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Abstract. We consider the two-opinion voter model on a regular random graph with n vertices
and degree d ≥ 3. It is known that consensus is reached on time scale n and that on this time
scale the volume of the set of vertices with one opinion evolves as a Fisher-Wright diffusion. We
are interested in the evolution of the number of discordant edges (i.e., edges linking vertices with
different opinions), which can be thought as the perimeter of the set of vertices with one opinion,
and is the key observable capturing how consensus is reached. We show that if initially the two
opinions are drawn independently from a Bernoulli distribution with parameter u ∈ (0, 1), then on
time scale 1 the fraction of discordant edges decreases and stabilises to a value that depends on
d and u, and is related to the meeting time of two random walks on an infinite tree of degree d
starting from two neighbouring vertices. Moreover, we show that on time scale n the fraction of
discordant edges moves away from the constant plateau and converges to zero in an exponential
fashion. Our proofs exploit the classical dual system of coalescing random walks and use ideas from
Cooper et al. (2010) built on the so-called First Visit Time Lemma. We further introduce a novel
technique to derive concentration properties from weak-dependence of coalescing random walks on
moderate time scales.

1. Model, literature and results

Random processes on random graphs constitute a research area that poses many challenges. In
the past decade, considerable progress has been made in understanding how the geometry of the
graph affects the evolution of the process. In terms of the choice of graph, the focus has been on
the Erdös-Rényi random graph, the configuration model, the preferential attachment model, and
the exponential random graph, either directed or undirected, and in regimes ranging from sparse
to dense. In terms of the choice of process, the focus has been on percolation, random walk, the
stochastic Ising model, the contact process, and the voter model. What makes the area particularly
interesting is that there is a delicate interplay between the size of the graph and the time scale
on which the process is observed. For short times, the process behaves as if it lives on an infinite
graph. For instance, many sparse graphs are locally tree-like and therefore the process behaves as
if it evolves on an infinite Galton-Watson tree. For long times, however, the process sees that the
graph is finite and exhibits a crossover in its behaviour. For instance, the voter model, which will
be the process of interest in the present paper, eventually reaches consensus on any finite connected
graph, but the time at which it does depends on the size of the graph. Many such instances can
be captured under the name of finite-systems scheme, i.e., the challenge to identify how a finite
truncation of a stochastic system behaves as both the time and the truncation level tend to infinity,
properly tuned together (Cox and Greven (1990), Cox and Greven (1994)).

Random processes on random graphs are part of the larger research area of random processes in
random environment, where the environment selects the random transition probabilities or transition
rates. Another name is that of interacting particle systems in random environment. For random
process on lattices a more or less complete theory has been developed over the past four decades.
The challenge is to extend this patrimony to random graphs. In the present paper we focus on
the voter model on the regular random graph in the sparse regime. We track how the fraction of
discordant edges evolves over time in the limit as the size of the graph tends to infinity, and identify
its scaling behaviour on three time scales: short, moderate, and long.

Voter models were introduced and studied in Clifford and Sudbury (1973) and Holley and Liggett
(1975). Voter models and their consensus times on finite graphs were analysed in Donnelly and
Welsh (1983) and Cox (1989). The behaviour of voter models on random networks depends on the
realisation of the network: Sood et al. (2008) made various predictions for the expected consensus
time on heterogeneous random networks (including power-law random graphs). More recently,
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Fernley and Ortgiese (2023) study the asymptotics of the consensus time on inhomogeneous random
graph models like the Chung-Lu model and the Norros-Reitu model. The expected consensus time
for regular random graphs was studied in Cooper et al. (2010), in the discrete-time synchronous
setting. As far as we know, there is no literature on the evolution of the number of discordant edges
on random graphs.

1.1. Model and background. Given a connected graph G = (V,E), the voter model is the Markov
process (ηt)t≥0 on state space {0, 1}V , with ηt = {ηt(x) : x ∈ V }, where ηt(x) represents the
opinion at time t of vertex x. Each vertex is equipped with an independent exponential clock that
rings at rate one. After each ring of the clock, the vertex selects one of the neighbouring vertices
uniformly at random and copies its opinion. (A formal description of this interacting particle system,
its generator, and how its dynamics can be built up via the so-called graphical representation is
postponed to Section 2.)

As mentioned previously, while the voter dynamics has been widely studied on periodic lattices,
periodic tori, and complete graphs, only recently its evolution on general connected graphs has been
considered. In particular, as discussed below, if the underlying (random or non-random) graph has
sufficiently nice properties, then it is possible to identify the time scale on which consensus takes
place, and to determine how the process behaves on this time scale. In the present paper we specialise
to the d-regular random graph ensemble with d ≥ 3. In particular, we consider the sequence of
random graphs (Gd,n(ω))n∈N, with law denoted by P, where each element Gd,n(ω) = (V,E(ω)) is a
regular random graph of degree d ≥ 3, consisting of |V | = n vertices and |E(ω)| = m = dn/2 edges,
uniformly sampled from the set of simple d-regular graphs with n vertices (to guarantee that dn is
even, for d odd we restrict to n even). These graphs are locally tree-like and have good expansion
properties (see Section 2.3), lying within the realm of so-called mean-field geometries (see Section
1.2). Therefore the voter model on the d-regular random graph ensemble can be investigated in
some depth, and refined statements clarifying how consensus is reached can be derived. In the
present paper we analyse the evolution of the density of discordances. In other words, denoting the
set of discordant edges at time t by

Dn
t =

{
e = (x, y) ∈ E : ηt(x) ̸= ηt(y)

}
,

we will study the fraction of discordant edges at time t ≥ 0 given by

Dn
t =

|Dn
t |

m
(1.1)

in the limit as n → ∞.
Note that on the complete graph the number of discordant edges is the product of the numbers

of vertices carrying the two respective opinions. This is no longer the case on other geometries.
Our results below for regular random graphs imply that homogenisation occurs on time scale n, i.e.,
the product property emerges on the consensus time scale as the graph size grows, while different
behaviour is observed on shorter time scales.

