat kernel
estimate with the Helffer-Sjöstrand representation formula.

4.1. Preliminaries. We select two exponents p, p′ ∈ (d,∞) depending only on the dimension d.
These exponents will be used to define the moderated environment and apply the anchored Nash
inequality, any specific values are admissible (for instance, one can choose p = p′ = d+ 1). We let
ϕL be the Langevin dynamic in the torus and let a := V ′′(∇ϕL) be the environment appearing in
the Helffer-Sjöstrand representation formula. Using the stationarity of the gradient of the Langevin
dynamic, Proposition 3.1 and the growth condition assumed on the second derivative V ′′, we know
that all the moments of the random environment a are finite: for any q ∈ [1,∞), and any (t, e) ∈
(0,∞)× E (TL),

E [a(t, e)q] < ∞. (4.1)



410 Paul Dario

Following the insight of Mourrat and Otto (2016), we introduce in this section the following mod-
erated environment w. We first introduce the two functions

kt :=
δ

(1 + t)p+3
and Kt := kt +

ˆ ∞

t
sks ds, (4.2)

where δ := δ(d) > 0 is chosen sufficiently small so that, for any t, s′ ∈ (0,∞) with s′ ≥ t,
ˆ s′

t
Ks−tKs′−s ds ≤ Ks′−t and

ˆ ∞

0
Ks ds ≤ 1. (4.3)

Using the function k, we define the moderated environment w as follows.

Definition 4.1 (Moderated environment for the Langevin dynamic). We define the moderated
environment according to the formula, for any (t, e) ∈ [0,∞)× E (TL),

w(t, e)2 =

ˆ ∞

t
ks−t

a(s, e) ∧ 1

(s− t)−1
∑

e′∩e ̸=∅
´ s
t a(s′, e′) ∨ 1 ds′

ds. (4.4)

Compared to the environment a, the moderated environment w satisfies the property that all the
moments of w and of w−1 are finite, and we will prove in Proposition 4.4 that, for any q ∈ [1,∞),
and any (t, e) ∈ (0,∞)× E (TL),

E [w(t, e)q] + E
[
w(t, e)−q

]
< ∞. (4.5)

This result is proved in Proposition 4.4, and the proof builds upon the fluctuation estimate for the
Langevin dynamic proved in Proposition 3.3.

Various functionals of the environments a and w will appear in the proof of the heat kernel
estimate. They are collected below. Their formulae are technical, and we incite the reader to
consult as a reference. They all possess the property they have finite moments of all order (see (4.6)
and (4.8)).

Before stating their definition, we recall the definitions of the exponents introduced in (2.7)
and (2.8), let θc be the exponent given by (2.11) of Proposition 2.9 (with the values of p, p′ ∈ (d,∞)
selected at the beginning of this section), and let α, β, γ be the exponents defined in (2.12) (with
θ = θc). For any time t ≥ 0, we introduce the six random variables

Mp′(t) := 1 +
(
1 + ∥w(t, ·)∥Lσd (TL)∥w

−1(t, ·)∥Lτd (TL)

)2
sup

r∈{1,...,L}
∥w−1(t, ·)∥2

Lp′ (Λr)
,

M0(t) := 1 + sup
r∈{0,...,L}

∥a(t, ·)1/2∥2Lσd (Λr)

(
1 + ∥w−1(t, ·)∥2

L
τ ′
d (Λr)

)
,

M1(t) := 1 +

ˆ ∞

t
Ks−tM0(s)

p
2(1−θd) ds,

M2(t) := 1 + sup
x∈TL

∑
e∋x a(t, e)

|x|(p−2)/(p−1)
∗

,

M3(t) := 1 +

(ˆ ∞

t
Ks−tMp′(s)

α
β ds

)β

,

M4(t) := 1 + sup
s∈[t,t+1]

∥∥w(s, ·)−1
∥∥2
Ld(TL)

.

These six random variables appear at different stages of the proof. The term “+1" is added to the
definition to ensure that they are always larger than 1. Their main key property is that they have
finite moments of every order: for any i ∈ {0, 1, 2, 3, 4}, any q ∈ [1,∞] and any t ≥ 0,

E
[
Mp′(t)

q
]
+ E [Mi(t)

q] < ∞. (4.6)
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The proof of (4.6) is a consequence of the bounds (4.1) and (4.5), the Jensen inequality and the
Lp-maximal inequality stated in Proposition 2.8. Building upon these definitions, we consider the
maximal functions 

M1 :=

(
sup
t≥1

1

t

ˆ t

0
M1(t)

2
p dt

) p
2

,

M2 :=

(
sup
t≥1

1

t

ˆ t

0
M2(t) dt

)p−1

,

M3 :=

(
inf
t≥1

1

t

ˆ t

0
M− 1

α
3 (s) ds

)−α
γ

,

M4 :=

(
inf
t≥1

1

t

ˆ t

0
M−1

4 (s) ds

)−1

.

(4.7)

From the bound (4.6) and the maximal inequality (with respect to the time variable) stated in
Proposition 2.8 and the Jensen inequality, we know that all the moments of the random variables
listed in (4.7) are finite, i.e., for any i ∈ {1, 2, 3, 4} and any q ∈ [1,∞),

E [M q
i ] < ∞. (4.8)

Finally, building on these definitions, we may define the random variables M and M ′ appearing in
the definition of Theorem 4.2 above according to the formulae

M := ((M1 + M2)M3)
γ

1−α−γ and M ′ := M
2γ

(dβ+pγ)
+ γ

α

3 M4.

The inequality (4.8) implies that all the moments of M and M ′ are finite. The main theorem
of this section investigates the decay of the L2(TL)-norm of the heat kernel. It can be compared
to Mourrat and Otto (2016, Theorem 4.2).

Theorem 4.2 (Energy upper bound for dynamic environment). There exists a constant C :=
C(d) < ∞ such that, for any t ≥ 1,∑

x∈TL

Pa (t, x)
2 ≤ CM

(1 + t)
d
2

exp

(
− t

CM ′L2

)
.

4.2. Moderation of the environment. In this section, we adapt the arguments of Mourrat and
Otto Mourrat and Otto (2016, Proposition 4.6) to environments which are not bounded from above.
Using the terminology introduced in Mourrat and Otto (2016, Definition 3.1), we show that the
environment a is (w,CK)-moderate. The proof of Proposition 4.3 is a notational modification
of Mourrat and Otto (2016) and is written below for completeness.