1.2. Voter model on mean-field geometries.

• Voter model. A classical model of relevance in population genetics is the voter model on the
complete graph, which is referred to as the Moran model or the Fisher-Wright model (depending on
whether continuous-time asynchronous or discrete-time parallel updates are considered). The states
{0, 1} represent two different alleles, each coding for a specific genetic trait, and the n vertices of
the complete graph Kn represent individuals in a population of size n. In the limit as n → ∞, the
consensus time (to be interpreted as the extinction time of one of the two traits) is known to scale
linearly in n. Furthermore, on time scale n the fraction of the individuals of, say, type 1 converges
as a process to the so-called Fisher-Wright diffusion. These results can be derived by analysing the
backward genealogical progeny, which amounts to studying n coalescing random walks evolving on
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the same graph, which in turn is related to the so-called Kingman coalescent (we refer to Durrett
(2008) for details). In Section 2 we give a precise description of this duality on arbitrary graphs.

These by now classical results have been recently extended to general mean-field geometries under
two main conditions that can be roughly described as follows: (I) the stationary distribution of the
random walk on the random graph must be not too concentrated ; (II) fast-mixing in the sense of an
asymptotically vanishing ratio between the mixing time of a single random walk and the expected
meeting time of two independent random walks starting from stationarity.

• Dual process. For what concerns the dual process of coalescing random walks, Oliveira (2013)
computes the distributional limit of the coalescence time under the above mentioned assumptions.
In particular, it follows from Oliveira (2013, Theorem 1.2) that

lim
n→∞

E[τcoal]

E[τπ⊗πmeet]
= 2, (1.2)

where τcoal is the coalescence time of n random walks, each starting from a different vertex, and
τπ⊗πmeet is the meeting time of two random walks independently starting from stationarity. This offers
insight into how the dual voter model behaves in mean-field like geometries. In particular, (1.2)
allows us to translate the question of how long it takes for the voter model to achieve consensus to the
question of controlling the meeting time of two random walks starting from stationarity. Indeed,
as a consequence of this duality, it is immediate that the n-coalescence time τcoal stochastically
dominates the above mentioned consensus time, defined as

τcons = inf{t ≥ 0: ηt(x) = ηt(y), for all x, y ∈ V }. (1.3)

For what concerns the convergence to a Fisher-Wright diffusion after proper scaling, the recent work
by Chen et al. (2016) considers the fraction of vertices in state 1 at time t in the voter model,

Bn
t =

1

n

∑
x∈V

ηt(x), t ≥ 0, (1.4)

under the above mentioned mean-field conditions (see Chen et al. (2016, Theorem 2.2) for a precise
formulation). The main result states that, when time is sped up by a factor γn := E[τπ⊗πmeet], the
rescaled density of vertices in state 1, i.e., (Bn

γnt)t≥0, converges as n → ∞ to a Fisher-Wright
diffusion in the Skorokhod topology.

• Regular random graphs as mean-field geometries. Let us next discuss the implications of the
results mentioned above within the specific framework of d-regular random graphs. The latter is
a geometric setting that satisfies the aforementioned mean-field conditions with high probability
with respect to the law P of the environment. Indeed, it is well known that a typical realisation of
the graph is connected with high probability as soon as d ≥ 3. Due to the undirectedness of the
edges, the corresponding stationary distribution is uniform over the vertex set. Furthermore, with
high probability under P, the mixing time is of order log n (see Lubetzky and Sly (2010)), while the
expected meeting time (see Chen (2021)) satisfies

E[τπ⊗πmeet]

n

P−→ 1

2θd

with

θd =
d− 2

d− 1
. (1.5)

Hence, by applying (1.2) to this setting, we find that

E[τcoal]

n

P−→ 1

θd
.
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Moreover, for the voter model starting from independent Bernoulli opinions with parameter u ∈
(0, 1), by Chen et al. (2016) we also have that the fraction of opinions of type 1, i.e., Bn

t converges,
after time is sped up by a factor n, to the Fisher-Wright diffusion (B̄s)s≥0 given by the SDE

dB̄s =
√

2θdB̄s(1− B̄s) dWs, B̄0 = u, (1.6)

where (Ws)s≥0 denotes the standard Brownian motion (with generator 1
2∆).

In conclusion, on d-regular ensembles consensus is reached on average on time scale n and, as far
as the law is concerned, on the time scale of the consensus the process can be well approximated
by the Fisher-Wright diffusion in (1.6). Interestingly, as pointed out by Chen et al. (2016), the
diffusion coefficient in (1.6) (which is referred to as the genetic variability in a population genetics
context) can be related to the fraction of discordant edges. This will be the starting point of our
investigation, which is devoted to a deeper understanding of the evolution of the voter model beyond
the consensus time scale n, via a detailed analysis of the discordant edges. It is worth to notice
that the number of discordant edges can be interpreted as the size of the interface between the two
opinions, or, in other words, as the perimeter of the set of vertices having one of the two opinions.
For this reason, tracking the fraction of discordant edges is interesting because it captures how
consensus is reached via a gradual merging of the connected components with a single opinion. In
a sense, the latter problem could be framed in the wide context of dynamic percolation: removing
the discordant edges from the graph induces a certain number of connected components, each made
by vertices having the same opinion. Nevertheless, in this work we will focus only on the analysis
of the number of discordant edges and we leave the analysis of its consequences on the topology of
the set of vertices with a given opinion for possible future work.