Proposition 4.3 ((w,CK)-moderation). There exists a constant C := C(d) > 0 such that, for
every t ≥ 0 and every solution u : (0,∞)× TL → R of the parabolic equation

∂tu−∇ · a∇u = 0 in (0,∞)× TL,

one has the inequality, for any edge e ∈ E (TL),

w(t, e)2(∇u(t, e))2 ≤ C
∑

e′∩e̸=∅

ˆ ∞

t
Kt−sa(s, e

′)(∇u(s, e′))2 ds. (4.9)
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Proof : Following the proof of Mourrat and Otto (2016, Proposition 4.6), we fix an edge e ∈ E (TL)
and first estimate

w(t, e)2(∇u(t, e))2 =

ˆ ∞

t
ks−t

a(s, e) ∧ 1

(s− t)−1
∑

e′∩e̸=∅
´ s
t a(s′, e′) ∨ 1 ds′

(∇u(t, e))2 ds (4.10)

≤ 2

ˆ ∞

t
ks−t

a(s, e) ∧ 1

(s− t)−1
∑

e′∩e ̸=∅
´ s
t a(s′, e′) ∨ 1 ds′

(∇u(s, e))2 ds

+ 2

ˆ ∞

t
ks−t

a(s, e) ∧ 1

(s− t)−1
∑

e′∩e̸=∅
´ s
t a(s′, e′) ∨ 1 ds′

(∇u(s, e)−∇u(t, e))2 dt.

The first term in the right-hand side can be estimated as followsˆ ∞

t
ks−t

a(s, e) ∧ 1

(t− s)−1
∑

e′∩e ̸=∅
´ s
t a(s′, e′) ∨ 1 ds′

(∇u(s, e))2 ds ≤
ˆ ∞

t
ks−ta(s, e)(∇u(s, e))2 ds. (4.11)

We next use the identity ∂tu = ∇ · a∇u and denote by x and y the two endpoints of e. We then
write

(∇u(s, e)−∇u(t, e))2 ≤ 2(u(s, x)− u(t, x))2 + 2(u(s, y)− u(t, y))2

≤ 2

(ˆ s

t
∇ · a∇u(s′, x) ds′

)2

+ 2

(ˆ s

t
∇ · a∇u(s′, y) ds′

)2

.

We next observe that, by the Cauchy-Schwarz inequality,(ˆ s

t
∇ · a∇u(s′, x) ds′

)2

≤ C
∑
e′∋x

(ˆ s

t

∣∣a(s′, e′)∇u(s′, e′)
∣∣ ds′)2

≤ C
∑
e′∋x

(ˆ s

t
a(s′, e′) ds′

)(ˆ s

t
a(s′, e′)(∇u(s′, e′))2 ds′

)
.

A combination of the two previous displays yields

(∇u(s, e)−∇u(t, e))2 ≤ C
∑

e′∩e̸=∅

(ˆ s

t
a(s′, e′) ds′

)(ˆ s

t
a(s′, e′)(∇u(s′, e′))2 ds′

)
.

We thus obtain

a(s, e) ∧ 1

(s− t)−1
∑

e′∩e̸=∅
´ s
t a(s′, e′) ∨ 1 ds′

(∇u(s, e)−∇u(t, e))2

≤ C(s− t)
∑

e′∩e̸=∅

ˆ s

t
a(s′, e′)(∇u(s′, e′))2 ds′.

Combining the previous estimate with (4.10) and (4.11), we deduce that

w(t, e)2(∇u(t, e))2 ≤ C

ˆ ∞

t
ks−ta(s, e)(∇u(s, e))2 ds

+ C
∑

e′∩e̸=∅

ˆ ∞

t
ks−t(s− t)

ˆ s

t
a(s′, e′)(∇u(s′, e′))2 ds′

≤ C
∑

e′∩e̸=∅

ˆ ∞

t
Ks−ta(s, e

′)(∇u(s, e′))2 ds.

The proof of Proposition 4.3 is complete. □
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4.3. Stochastic integrability for the moderated environment. In this section, we establish stochastic
integrability estimates for the moderated environment w, and prove that all the moments of w and
w−1 are finite.

Proposition 4.4 (Stochastic integrability for the moderated environment). There exist two con-
stants c := c(d, V ) > 0 and C := C(d, V ) < ∞ such that, for any T ≥ 1, any time t ≥ 0 and any
edge e ∈ E (TL),

P
[
w(t, e) ≤ 1

T

]
≤ C exp

(
−c(lnT )

r
r−2

)
(4.12)

and

P [w(t, e) ≥ T ] ≤ C exp
(
−cT

2r
r−2

)
. (4.13)

Remark 4.5. Proposition 4.4 implies that, for any exponent q > 0, any time t ≥ 0 and any edge
e ∈ E (TL),

E [w(t, e)q] + E
[
w(t, e)−q

]
< ∞.

Proof : We first prove (4.13). By the stationarity of the gradient of the Langevin dynamic ϕL, it is
sufficient to prove the result for t = 0. We first prove the following inclusion of events: there exists
c := c(d, V ) > 0 such that, for any T ≥ 1,

{
w(0, e)2 ≤ c

T p+5

}
⊆

{
sup

t∈[0,T ]
|∇ϕL (t, e)| ≤ RV

}
⋃ sup

t∈[0,T ]
V ′′ (∇ϕL (t, e)) +

∑
e′∩e̸=∅

∣∣V ′ (∇ϕL

(
t, e′
))∣∣ ≥ T

2


⋃ sup

t,t′∈[0,T ]

|t−t′|≤ 1
T

|∇Bt′ (e)−∇Bt (e)| ≥
1

2

 . (4.14)

The inclusion (4.14) states that, in order for w(0, e) to be small, the dynamic ∇ϕL(·, e) has to
stay in the interval [−RV , RV ] for a long time (this behavior is ruled out by Proposition 3.3), or
must behave very irregularly, this condition is represented by the second and third events in the
right-hand side of (4.14), and can only happen with small probability.

We first prove (4.14). To this end, we will prove the following implication: there exists c :=
c(d, V ) > 0 such that, for any T ≥ 1,

sup
t∈[0,T ]

|∇ϕL (t, e)| ≥ RV , sup
t∈[0,T ]

V ′′ (∇ϕL (t, e)) +
∑

e′∩e ̸=∅

∣∣V ′ (∇ϕL

(
t, e′
))∣∣ ≤ T

2

and sup
t,t′∈[0,T ]

|t−t′|≤ 1
T

|∇Bt′ (e)−∇Bt (e)| ≤
1

2
=⇒ w(0, e)2 ≥ c

T p+5
. (4.15)
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We assume that the event in the left-hand side is satisfied and let t ∈ [0, T ] be such that |∇ϕL (t, e)| ≥
RV . Using the definition of the Langevin dynamic (2.6), we see that, for any time s ∈ [t− 1

2T , t+
1
2T ],

|∇ϕL(s, e)−∇ϕL(t, e)| ≤
∣∣∣∣ˆ s

t
∇
(
∇ · V ′(∇ϕL)

)
(s′, e) ds′

∣∣∣∣+ |∇Bt(e)−∇Bs(e)|

≤
ˆ t+ 1

2T

t− 1
2T

∑
e′∩e̸=∅

∣∣V ′ (∇ϕL

(
s′, e′

))∣∣ ds′ + 1

2

≤ 1.

Using the assumption RV ≥ 2 which follows from its definition (2.1), we deduce that, for any
s ∈

[
t− 1

2T , t+
1
2T

]
, |∇ϕL(s, e)| ≥ RV

2 . This implies, for any s ∈
[
t− 1

2T , t+
1
2T

]
,

a(s, e) = V ′′(∇ϕL(s, e)) ≥ 1.

The left-hand side of (4.15) yields the upper bound, for any s ∈ [0, T ],

a(s, e) ≤ T

2
.

A combination of the two previous displays with the definition of w stated in (4.4) and the definition
of k stated in (4.2) implies, for any T ≥ 1,

w(0, e)2 =

ˆ ∞

0
ks

a(s, e) ∧ 1

s−1
∑

e′∩e̸=∅
´ s
0 a(s′, e′) ∨ 1 ds′

ds

≥
ˆ t+ 1

2T

t− 1
2T

ks
a(s, e) ∧ 1

s−1
∑

e′∩e̸=∅
´ s
0 a(s′, e′) ∨ 1 ds′

ds

≥ 2

T

ˆ t+ 1
2T

t− 1
2T

ks

≥ c

T p+5
.

The proof of (4.15), and thus of (4.14) is complete. We next estimate the probabilities of the three
events in the right-hand side of (4.14). For the first one, we use Proposition 3.3 and write, for any
T ≥ 1,

P

(
sup

t∈[0,T ]
|∇ϕL (t, e)| ≤ RV

)
≤ C exp

(
−c (lnT )

r
r−2

)
.

For the second term, we use Assumption 1.1 on the potential V and Proposition 3.2 to obtain that,
for any T ≥ 1,

P

 sup
t∈[0,T ]

∑
e′∩e̸=∅

∣∣V ′ (∇ϕL

(
t, e′
))∣∣+ V ′′ (∇ϕL (t, e)) ≥ T

2


≤ CT exp

(
−cT

r
r−1

)
+ CT exp

(
−cT

r
r−2

)
≤ C exp

(
−cT

r
r−1

)
.
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For the third term, we note that, for any T ≥ 1,

P

 sup
t,t′∈[0,T ]

|t−t′|≤ 1
T

|∇Bt′ (e)−∇Bt (e)| ≥
1

2

 ≤
⌈T 2⌉∑
l=0

P

 sup
t∈[ l−1

T
, l+1

T ]

∣∣∣∇Bt(e)−∇B l
T
(e)
∣∣∣ ≥ 1

4



≤ (T 2 + 2)P

 sup
t∈[0, 2T ]

∣∣∣∇Bt(e)−∇B 1
T
(e)
∣∣∣ ≥ 1

4


≤ (T 2 + 2)P

(
sup
t∈[0,2]

|∇Bt(e)−∇B1(e)| ≥
√
T

4

)
≤ C(T 2 + 2) exp (−cT ) .

Combining the three previous displays with (4.14) yields, for any T ≥ 1,

P
(
w(0, e) ≤ c

T p+5

)
≤ C exp

(
−c (lnT )

r
r−2

)
+ C exp

(
−cT

r
r−1

)
+ C(T 2 + 1) exp (−cT ) (4.16)

≤ C exp
(
−c (lnT )

r
r−2

)
.

This implies (4.12). To prove (4.13), we note that, using the stationarity of the gradient of the
Langevin dynamic and Assumption 1.1, for any t ≥ 0 and any e ∈ E (TL),

P [a(t, e) ≥ T ] ≤ C exp
(
−cT

r
r−2

)
.

We next observe that, from the definitions (4.2) and (4.4),

w(t, e)2 ≤
ˆ ∞

t
ks−ta(s, e) ds and

ˆ ∞

t
ks−t ds =

ˆ ∞

0
ks ds < ∞.

Combining the two previous displays with Lemma 2.12 (and f(t) = kt/
´∞
0 ks ds) completes the

proof of (4.13). □

4.4. Anchored Nash estimate in the torus. In this section, we prove a finite-volume version of the
anchored Nash estimate of Mourrat and Otto (2016, Theorem 2.1) (see Theorem 2.9). The result
is stated below and we emphasize that it only requires a minor adaptation of the proof of Mourrat
and Otto (2016, Theorem 2.1).

Proposition 4.6 (Anchored Nash estimate on the torus). There exists C := C(d) < ∞ such that,
for any function u : TL → R satisfying

∑
x∈TL

u(x) = 0 and any time t ≥ 0,

∥u∥L2(TL)
≤ C

(
Mp′(t)

1
2 ∥w(t, ·)∇u∥L2(TL)

)α
∥u∥β

L1(TL)
∥|x|p/2∗ u∥γ

L2(TL)
,

Proof : In this proof, we fix a time t ≥ 0, identify the torus TL with the box ΛL and extend the
functions u and the moderated environments w periodically to the lattice Zd. The periodicity of
w implies that there exists a constant c := c(d) > 0 such that, using the notation (2.10) for the
maximal function,

cM(w−p′(t, ·))
1
p′ ≤ sup

r∈{1,...,L}
∥w−1(t, ·)∥

Lp′ (Λr)
≤ M(w−p′(t, ·))

1
p′ . (4.17)

We then let η : Zd → R be a cutoff function satisfying

1ΛL
≤ η ≤ 1Λ 4

3L
and |∇η| ≤ C

L
. (4.18)
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We next apply Theorem 2.9 with the finitely supported function ηu : Zd → R and use the lower
bound (4.17) to deduce that

∥ηu∥L2(Zd)

≤ C

((
sup

r∈{1,...,L}
∥w−1(t, ·)∥

Lp′ (Λr)

)
∥w(t, ·)∇(ηu)∥L2(Zd)

)α

∥ηu∥β
L1(Zd)

∥|x|p/2∗ ηu∥γ
L2(Zd)

. (4.19)

Using the periodicity of the function u and the definition of the cutoff function η, we have the upper
bounds, for some C := C(d) < ∞,

∥u∥L2(TL)
≤ ∥ηu∥L2(Zd) , ∥ηu∥L1(Zd) ≤ C ∥u∥L1(TL)

, and ∥|x|p/2∗ ηu∥L2(Zd) ≤ C∥|x|p/2∗ u∥L2(TL).