1.3. Main theorems: evolution of discordances and stabilisation before consensus. Before we present
our main results, we introduce some notation. The symbols P and E will be reserved for the
probability space of the d-regular random graph. The abbreviation whp refers to events that occur
with probability P tending to 1 as n → ∞.

Thanks to the duality between the n-vertex voter model and a system of n-coalescing random
walks (to be described in more detail in Section 2), it is sufficient to look at a collection of 2m
Poisson processes, each associated with an (oriented) edge of the graph, together with the initial
assignment of the opinions. In this way, we can use the very same source of randomness to sample
the evolution of the voter model, the dual system of coalescing random walks, and a system of n
independent random walks, each starting at a different vertex of the graph. For this reason we adopt
the symbols P and E to refer to any of these three stochastic processes evolving on a quenched
realisation of the graph. To distinguish between the random walks and the voter model, in the latter
case we use a sub-index to refer to the initial distribution of the process. For instance, Pξ denotes
the law of the voter model starting from the configuration η0 = ξ ∈ {0, 1}V . Similarly, when we
write Pu, we refer to the voter model initialised by a product of Bernoulli random variables of mean
u ∈ (0, 1), or to the solution of (1.6). On the other hand, when considering a system of two or more
independent or coalescing random walks, we simply use the symbols P and E, and the starting
positions of the random walks will be clear from the context (with the exception of Section 5, where
an ad-hoc notation will be introduced). Finally, we write Ber(u) for a Bernoulli distribution of
parameter u.

We now present our main results. The first theorem identifies whp the first order asymptotics of
the expected number of discordant edges on all time scales.

Theorem 1.1 (Expected density of discordances at all time scales). Fix d ≥ 3, and let θd be as
in (1.5). Fix u ∈ (0, 1) and, for n ≥ d + 1, consider the voter model on a d-regular random graph
Gd,n(ω) with initial distribution [Ber(u)]⊗V . Then, for any non-negative sequence of times (tn)n∈N,
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such that the limit of tn and tn/n exist in [0,∞], the density of discordant edges in (1.1) satisfies∣∣∣Eu

[
Dn

tn

]
− 2u(1− u)fd(tn)e

−2θd tn
n

∣∣∣ P−→ 0, (1.7)

where

fd(t) = PTd(τx,ymeet > t) =

∞∑
κ=0

e−2t
(2t)κ

κ!

∑
s>⌊κ−1

2
⌋

(
2s

s

)
1

s+ 1

(1
d

)s+1(d− 1

d

)s
, (1.8)

with PTd denoting the law of two independent random walks on the infinite d-regular tree Td starting
from the endpoints of an edge e = (x, y) in Td.

Note that the limit is different depending on the time scale we are looking at:
• (Short time scale) For tn = Θ(1), the first order of the above expectation is given by
2u(1− u)fd(tn), and the behaviour is governed by the non-decreasing function captured in
(1.8), representing the meeting time of two random walks starting from adjacent vertices on
an infinite d-regular tree. See Figure 1.1.

• (Moderate time scale) For tn = ω(1) ∩ o(n), the discordances stabilise at a limiting
plateau 2u(1 − u)fd(∞) characterised by the probability that two adjacent random walks
on an infinite tree never meet, i.e., fd(∞) = θd.

• (Long time scale) For tn = sn, s ∈ (0,∞), the dual system coalesces and the voter model
reaches consensus. The evolution of the density of opinions is approximated by the Fisher-
Wright diffusion in (1.6), and the expected density of discordances is characterised by the
mean of the genetic variability Eu

[
B̄s(1− B̄s)

]
= 2u(1− u)θde

−2θds. See Figure 1.2.
• (Consensus) For tn = ω(n), the system has reached consensus and the limiting formula in

(1.7) degenerates to zero.

0 1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5

Figure 1.1. The two plots show a single simulation of the voter model on a regular
random graph of size n = 1000, degree d = 3 and initial density u = 0.5. Left :
In blue the density of 1-opinions up to consensus (τcons ≈ 2.6 × 103), in orange the
density of discordant edges up to consensus. Right : In blue the density of discordant
edges up to time t = 5 (corresponding to a zoom-in of the plot on the left), in red
the function t 7→ 2u(1− u)fd(t).

The second theorem characterises the process Dn in (1.1) beyond its expectation. In particular,
we show that on time scale o(n) the density of discordances concentrates around the expectation,
while on time scale Θ(n) it behaves as a deterministic function of the Fisher-Wright diffusion.

Theorem 1.2 (Beyond expectation). Consider the voter model on a d-regular random graph Gd,n(ω)
with d ≥ 3.
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Figure 1.2. Scatter plot in blue for the same simulation as in Figure 1.1: the
density of discordant edges versus the density of the minority opinion. The piece
sticking out corresponds to short times. The curve in red is x 7→ x(1− x).

(1) Concentration before coalescence. Let tn be such that tn/n → 0. Then, for every ε > 0,

sup
ξ∈{0,1}V

Pξ

(∣∣Dn
tn −Eξ[Dn

tn ]
∣∣ > ε

) P−→ 0.

(2) Discordance on consensus time scale. Let tn be such that tn/n → s ∈ (0,∞). Then,
for every u ∈ (0, 1),

sup
x∈[0,1]

∣∣Pu

(
Dn

tn ≤ x
)
−Pu

(
2θdB̄2sθd(1− B̄2sθd) ≤ x

)∣∣ P−→ 0,

where (B̄s)s≥0 is the solution of (1.6).

The third and last theorem is a strengthening of Theorem 1.2.1. More precisely, we show that as
soon as we focus on the process for times that are polynomially smaller than the consensus time,
the concentration around the mean is actually uniform in time.