(4.20)
So that there only remains to treat the term ∥w∇(ηu)∥L2(Zd). Expanding the discrete gradient and
using the properties of the cutoff function η stated in (4.18), we obtain∑

e∈E(Zd)

w(t, e)2∇(ηu)(e)2 ≤ C
∑

e∈E(Zd)

(w(t, e)η(e)∇u(e))2 +
C

L2

∑
e∈E(Λ 4

3L
)

(w(t, e)u(e))2. (4.21)

where we recall the notation η(e) = (η(x) + η(y))/2 and u(e) = (u(x) + u(y))/2 for e = (x, y) ∈
E
(
Zd
)
. Using the periodicity of the functions u and w, we may rewrite the previous inequality as

follows ∑
e∈E(TL)

w(t, e)2∇(ηu)(e)2 ≤ C
∑

e∈E(TL)

(w(t, e)∇u(e))2 +
C

L2

∑
e∈E(TL)

(w(t, e)u(e))2.

We then estimate the second term in the right-hand side. To this end, we will use the Hölder
inequality and the Gagliardo-Nirenberg-Sobolev inequality. We recall the definitions of the four
exponents λd, κd, σd and τd introduced in (2.7), and apply first the Hölder inequality and then
the Gagliardo-Nirenberg-Sobolev inequality (Proposition 2.6 using that

∑
x∈TL

u(x) = 0), then the
Hölder inequality. We deduce that 1

|TL|
∑

e∈E(TL)

(w(t, e)u(e))2

 1
2

≤ ∥w(t, ·)∥Lσd (TL)
∥u∥Lκd (TL)

(4.22)

≤ CL ∥w(t, ·)∥Lσd (TL)
∥∇u∥Lλd (TL)

≤ CL ∥w(t, ·)∥Lσd (TL)

∥∥w−1(t, ·)
∥∥
Lτd (TL)

∥w(t, ·)∇u∥L2(TL)
.

Combining (4.22) with (4.21), we deduce that

∥w(t, ·)∇(ηu)∥L2(Zd) ≤ C(1 + ∥w∥Lσd (TL)
∥w−1(t, ·)∥Lτd (TL)) ∥w(t, ·)∇u∥L2(TL)

.

Combining the previous display with (4.19) and (4.20) completes the proof of Proposition 4.6. □

4.5. Estimate on the L2-norm of the heat kernel. Following Mourrat and Otto (2016, Proof of
Theorem 3.2), we introduce the notation

Et :=
∑
x∈TL

Pa(t, x)
2, Dt =

∑
e∈E(TL)

a(t, e)(∇Pa(t, e))
2 and Nt :=

∑
x∈TL

|x|p∗Pa(t, x)
2,

as well as the moderated quantities

Ēt :=
ˆ ∞

t
Ks−tEs ds, D̄t :=

ˆ ∞

t
Ks−tDs ds and N̄t :=

ˆ ∞

t
Ks−tNs ds.
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We note that the following identities hold

∂tEt = −2Dt, ∂tĒt = −2D̄t, and ∂tN̄t =

ˆ ∞

t
Ks−t∂sNs ds.

In particular the maps E and Ē are decreasing, since E0 = 1, we have Et ≤ 1 for any time t ≥ 0.

4.5.1. A differential inequality for the weighted L2-norm of the heat kernel. Following the proof
of Mourrat and Otto (2016), we will need to prove the following lemma which estimates the value
of N̄0 and the derivative ∂tN̄t. It closely follows Mourrat and Otto (2016, Proposition 3.3) (written
with the function N instead of N̄ ), which is itself based on Gloria et al. (2015, (81)). We recall the
notation for the maximal quantities M0(t), M1(t) and M2 introduced in Section 4.1.

Lemma 4.7. There exists a constant C := C(d) < ∞, such that the following upper bounds hold

N̄0 ≤ CM2 and ∂tN̄t ≤ CM1(t)
2
p (N̄t)

p−2
p E

2
p

t . (4.23)

Proof : We first prove that the term Nt grows at most polynomially fast in the time t. Specifically,
we will prove the upper bound, for any t ≥ 0,

Nt ≤ CM2(1 + t)p−1. (4.24)

Using the definition of Kt in (4.2) (which implies that it decays asymptotically like t 7→ t−p−1), and
integrating the previous inequality, we deduce that

N̄0 =

ˆ ∞

0
KtNt dt ≤ CM2

ˆ ∞

0
(1 + t)−p−1(1 + t)p−1 dt ≤ CM2.

To prove (4.24), we write, for x ∈ TL, ρ(x) = |x|∗. We first differentiate the function Nt and obtain
1

2
∂tNt = −

∑
e∈E(TL)

∇ (ρpPa) (t, e)a(t, e)∇Pa(t, e).

Expanding the discrete gradient, we see that

∇(ρpPa)(t, e) = (∇ρp(e))Pa(t, e) + ρp(e)∇Pa(t, e).

using that there exists a constant C0 := C0(d) < ∞ (as the exponent p depends only on d) such
that |∇ρp(e)| ≤ C0ρ

p−1(e), we deduce that
1

2
∂tNt ≤ −

∑
e∈E(TL)

ρp(e)a(t, e)(∇Pa(t, e))
2 + C0ρ

p−1(e)Pa(t, e)a(t, e) |∇Pa(t, e)| .

The second term in the right-hand side can be estimated using Young’s inequality∑
e∈E(TL)

ρp−1(e)Pa(t, e)a(t, e) |∇Pa(t, e)|

≤ 1

2C0

∑
e∈E(TL)

ρp(e)a(t, e)(∇Pa(t, e))
2 +

C0

2

∑
e∈E(TL)

ρp−2(e)a(t, e)Pa(t, e)
2.

By the Hölder inequality and using that Et ≤ 1, we have that

∑
e∈E(TL)

ρp−2(e)a(t, e)Pa(t, e)
2 ≤

 ∑
e∈E(TL)

ρp−1(e)a(t, e)
p−1
p−2Pa(t, e)

2


p−2
p−1
 ∑

e∈E(TL)

Pa(t, e)
2

 1
p−1

≤ C

 ∑
e∈E(TL)

ρp−1(e)a(t, e)
p−1
p−2Pa(t, e)

2


p−2
p−1

.
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Using the definition of the random variable M2, we obtain

∑
e∈E(TL)

ρp−2(e)a(t, e)Pa(t, e)
2 ≤

 ∑
e∈E(TL)

ρp−1(e)a(t, e)
p−1
p−2Pa(t, e)

2


p−2
p−1

≤ CM2(t)

 ∑
e∈E(TL)

ρp(e)Pa(t, e)
2


p−2
p−1

≤ CM2(t)N
p−2
p−1

t .

Combining the few previous displays, we obtain

∂tNt ≤ CM2(t)N
p−2
p−1

t .

Integrating the inequality and using N0 = 1, we obtain

Nt ≤ CM2(1 + t)p−1.

The proof of the first part of (4.23) is complete. We next prove the inequality on the derivative of
the function N̄t. To this end, we first compute (similarly as before)

1

2
∂tN̄t =

1

2

ˆ ∞

t
Ks−t∂sNs ds

=
1

2

ˆ ∞

t
Ks−t∂sNs ds

= −
ˆ ∞

t
Ks−t

∑
e∈E(TL)

∇ (ρpPa) (s, e)a(s, e)∇Pa(s, e) ds.

Expanding the discrete divergence, we deduce that

1

2
∂tN̄t ≤ −

ˆ ∞

t
Ks−t

∑
e∈E(TL)

ρp(e)a(s, e)(∇Pa(s, e))
2 ds

+ C0

ˆ ∞

t
Ks−t

∑
e∈E(TL)

ρp−1(e)Pa(s, e)a(s, e) |∇Pa(s, e)| ds. (4.25)

The second term in the right-hand side can be estimated using Young’s inequality∑
e∈E(TL)

ρp−1(e)Pa(s, e)a(s, e) |∇Pa(s, e)|

≤ 1

2C0

∑
e∈E(TL)

ρp(e)a(s, e)(∇Pa(s, e))
2 +

C0

2

∑
e∈E(TL)

ρp−2(e)a(s, e)Pa(s, e)
2. (4.26)

We estimate the second term in the right-hand side. We will use the same technique as in the proof
of Proposition 4.6. We first split the sum into dyadic scales. To this end, for n ∈ Z+, we denote by
An := Λ2n+1 \ Λ2n the dyadic annulus and by ln2 the binary logarithm. We then write

∑
e∈E(TL)

ρp−2(e)a(s, e)(Pa(s, e))
2 ≤ C

⌊ln2 L⌋∑
n=0

2(p−2)n
∑

e∈E(An)

a(s, e)Pa(s, e)
2. (4.27)



Localisation and delocalisation for a class of degenerate ∇ϕ-interface models 419

For each integer n ∈ {0, . . . , ⌊ln2N⌋}, we apply the same computation as in (4.22) based on the
Hölder inequality and the Gagliardo-Nirenberg-Sobolev inequality. We obtain, for any ε > 0,

 1

|An|
∑

e∈E(An)

a(s, e)Pa(s, e)
2

 1
2

(4.28)

≤ ∥a(s, ·)1/2∥Lσd (An) ∥Pa(s, ·)∥Lκd (An)

≤ ∥a(s, ·)1/2∥Lσd (An)

(
ε2n ∥∇Pa(s, ·)∥

L
λ′
d (An)

+ Cε
− θd

1−θd ∥Pa(s, ·)∥L2(An)

)
≤ ε2n∥a(s, ·)1/2∥Lσd (An)∥w

−1(s, ·)∥
L
τ ′
d (An)

∥w(s, ·)∇Pa(s, ·)∥L2(An)

+ Cε
− θd

1−θd ∥a(s, ·)1/2∥Lσd (An) ∥Pa(s, ·)∥L2(An)
.

Using the definition of the maximal function M0, the inequality (4.28) can be rewritten as follows

∑
e∈E(An)

a(s, e)Pa(s, e)
2 ≤ M0(s)2

2nε2 ∥w(s, ·)∇Pa(s, ·)∥2L2(An)
+ Cε

− 2θd
1−θd M0(s) ∥Pa(s, ·)∥2L2(An)

.

Using Proposition 4.3, we deduce that

∑
e∈E(An)

a(s, e)Pa(s, e)
2 ≤ CM0(s)2

2nε2
ˆ ∞

s
Ks′−s

∑
e∈E(An)

a(s′, e)(∇Pa(s
′, e))2 ds′

+ Cε
− 2θd

1−θd M0(s)
∑
x∈An

Pa(s, x)
2.

Using that c2n ≤ ρ(x) ≤ C2n+1 for any x ∈ An and summing over the integers n ∈ {0, . . . , ⌊ln2 L⌋},
we deduce that

∑
e∈E(TL)

ρp−2(e)a(s, e)Pa(s, e)
2 ≤ CM0(s)ε

2

ˆ ∞

s
Ks′−s

∑
e∈E(TL)

ρ(e)pa(s′, e)(∇Pa(s
′, e))2 ds

+ Cε
− 2θd

1−θd M0(s)
∑
x∈TL

ρp−2(x)Pa(s, x)
2.

We next choose ε = 1/(C0

√
CM0(s)) where C0 is the constant appearing in (4.25) and C is the

one appearing in the previous display. We obtain

∑
e∈E(TL)

ρp−2(e)a(s, e)Pa(s, e)
2

≤ 1

C2
0

ˆ ∞

s
Ks′−s

∑
e∈E(TL)

ρ(e)pa(s′, e)(∇Pa(s
′, e))2 ds+ CM0(t)

1
1−θd

∑
x∈TL

ρp−2(x)(Pa(s, x))
2.
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Multiplying the previous inequality by the weight function K and integrating over the time variable
yields, for any t ≥ 0,
ˆ ∞

t
Ks−t

∑
e∈E(TL)

ρp−2(e)a(s, e)Pa(s, e)
2 ds

≤ 1

C2
0

ˆ ∞

t
Ks−t

ˆ ∞

s
Ks′−s

∑
e∈E(TL)

ρ(e)pa(s′, e)(∇Pa(s
′, e))2 ds ds′

+ C

ˆ ∞

t
Ks−tM0(s)

1
1−θd

∑
x∈TL

ρp−2(x)Pa(s, x)
2 ds. (4.29)

The first term in the right-hand side can be simplified using the inequality (4.3) as follows
ˆ ∞

t
Ks−t

ˆ ∞

s
Ks′−s

∑
e∈E(TL)

ρ(e)pa(s′, e′)(∇Pa(s
′, e))2 ds ds′

≤
ˆ ∞

t
Ks−t

∑
e∈E(TL)

ρ(e)pa(s, e)(∇Pa(s, e))
2 ds.