Theorem 1.3 (Uniform concentration on moderate time scale). Consider the voter model on a
d-regular random graph Gd,n(ω). Then, for every u ∈ (0, 1) and δ, ε > 0,

Pu

(
sup

0≤t≤n1−δ

∣∣Dn
t −Eu[Dn

t ]
∣∣ > ε

)
P−→ 0.

1.4. Open problems. We point out two open problems.
• Theorem 1.3 says that the concentration of the fraction of discordant edges is uniform up

to times n1−δ, for any δ > 0. We expect that Theorem 1.3 can be strengthened to the
statement that for every tn such that tn/n → 0 and every Cn → ∞,

P
( ∣∣Dn

tn −E[Dn
tn ]
∣∣ > Cn

√
tn/n

) P−→ 0. (1.9)

Note that, thanks to Azuma inequality, the concentration in (1.9) holds for the quantity Bn
t

in (1.4), because this is a martingale. Note further that the concentration in Theorem 1.3
follows from (1.9) and a union bound. For now, (1.9) is beyond our reach.

• We expect that Theorems 1.1–1.3 can be extended to non-regular sparse random graphs.
We do not have a conjecture on how the function fd and the diffusion constant θd modify
in this more general setting.
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1.5. Description of techniques. All our proofs are based on the classical notion of duality between
the voter model and a collection of coalescent random walks. In particular, on time scales o(log n),
i.e., below the typical distance between two vertices, the analysis can be carried out by coupling
a system of two random walks, starting at adjacent vertices and evolving on the d-regular random
graph, with two random walks on the d-regular tree. Because the tree is regular, the distance of
the two random walks can be viewed as the distance to the origin of a single biased random walk
on N0. Note that the same does not hold when the tree is not regular.

Clearly, in order to analyse the process on time scales Θ(log n), i.e., on the typical distance
between two vertices, the coupling argument must be combined with a finer control of the two
random walks on the regular random graph. To this aim, we exploit the strategy developed in
Cooper et al. (2010), which uses the so-called First Visit Time Lemma (see Theorem 2.2). Such
control, together with a first-moment argument, is enough to compute the evolution of the expected
number of discordant on every time scale.

On the other hand, in order to obtain the concentration result in Theorem 1.3, a much deeper
analysis is required. Roughly, in order to have proper control on the correlations between the edges
constituting Dn

t , we must analyse a dual system of random walks whose number grows with n.
Exploiting a classical result by Aldous and Brown (1992), we derive upper bounds for the number
of meetings of a poly-logarithmic number of independent random walks evolving on the random
graph for a time n1−o(1). Such a bound will be exploited in the forthcoming Proposition 5.1 to
deduce an upper bound for the deviation from the mean that is exponentially small in n and
uniform in time. This upper bound can in turn be translated to the result in Theorem 1.3 by taking
a union bound.

1.6. Outline. Section 2 lists definitions and notations, recalls the graphical construction and duality,
states a key lemma, and collects a few basic facts about regular random graphs and random walks on
such geometries. Theorems 1.1–1.3 are proved in Sections 3–5, respectively. Appendix A contains
two auxiliary facts for càdlàg processes.

2. Notation and preparation

In this section we properly introduce the voter model on general graphs, and collect some results
that will be needed along the way. In Section 2.1 we introduce the graphical construction for the
voter model and the associated dual process, known as coalescing random walks. Section 2.2 contains
the First Visit Time Lemma, which has been introduced by Cooper and Frieze (2005). Section 2.3
collects some useful facts about the geometry of d-regular random graphs and the behaviour of
random walks on them. In what follows we drop the upper index n to lighten the notation.

2.1. The voter model and coalescing random walks. Let G(V,E) be a connected (possibly infinite
and locally-finite) undirected graph. For each x ∈ V , let dx denote the degree of vertex x. The voter
model on G is defined as the interacting particle system with state space {0, 1}V and generator L
acting on local functions f : V → R as

(Lf)(η) =
∑
x∈V

∑
y∼x

1

dx

(
f(ηx←y)− f(η)

)
, η ∈ {0, 1}V ,

where ηx←y is obtained from η as

ηx←y(z) =

{
η(y), if z = x,

η(z), otherwise.
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In this system, agents (represented by the vertices of G) start with binary opinions and update
these at rate one by copying the opinion of a uniformly chosen neighbour. For t ≥ 0 and x ∈ V ,
denote by ηt(x) ∈ {0, 1} the opinion of vertex x at time t.

When G is finite and regular, i.e., dx = d for every x ∈ V , the number of vertices that have
opinion 1,

Bt =
∑
x∈V

ηt(x),

is a martingale. Since Bt is bounded by |V |, it converges, which implies that the voter model
eventually fixates on a constant configuration, composed entirely of 0’s or 1’s, denoted by 0̄ and 1̄,
respectively. Define the consensus time of G as the stopping time

τcons = inf
{
t ≥ 0: ηt ∈ {0̄, 1̄}

}
.

Let us next introduce the graphical construction of the voter model. Associate to every oriented
edge e⃗ = (x, y) a Poisson point process Pe⃗ on R with intensity 1/dx. When a clock from e⃗ = (x, y)
rings, vertex x receives the opinion of vertex y. This constriction allows us to track the joint
evolution of all the opinions via time duality. In order to determine ηt(x), the state of a vertex x
at time t, we start from the space time point (x, t), and go backwards in time, crossing every clock
ring from an edge that reaches the current position of the path (see Figure 2.1).

t

−2 −1 0 1 2

Figure 2.1. The graphical construction of the voter model on the integer lattice Z.
The red path allows us to determine that ηt(1) is equal to η0(2).