The second term in the right-hand side of (4.29) can be estimated using the Hölder inequality as
followsˆ ∞

t
Ks−tM0(s)

1
1−θd

∑
x∈TL

ρp−2(x)Pa(s, x)
2 ds

≤

ˆ ∞

t
Ks−t

∑
x∈TL

ρp(x)Pa(s, x)
2 ds


p−2
p
ˆ ∞

t
Ks−tM0(s)

p
2(1−θd)

∑
x∈TL

Pa(s, x)
2 ds

 2
p

.

Using that the energy Et =
∑

x∈TL
Pa(t, x)

2 is decreasing together with the definition of the random
variable M1(t), we deduce that

ˆ ∞

t
Ks−tM0(s)

p
2(1−θd)

∑
x∈TL

Pa(s, x)
2 ds ≤

(ˆ ∞

t
Ks−tM0(s)

p
2(1−θd) ds

)
Et ≤ M1(t)Et.

A combination of the few previous displays shows that
ˆ ∞

t
Ks−t

∑
e∈E(TL)

ρp−2(e)a(s, e)Pa(s, e)
2 ds

≤ 1

C2
0

ˆ ∞

t
Ks−t

∑
e∈E(TL)

ρ(e)pa(s, e)(∇Pa(s, e))
2 ds+ CM1(t)

2
p (N̄t)

p−2
p E

2
p

t .

Combining the previous inequality with (4.25) and (4.26) completes the proof of Lemma 4.7. □

4.5.2. An upper bound on the L2-norm of the heat kernel. We next deduce from Lemma 4.7 the
energy upper bound for the L2(TL)-norm of the heat kernel.

Proposition 4.8. There exists a constant C := C(d) < ∞ such that, for any t ≥ 0,

Et ≤
CM

(1 + t)
d
2

.
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Proof : By Lemma 4.7, we have the inequality

∂tN̄t ≤ CM1(t)
2
p (N̄t)

p−2
p E

2
p

t . (4.30)

We define the quantity

Λt := sup
s≤t

(1 + s)
d
2 Es,

and note that, for any t ≥ 0, Λt ≥ 1. We first observe that (4.30) can be rewritten using the
definition Λt as follows: for every t ≥ 0,

∂tN̄
2
p

t ≤ CM1(t)
2
pΛ

2
p

t (1 + t)
− d

p . (4.31)

Integrating the previous inequality, recalling the definition of the maximal quantity M1 and using
that Λt is increasing in t, we obtain, for any time t ≥ 2,

N̄
2
p

t − N̄
2
p

t/2 =

ˆ t

t/2
∂sN̄s ds (4.32)

≤ CΛ
2
p

t

(
1 +

t

2

)− d
p
ˆ t

t/2
M1(s)

2
p ds

≤ CΛ
2
p

t (1 + t)
− d

p

ˆ t

0
M1(s)

2
p ds

≤ CM
2
p

1 Λ
2
p

t (1 + t)
1− d

p .

Iterating the previous inequality (using that the map t 7→ Λt is increasing), treating the small
values of t (between 0 and 1) using the inequality (4.31), and using the bound on N̄0 provided by
Lemma 4.7, we obtain that, for any t ≥ 0,

N̄t ≤ CM1Λt(1 + t)
p−d
2 + CM2 (4.33)

≤ C (M1 + M2) Λt(1 + t)
p−d
2 .

Applying the anchored Nash estimate, and using that the L1-norm of the heat kernel Pa is bounded
(see (2.5)), we obtain, for any t ≥ 0,

Et ≤ C
(
Mp′(t) ∥w(t, ·)∇Pa(t, ·)∥2L2(TL)

)α
N γ

t .

Multiplying the previous inequality by the weight function K and integrating over time, we deduce
that, for any t ≥ 0,

Ēt ≤
ˆ ∞

t
Ks−t

(
Mp′(s) ∥w(s, ·)∇Pa(s, ·)∥2L2(TL)

)α
N γ

s ds. (4.34)

Applying the Hölder inequality (recalling that α+ β + γ = 1), we deduce that, for any t ≥ 0,
ˆ ∞

t
Ks−t

(
Mp′(t) ∥w(s, ·)∇Pa(s, ·)∥2L2(TL)

)α
N γ

s ds

≤
(ˆ ∞

t
Ks−tMp′(s)

α
β ds

)β (ˆ ∞

t
Ks−t ∥w(s, ·)∇Pa(s, ·)∥2L2(TL)

ds

)α(ˆ ∞

t
Ks−tNs ds

)γ

.

(4.35)

The first term in the right-hand side is by definition smaller than M3(t). We then estimate the sec-
ond term in the right-hand side. To this end, we use Proposition 4.3 together with the bound (4.3).
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We obtain, for any t ≥ 0,ˆ ∞

t
Ks−t ∥w(s, ·)∇Pa(s, ·)∥2L2(TL)

ds ≤ C

ˆ ∞

t
Ks−t

ˆ ∞

s
Ks′−s∥a(s′, ·)1/2∇Pa(s

′, ·)∥2L2(TL)
ds′ds

≤ C

ˆ ∞

t
Ks−t∥a(s, ·)1/2∇Pa(s, ·)∥2L2(TL)

ds

≤ CD̄t.

Using the identity ∂tĒt = −2D̄t, we may rewrite the inequality (4.35) as followsˆ ∞

t
Ks−t

(
Mp′(t) ∥w(s, ·)∇Pa(s, ·)∥2L2(TL)

)α
N γ

s ds ≤ CM3(t)(−∂tĒt)αN̄ γ
t .

Combining the previous inequality with (4.34) and using the inequality (4.33), we deduce that

Ēt ≤ CM3(t)(−∂tĒt)αN̄ γ
t ≤ CM3(t)(M1 + M2)

γ(−∂tĒt)αΛγ
t (1 + t)

(p−d)γ
2 ,

which can be rewritten as(
−∂tĒt

)
Ē− 1

α
t ≥ cM3(t)

− 1
α (M1 + M2)

− γ
αΛ

− γ
α

t (1 + t)−
(p−d)γ

2α . (4.36)

Using that t 7→ Λt is increasing and that p > d, we deduce that

Ē1− 1
α

t ≥ cΛ
− γ

α
t (1 + t)−

(p−d)γ
2α (M1 + M2)

− γ
α

ˆ t

0
M− 1

α
3 (s) ds.

Using the identity (2.13) and the definitions of the random variables M3 and M , we deduce that,
for any t ≥ 1,

(1 + t)
d
2 Ēt ≤ CΛ

γ
1−α

t M 1− γ
1−α .

Using that Et is decreasing in t and the definition of Ēt, we have the inequality(ˆ 1

0
Ks ds

)
Et+1 ≤ Ēt.

Using that t 7→ Λt is increasing, we obtain, for any t ≥ 1,

(1 + t)
d
2 Et+1 ≤ CM 1− γ

1−αΛ
γ

1−α

t+1 .

Combining the previous inequality with the bound Et ≤ 1, the observation that Λt is increasing and
larger than 1, we deduce that, for any t ≥ 0,

Λt ≤ CM 1− γ
1−αΛ

γ
1−α

t =⇒ Λt ≤ CM .

The proof of Proposition 4.8 is complete. □

4.5.3. A refined upper bound on L2-norm on the heat kernel. This section is devoted to the proof
of Theorem 4.2 building upon Proposition 4.8.

Proof of Theorem 4.2: We let C2 ≥ 1 be a large constant whose value will be selected later in the
argument and shall depend only on d, and define

C1 := C
2α

dβ+pγ

2 M
2γ

(dβ+pγ)

3 and C0 := 2M
γ
α
3 C1. (4.37)

We then define the three quantities

Ht := e
1

C0L
2

´ t
0 M4(s)−1 dsEt, H̄t := e

1
C0L

2

´ t
0 M4(s)−1 dsĒt and Ξt := sup

s≤t
(1 + s)

d
2Hs.

We next prove the following upper bound

Ēt ≤ CM4(t)L
2(−∂tĒt). (4.38)
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To prove the inequality (4.38), we first use that the function Et is decreasing and write

Ēt =
ˆ ∞

t
Ks−t ∥Pa(s, ·)∥2L2(TL)

ds

=

ˆ t+1

t
Ks−t ∥Pa(s, ·)∥2L2(TL)

ds+

ˆ ∞

t+1
Ks−t ∥Pa(s, ·)∥2L2(TL)

ds

≤
ˆ t+1

t
Ks−t ∥Pa(s, ·)∥2L2(TL)

ds+ ∥Pa(t+ 1, ·)∥2L2(TL)

ˆ ∞

1
Ks ds.

Using a second time that Et is decreasing, that the ratio
´∞
1 Ks ds/

´ 1
0 Ks ds is a finite constant

depending only on the parameter d, and the definition of the random variable M4(t), we deduce
that

Ēt ≤

(
1 +

´∞
1 Ks ds´ 1
0 Ks ds

)ˆ t+1

t
Ks−t ∥Pa(s, ·)∥2L2(TL)

ds

≤ CM4(t)

ˆ t+1

t
Ks−t∥w−1 (s, ·) ∥−2

Ld(TL)
∥Pa(s, ·)∥2L2(TL)

ds

≤ CM4(t)

ˆ ∞

t
Ks−t∥w−1 (s, ·) ∥−2

Ld(TL)
∥Pa(s, ·)∥2L2(TL)

ds.

We next use the Gagliardo-Nirenberg-Sobolev inequality (using that
∑

x∈TL
Pa(s, x) = 0), then the

Hölder inequality. We obtain

Ēt ≤ CM4(t)

ˆ ∞

t
Ks−t∥w−1 (s, ·) ∥−2

Ld(TL)
∥Pa(s, ·)∥2L2(TL)

ds

≤ CM4(t)

ˆ ∞

t
Ks−t∥w−1 (s, ·) ∥−2

Ld(TL)
∥∇Pa(s, ·)∥2

L
2d
d+2 (TL)

ds

≤ CM4(t)L
2

ˆ ∞

t
Ks−t ∥w(s, ·)∇Pa(s, ·)∥2L2(TL)

ds.

Using Proposition 4.3 together with the bound (4.3), we deduce that

Ēt ≤ CM4(t)L
2

ˆ ∞

t
Ks−t∥a(s, ·)1/2∇Pa(s, ·)∥2L2(TL)

ds (4.39)

≤ CM4(t)L
2(−∂tĒt).

The proof of the inequality (4.38) is complete. We impose here a first condition on the constant C2

and choose it sufficiently large so that the constant C2 is larger than 2C, where C is the constant
appearing in the right-hand side of (4.38). We thus deduce that(

−∂tH̄t

)
H̄− 1

α
t = e

(1− 1
α)

1
C0L

2

´ t
0 M4(s)−1 ds

(
− 1

C0M4(t)L2
Ēt − ∂tĒt

)
Ē− 1

α
t (4.40)

≥ 1

2
e
(1− 1

α)
1

C0L
2

´ t
0 M4(s)−1 ds (−∂tĒt

)
Ē− 1

α
t .

Applying the anchored Nash inequality, we have

Et ≤ C ∥Pa(t, ·)∥2βL1(TL)

(
Mp′(t) ∥w(t, ·)∇Pa(t, ·)∥2L2(TL)

)α
N γ

t .

We then estimate the first and third terms in the right hand side by using the Cauchy-Schwarz
inequality and the bound ρ(x) ≤ CL, which is valid on the torus since its diameter is of order L.
We obtain

∥Pa(t, ·)∥2L1(TL)
≤ CLdEt and Nt ≤ CLpEt.
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Combining the two previous displays, we may write

Et ≤ C
(
LdEt

)β (
Mp′(t) ∥w(t, ·)∇u(t, ·)∥2L2(TL)

)α
(LpEt)γ .

Performing the same computation as in (4.35) and using that the function Et is decreasing, we
deduce that

Ēt ≤ CM3(t)L
dβ+pγEβ+γ

t (−∂tĒt)α.
Using the definition of Ξt, we further deduce that

Ēt ≤ CM3(t)L
dβ+pγ(1 + t)−

(β+γ)d
2 e

− β+γ

C0L
2

´ t
0 M4(s)−1 ds

Ξβ+γ
t (−∂tĒt)α.

Rearranging the previous inequality, we obtain

(−∂tĒt)Ē
− 1

α
t ≥ cM3(t)

− 1
αL− dβ+pγ

α (1 + t)
(β+γ)d

2α e
β+γ

αC0L
2

´ t
0 M4(s)−1 ds

Ξ
−β+γ

α
t .

Combining the previous inequality with (4.40) and noting that 1− 1
α = −β+γ

α (since α+β+γ = 1),
we can rewrite the previous inequality as follows

∂tH̄
1− 1

α
t ≥ cM3(t)

− 1
αL− dβ+pγ

α (1 + t)
(β+γ)d

2α Ξ
−β+γ

α
t

≥ cM3(t)
− 1

α

(
1 + t

L2

) dβ+pγ
2α

(1 + t)−
γ(p−d)

2α Ξ
−β+γ

α
t .

Using the definition of the constant C1, we have, for any t ≥ C1L
2,

∂tH̄
1− 1

α
t ≥ cC2M

γ
α
3 M3(t)

− 1
α (1 + t)−

γ(p−d)
2α Ξ

−β+γ
α

t .