The process that tracks the origin of the opinions can be viewed as a collection of coalescing
random walks. To define this process we assume that G is finite and consider a family {(Xv

t )t≥0}v∈V
of independent rate-one continuous-time random walks such that Xv

0 = v almost surely. In what
follows we identify V with [n] = {1, . . . , n}. When two walks meet at the same vertex they coalesce
into a single walk (this can be seen immediately by the graphical representation in 2.1.)

Because G is finite, any two independent random walks meet in finite time. Consequently,
τcoal, the first time at which all the random walks sit at the same vertex called the coalescence
time, satisfies τcoal < ∞ almost surely. In particular, the above mentioned duality implies that
τcons ≤ τcoal, and therefore any upper bound on the coalescence time immediately yields an upper
bound on the consensus time of the voter model.

Given x, y ∈ [n], let
τx,ymeet = inf{t ≥ 0: Xx

t = Xy
t } (2.1)

denote the meeting time of two independent continuous-time random walks starting from x and y,
respectively. More generally, if the two random walks are initialised randomly and independently
according to two distributions µ and ν on [n], then we denote their meeting time by τµ⊗νmeet. We
note that the extension to infinite graphs G follows from standard estimates on the probability that
the process can be approximated by a finite dynamics in finite portions of space during a bounded
amount of time.
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2.2. The First Visit Time Lemma. In this section we state the First Visit Time Lemma (FVTL),
which was introduced by Cooper and Frieze (2005) and recently simplified by Manzo et al. (2021).
This lemma contains estimates on the time a random walk takes to reach a distinguished site when
starting from the stationary distribution.

Remark 2.1. Since the FVTL is defined in discrete time, in what follows it will be easier to derive
the results in discrete time and then translate them to continuous time. For this reason, when
considering two random walks in discrete time, where at each step the random walk that moves is
selected uniformly at random, we use the notation Pdt to refer to their law.

Theorem 2.2 (First Visit Time Lemma; Manzo et al. (2021)). Consider a sequence ((X
(N)
t )t≥0)N∈N

of ergodic Markov chains, each living on a state space ΩN of size N with transition matrix QN and
stationary distribution µN , and a sequence of target states (xN )N∈N, with xN ∈ ΩN . Define the
mixing time

T
(N)
mix = inf

{
t ≥ 0: max

yN ,zN∈ΩN

|Qt
N (yN , zN )− µN (zN )| ≤ 1

N3

}
, (2.2)

and assume that
(1) limN→∞N2minyN∈ΩN

µN (yN ) = ∞.
(2) limN→∞ T

(N)
mix maxyN∈ΩN

µN (yN ) = 0.
(3) There exists a unique quasi-stationary distribution associated to xN , i.e., for all N large

enough the sub-matrix [QN ]xN in which the row and column indexed by xN have been erased
is irreducible. See also Quattropani and Sau (2023, Remark 3.2 and Section 4.4).

Then there exists a sequence (λ
(N)
xN )N∈N such that, for every sequence (T (N))N∈N such that T (N) ≥

T
(N)
mix and such that (2) is satisfied with T (N) instead of T (N)

mix ,

lim
N→∞

∣∣∣∣∣∣ λ
(N)
xN

µN (xN )
RN (xN )

− 1

∣∣∣∣∣∣ = 0, RN (xN ) :=
T (N)∑
s=0

Qs
N (xN , xN ),

and

lim
N→∞

sup
t≥0

∣∣∣∣∣PrµN (τxN > t)

(1− λ
(N)
xN )t

− 1

∣∣∣∣∣ = 0,

with PrµN the path measure of the Markov chain starting from µN , and τxN is the hitting time of
xN ∈ ΩN

τxN := inf{t ≥ 0: X
(N)
t = xN}.

In words, the FVTL says that, under the assumptions stated, the hitting time of a state xN is
well approximated by a geometric random variable with mean RN (x)

µN (x) .

2.3. The geometry of regular random graphs. In this section we collect a number of definitions and
asymptotic results about the typical geometry of regular random graphs. We start by introducing
notation and conclude by stating some basic facts regarding typical d-regular random graphs.

Given a connected graph G = (V,E) and two vertices x, y ∈ V , we denote by dist(x, y) the
distance between x and y, given by the number of edges of the shortest path joining x and y. For
a vertex x ∈ V and a radius h ≥ 1, we denote by Bx(h) the ball of radius h centered at x, seen as
a subgraph of G. The tree excess of a graph quantifies how far away from a tree a given connected
graph is.

Definition 2.3 (Tree excess). Given a connected graph G = (V,E), the tree excess of G, denoted
by tx(G), is the minimum number of edges that must be removed from G in order to obtain a tree.
This can also be written as

tx(G) = |E| − |V | − 1.
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Next, we introduce the notion of locally tree-like vertices and edges.

Definition 2.4 (Locally tree-like vertex). Given a graph G = (V,E), we say that a vertex x ∈ V
is locally tree-like up to distance ℓ ≥ 1, denoted by x ∈ LTL(ℓ), if the subgraph induced by the
vertices at distance at most ℓ from x, i.e., Bx(ℓ), is a tree.

Definition 2.5 (Locally tree-like edge). Given a graph G = (V,E) and an edge e ∈ E, we say that
e = {x, y} is locally tree-like up to distance ℓ ≥ 1, denoted by e ∈ LTLE(ℓ), if the subgraph induced
by the vertices at distance at most ℓ from x or y, i.e., Bx(ℓ) ∪By(ℓ), after removal of the edge e,
is composed of two disjoint trees of depth at most ℓ.

For d ≥ 3 and n > d such that nd is even, there exists at least one graph with n vertices and
constant degree equal to d. In particular, for this range of parameters the d-regular random graph
of size n, drawn from the uniform distribution on the set of all graphs with n vertices and constant
degree equal to d, is well defined. Denote by m = dn/2 the number of edges of this random graph.
The following proposition collects properties of the d-regular random graph that will be needed in
the rest of the paper.

Proposition 2.6 (Geometry of regular random graphs and random walks; Lubetzky and Sly
(2010)). Fix d ≥ 3, and let Gd,n(ω) denote the d-regular random graph of size n. Then, whp,

(1) G is connected.
(2) For every x ∈ [n], tx(Bx(

1
5 logd n)) ≤ 1.

(3) |LTLE(15 logd n)| = m− o(n).
(4) There exists a constant C = Cd > 1 such that, for t ≥ C log n and every ε > 0,

dTV(t) := max
x∈[n]

∥P t(x, ·)− π∥TV ≤ ε, (2.3)

where P t(x, ·) denotes the law at time t of the random walk starting from x. In particular,
lim
n→∞

dTV(tn) = 0 for tn such that lim
n→∞

(log n)/tn = 0.

3. Computation of the expectation

In this section we prove Theorem 1.1, in particular, we provide a whp first-order estimate of the
expected density of discordant edges at time t = tn, for every choice of the sequence (tn)n∈N. In
Section 3.1 we collect some basic results for the voter model on the infinite d-regular tree Td, the
local approximation of the d-regular random graph. We show that the density of discordant edges
at time t on Td with Ber(u) initialisation behaves as 2u(1 − u)(1 − fd(t)). This will be done by
exploiting duality: we reduce the problem to the analysis of a pair of coalescing random walks
starting at the two extremes of an edge of the tree. In Section 3.2 we show that a classical coupling
argument suffices to show that the approximation holds for every sequence t = (tn)n∈N such that
t/ log n → 0. When t starts to become comparable with the typical distance of the graph, i.e.,
tn = Θ(log n), the coupling argument fails and we need a refined analysis of the process to compute
the expected density. This scenario will be handled in Section 3.3. The idea is to track a pair
of random walks starting from the two extremes of a typical (hence, locally tree-like) edge up to
their first meeting. Using the First Visit Time Lemma, we show that, under the event that the two
random walks do not meet after a short time, the time of their first meeting is well approximated
by exponential random variable with rate θ−1d n.

3.1. Discordant edges on the regular tree. Let Td denote the infinite d-regular tree with d ≥ 3. Our
first lemma concerns the probability that two independent random walks, starting at distance one
from each other, do not meet within a time t. Recall that PTd denotes the law of two independent
random walks starting from the end vertices of an edge in Td.



442 L. Avena et al.

Lemma 3.1 (Meeting on a regular tree). Let x, y ∈ Td with dist(x, y) = 1. Then

1− fd(t) = PTd
(
τx,ymeet ≤ t

)
=

∞∑
κ=0

e−2t
(2t)κ

κ!

⌊κ−1
2
⌋∑

s=0

(
2s

s

)
1

s+ 1

(1
d

)s+1(d− 1

d

)s
. (3.1)

From this it follows that

PTd(τx,ymeet = ∞) =
d− 2

d− 1
= θd. (3.2)

Proof : Let (Xt)t≥0 and (Yt)t≥0 be two independent continuous-time random walks starting from
x ∼ y, respectively. Put Zt = dist(Xt, Yt) and note that (Zt)t≥0 is a continuous-time biased random
walk on N0 that starts at 1, jumps at rate 2, and has jump distribution given by

p(z, z + 1) = 1− p(z, z − 1) =
d− 1

d
, z ∈ N. (3.3)

The claim in (3.1) follows from the construction of the random walk (Zt)t≥0 via a Poisson process of
rate 2 for the jump times, together with a skeleton chain given by the discrete-time biased random
walk with jump distribution given by (3.3), and explicit expressions for hitting times of discrete-time
random walks based on path-counting arguments, see Durrett (2019, Theorem 5.7.7).

To get (3.2) it is enough to note that, by the standard Gambler’s ruin argument,

PTd
(
τx,ymeet < ∞

)
= Pr

(
Zt = 0 for some t ≥ 0 | Z0 = 1

)
=

p(0,−1)

p(0, 1)
=

1

d− 1
,

from which the claim follows. □

Remark 3.2. Note that (3.2) can be derived from (3.1) by direct computation. Indeed, clearly
1 − fd(0) = 0. The generating function c(x) =

∑∞
k=0Ckx

k for the Catalan numbers Ck =
(
2k
k

)
1

k+1

solves the quadratic equation c(x) = 1 + xc(x)2. Since C0 = 1, we have

c(x) =
1−

√
1− 4x

2x
.

It follows that

1− fd(∞) =
1

d
c

(
d− 1

d2

)
=

1

d

1− d−2
d

2 d−1
d2

=
1

d− 1
= 1− θd.

Indeed, the first equality follows from the fact that in the limit as t → ∞ the terms in (3.1) with
κ → ∞ become dominant.

Lemma 3.3 (Density of discordant edges). Consider the voter model on Td with initial density u.
Then, for any given edge e and any time t ≥ 0,

PTdu
(
e ∈ Dt

)
= 2u(1− u)fd(t),

where fd(t) is given by (3.1).

Proof : Put e = {x, y}. Note that in order to have e ∈ Dt, by duality, the (backward) random walks
starting from x and y at time t do not coalesce before time 0 and end up at vertices with distinct
initial opinions. The initial opinions are independent of the trajectories of these random walks. The
claim follows by noting that fd(t) is the probability that the two random walks do not meet in time
t, and 2u(1− u) is the probability that two distinct vertices have different initial opinions. □
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3.2. Expectation for small times. We start this section with a general bound that does not require
the graph G to be random nor the size of G to grow to infinity.