Integrating the previous inequality and using that Ξt is increasing in t, we deduce that, for any
t ≥ C1L

2,

H̄1− 1
α

t − H̄1− 1
α

C1L2 ≥ cC2Ξ
−β+γ

α
t (1 + t)−

γ(p−d)
2α M

γ
α
3

ˆ t

C1L2

M3(s)
− 1

α ds.

We next recall the definition of the constant C0 introduced in (4.37), and lower bound the term in
the right-hand side for t ≥ C0L

2. To this end, we use the definition of the random variable M3 and
the lower bound M3 ≥ 1, and obtain, for any t ≥ C0L

2,

M
γ
α
3

t

ˆ t

C1L2

M3(s)
− 1

α ds =
M

γ
α
3

t

ˆ t

0
M3(s)

− 1
α ds− M

γ
α
3

t

ˆ C1L2

0
M3(s)

− 1
α ds

≥ 1− C1L
2M

γ
α
3

t

≥ 1

2
.

A combination of the two previous displays yields, for any t ≥ C0L
2,

H̄1− 1
α

t ≥ H̄1− 1
α

t − H̄1− 1
α

C1L2 ≥ cC2Ξ
−β+γ

α
t (1 + t)1−

γ(p−d)
2α = cC2Ξ

1− 1
α

t (1 + t)1−
γ(p−d)

2α .

We finally remove the averaging from the previous inequality. Using that the map Et is decreasing,
we have the estimate (ˆ 1

0
Ks ds

)
Et+1 ≤ Ēt,

and combining the previous inequality with the bound M−1
4 (t) ≤ 1 (which follows from the definition

of M4), we deduce that (ˆ 1

0
Ks ds

)
e−1/(C0L2)Ht+1 ≤ H̄t.
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Combining the few previous displays and using that t 7→ Ξt is increasing, we deduce that, for any
t ≥ C0L

2 + 1,

H1− 1
α

t ≥ cC2Ξ
1− 1

α
t (1 + t)1−

γ(p−d)
2α .

We next impose a second condition on the constant C2 and assume that cC2 ≥ 2
1
α
−1. This leads to

the bound, for any t ≥ C0L
2 + 1,

(1 + t)
d
2Ht ≤

1

2
Ξt.

We next apply Proposition 4.8 and the bound M4(t)
−1 ≤ 1 and obtain

sup
t∈[0,C0L2+1]

(1 + t)
d
2Ht = sup

t∈[0,C0L2+1]

e
1

C0L
2

´ t
0 M4(s)−1 ds

(1 + t)
d
2 Et

≤ e
C0L

2+1

C0L
2 sup

t∈[0,C0L2+1]

(1 + t)
d
2 Et

≤ CM .

Combining the two previous displays, we deduce that, for any t ≥ 0,

Ξt ≤
1

2
Ξt + CM ,

and thus, for any t ≥ 0,
Ξt ≤ CM .

The proof of Theorem 4.2 is complete. □

4.6. On diagonal estimate for the heat kernel. In this section, we deduce from Theorem 4.2 the
on-diagonal upper bound on the heat-kernel Pa. In order to state the result, we fix a time t ∈ [0,∞)
and define the reversed environment

a(t)(t′, e) := a(t− t′, e).

The environment a(t) is only defined for the times t′ ∈ [0, t]. This is the only relevant property for
the statement below; but we note that we may extend its definition to all times so as to make a(t)

a stationary process by for instance extending the definition of the Langevin dynamic to negative
times.

Since the Langevin dynamic is stationary and reversible with respect to the Gibbs measure µTL
,

the processes a and a(t) have the same law. Let us denote by M (t) the random variable M associated
with the environment a(t). Since the processes a and a(t) have the same law, the random variables
M and M (t) also have the same law.

Proposition 4.9 (On-diagonal heat kernel decay). There exists a constant C := C(d) < ∞ such
that, for any time t ≥ 0,

Pa(t, 0) ≤
C
√

MM (t)

(1 + t)
d
2

exp

(
− t

CM ′L2

)
.

Proof : Using the convolution property of the heat kernel and the Cauchy-Schwarz inequality, we
obtain

Pa(t, 0) =
∑
x∈TL

Pa(t, 0; t/2, x)Pa (t/2, x) ≤

∑
x∈TL

Pa(t, 0; t/2, x)
2

 1
2
∑

x∈TL

Pa(t/2, x)
2

 1
2

. (4.41)
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To estimate the first term in the right-hand side, we use the following identity between the heat
kernel and the heat kernel under the reversed environment (see Mourrat and Otto (2016, Lemma
4.5))

Pa(t, 0; t/2, x) = Pa(t) (t/2, x) .

Applying Proposition 4.8 with the environment a(t) (and thus the random variable M (t)), we deduce
that ∑

x∈TL

Pa(t, 0; t/2, x)
2 ≤ CM (t)

(1 + t)
d
2

.

The second term in the right-hand side of (4.41) can be estimated using Theorem 4.2. We obtain∑
x∈TL

Pa(t/2, x)
2 ≤ CM

(1 + t)
d
2

exp

(
− t

CM ′L2

)
.

Combining the two previous displays with (4.41) completes the proof of Proposition 4.9.
□

4.7. Helffer-Sjöstrand representation formula and proof of Theorem 1.2. We are then able to com-
plete the proof of the localization and delocalization estimate for the random surface stated in
Theorem 1.2 by combining Proposition 4.9 and the Helffer-Sjöstrand representation formula.

Proof of Theorem 1.2: By the Helffer-Sjöstrand representation formula, we have the identity

VarTL
[ϕ(0)] = E

[ˆ ∞

0
Pa (t, 0) dt

]
.

Applying Proposition 4.9 and using the inequality exp(−t) ≤ 1/t for t > 0, we see that
ˆ ∞

0
Pa (t, 0) dt ≤

ˆ ∞

0

C
√

MM ( t
2
)

(1 + t)
d
2

exp

(
− t

CM ′L2

)
dt

≤
ˆ L2

0

C
√

MM ( t
2
)

(1 + t)
d
2

dt+

ˆ ∞

L2

C
√

MM ( t
2
)

(1 + t)
d
2

M ′L2

t
dt.

Taking the expectation in the previous inequality, and using that all the moments of the ran-
dom variables M , M (t) and M ′ are finite (in particular the random variables

√
MM ( t

2
) and√

MM ( t
2
)M ′ have a finite expectation whose value can be bounded uniformly in t) completes the

proof of Theorem 1.2. □
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