Lemma 3.4 (Discordant LTLEs). Let G = (V,E) be any d-regular graph and let e = {x, y} ∈ E
be LTLE(ℓ) for some ℓ. Consider the voter model on G with initial density u. Then, for any time
T > 0,

sup
t∈[0,T ]

|Pu(e ∈ Dt)− 2u(1− u)fd(t)| ≤
4T

ℓ
.

Proof : Note first that the term 2u(1 − u)fd(t) corresponds to the probability that a given edge in
Td is discordant at time t. In particular, if we consider the dual system with coalescing random
walks, then the probabilities we are interested in are the same, provided the random walks do not
leave the tree-like neighbourhood of e. Therefore consider the event

ET =
{
the number of jumps the random walks perform before time T is bounded by ℓ

}
,

and observe that, by the Markov inequality,

P
(
Ec
T

)
= PTd

(
Ec
T

)
≤ PTd

(
X ≥ ℓ

)
≤ 2T

ℓ
,

where X ∼ Poisson(2T ) stochastically dominates the number of jumps that both random walks
make up to time T . By construction, for t ≤ T we can write

Pu

(
e ∈ Dt, ET

)
= PTdu

(
e ∈ Dt, ET

)
,

from which we can estimate

|Pu(e ∈ Dt)− 2u(1− u)fd(t)| =
∣∣∣Pu

(
e ∈ Dt

)
−PTdu

(
e ∈ Dt

)∣∣∣
≤
∣∣∣Pu

(
e ∈ Dt, ET

)
−PTdu

(
e ∈ Dt, ET

)∣∣∣+ 2PTd
(
Ec
T

)
≤ 4T

ℓ
,

which settles the claim. □

Proposition 3.5 (Short time average). Consider the voter model on a regular random graph Gd,n(ω)
with initial density u ∈ (0, 1). Then, for any time tn satisfying tn/ log n → 0,

|Eu[Dtn ]− 2u(1− u)fd(tn)|
P−→ 0. (3.4)

Proof : Note that for every realisation of G,

Eu[|Dtn |] =
∑
e∈E

Pu(e ∈ Dn
tn).

Call E⋆ ⊂ E the set of LTLE
(
1
5 logd n

)
edges. Then, by Lemma 3.4 and our assumption on tn,∣∣∣Eu[Dtn ]− 2u(1− u)fd(tn)
∣∣ ≤ ∣∣∣ 1

m

∑
e∈E

Pu

(
e ∈ Dt

)
− 2u(1− u)fd(tn)

∣∣∣
≤ 1

m

∑
e∈E⋆

4tn
1
5 logd n

+
1

m
|Ec

⋆|
P−→ 0,

where the last convergence follows from Proposition 2.6(iii). □
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X

Y

Figure 3.1. In a general d-regular graph the potential existence of cycles of length
3 allows the distance between the two random walks to remain constant after 1 step.
In the picture, if Y moves along the blue arrow, then it remains at distance 1 to X.

3.3. Expectation for large times. In this section we show how the behaviour in Proposition 3.5 can
be extended up to the linear time scale. Clearly, we need a different argument, since we can no
longer assume that the dual random walks starting at the extremes of a locally tree-like edge do
not exit their neighbourhood of size 1

5 logd(n). In order to proceed, we adapt the arguments in
Cooper et al. (2010, Lemmas 17 and 20) to our framework, which will constitute a crucial tool for
our analysis. In what follows, we fix

σn = ⌈log logn⌉2. (3.5)

The following lemma says that whp for every pair of starting vertices that are more than σn apart
the probability that the two random walks meet before time log3 n is exponentially small in σn.

Lemma 3.6 (Meeting time of distant random walks). Let Gd,n(ω) be a regular random graph. Then
there exists a constant c0 > 0 such that

1

{
max

x,y : dist(x,y)>σn

P
(
τx,ymeet ≤ log3 n

)
≤ e−c0σn

}
P−→ 1.

Proof : The proof comes in several steps.

1. Consider two independent random walks (Xt)t≥0 and (Yt)t≥0 that start from x and y, respectively.
The number of steps each random walk performs before time log3 n has distribution Poisson(log3 n).
In particular, Markov’s inequality with exponential moments implies that, for λ = log log n,

P

(
Xt or Yt performs more than log4 n steps before time log3 n

)
≤ 2e−λ log4 n exp

{
(eλ − 1) log3 n

}
= 2 exp

{
(eλ − 1) log3 n− λ log4 n

}
= 2 exp

{
(log n− 1− log log n log n) log3 n

}
≤ e−c0σn ,

provided n is large enough. Therefore, we may consider the case where X and Y perform discrete-
time random walks in which at every step one of the random walks is selected uniformly at random
to move. We then just need to verify that whp

Pdt
(
τx,ymeet ≤ 2 log4 n

)
≤ e−c0σn ,

uniformly over the pairs x and y that are at least σn apart, where Pdt denotes the law of the two
discrete-time random walks.

2. Let Zt denote the graph distance of Xt and Yt at time t. Note that Z0 ≥ σn, and Zt+1 − Zt ∈
{−1, 0, 1} for every t ≥ 0 (the case Zt+1 − Zt = 0 corresponds to jumps like the one in Figure 3.1).
This implies that the random walks cannot meet before time σn. Recall from Proposition 2.6 that
whp

tx(Bv(2σn)) ≤ 1, for all v ∈ V.
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It is now enough to show that

qn = Pdt
(
τx,ymeet ∈

{
σn, . . . , 2 log

4 n
})

≤ 4 log8 ne−2c0σn ≤ e−c0σn ,

for some positive c0 and all n large enough. Put ρ = max{t ≤ τx,ymeet : Zt ≥ σn}. We rewrite the
probability of interest as

qn ≤ 2 log4 n max
r≤2 log4 n

Pdt
(
τx,ymeet ≤ 2 log4 n, ρ = r

)
.

We aim at providing bounds on the above probability that are uniform in r ≤ 2 log4 n. To that end,
consider the ball of radius 2σn around Xρ, which by assumption satisfies

tx(BXρ(2σn)) ≤ 1.

We distinguish between two cases: (1) the quantity above is 0 (and thus BXρ(2σn) is a tree); (2)
the tree excess of BXρ(2σn) is 1.

3. First, consider the case when BXρ(2σn) is a tree. Call p the unique path joining Xρ and Yρ
within the tree, and recall that |p| = dist(Xρ, Yρ) = σn. Let us argue that at least one of the random
walks does σn/2 steps along p. Indeed, suppose first that for all t ∈ {ρ, . . . , τx,ymeet} neither Xt nor Yt
leaves the tree BXρ(2σn). In order for the two random walks to meet, they need to jointly traverse
the path p. Therefore, at least one of the two walks has to traverse half of the path p. If, on the
other hand, one of the two random walks leaves BXρ(2σn), then the claim is trivial: indeed, the
other walk must go through the path p in order to have consistency with the event {ρ = r}. Here,
note that when we say that the first/second random walk must have made σn/2 steps along p, we
do not require that these steps are made consecutively. Nonetheless, under {ρ = r}, requiring that
at least one of the two random walks makes σn/2 steps along p within time 2 log4 n is equivalent to
requiring that

τ̂r = inf{u ≥ r : dist(Xu, Yr) ∧ dist(Xr, Yu) ≤ σn
2 }

satisfies τ̂r ≤ 2 log4 n. (Note that because τ̂r is smaller than the exit time of BXρ(2σn), we can
couple the two random walks with the random walks in Td.) We can now bound, uniformly in
r ≤ 2 log4 n,

Pdt
(
τx,ymeet ≤ 2 log4 n, ρ = r

)
≤ Pdt

(
τ̂r ≤ 2 log4 n, ρ = r

)
≤ 2Pr

(
τabs ≤ 2 log4 n

)
,

where τabs is the absorption time at the origin of a biased random walk on Z, starting at σn/2 and
stepping to the right with probability d−1

d and to the left with probability 1
d . Hence, by the classical

Gambler’s ruin argument,

Pr
(
τabs ≤ 2 log4 n

)
≤ Pr

(
τabs < ∞

)
=
( 1

d− 1

)σn/2
≤ 2−

σn
2 . (3.6)

The claim follows by choosing c0 ≤ log 2
5 .

4. Next, consider the case when tx(BXρ(2σn)) = 1. Then there are at most two paths joining Yρ
to Xρ in BXρ(2σn) (see Figures 3.2–3.3). Call these two paths p = (z0 = Yρ, z1, . . . , zσn = Xρ) and
p̃ = (z̃0 = Yρ, z̃1, . . . , z̃ℓ = Xρ), with σn ≤ ℓ ≤ 3σn+1 (the case ℓ = σn is exemplified in Figure 3.3).
Let κ denote the index of the last vertex such that the paths coincide, i.e.,

κ = sup
{
i ≤ σn : zi = z̃i

}
.

We split the two paths as p = (pκ, p
′) and p̃ = (pκ, p

′′), where pκ = (z0, z1, . . . , zκ). If κ ≥ 1
2σn, then

the argument from the previous paragraph can be easily adapted as follows. We first note that, in
order for the random walks to meet, either Y or X must reach z 1

2
κ. If Y is the random walk that

reaches this vertex, then the comparison with the biased random walk is done in the same way as
before. If the random walk that reaches z 1

2
κ is X, then we still need to account for the time it
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Xρ

Yρ

Xρ

Yρ

Xρ

Yρ

Xρ

Yρ

zκ

Figure 3.2. A sketch of the 4 possible ways the two paths p and p̃ described below
can look like. In the first picture, κ = σn. In the second and third picture, κ = 0.
In the last picture, κ is a non trivial value in the interval (0, σn).

Yρ

Xρ

Yρ

Xρ

Figure 3.3. On the left |p̃| = |p|+ 1, on the right |p̃| = |p|.

takes X to arrive at zκ, which can be taken care of via a union bound, yielding an additional factor
2 log4 n in the calculation. More precisely, consider the random variables

τ̃1r = inf{u ≥ r : Xu = z 1
2
κ}, τ̃2r = inf{u ≥ r : Yu = z 1

2
κ}.

We can bound

Pdt
(
τx,ymeet ≤ 2 log4 n, ρ = r

)
≤ Pdt

(
τ̃1r ∧ τ̃2r ≤ 2 log4 n, ρ = r

)
≤ Pdt

(
τ̃1r ≤ 2 log4 n, ρ = r

)
+Pdt

(
τ̃2r ≤ 2 log4 n, ρ = r

)
≤ Pr

(
τabs ≤ 2 log4 n

)
+

2 log4 n∑
i=1

Pr
(
τabs ≤ log4 n− i

)
≤ (log4 n+ 1)2−

σn
4 .

For the bound in the second line, the first term follows an analogous reasoning as in the tree case.
To handle the second term, we first apply union bounds on the first time the random walk X reaches
zκ, and the result follows from the strong Markov property and the same argument as in the tree
case. Conversely, if κ ≤ 1

2σn, then both p′ and p′′ are long paths (of size at least 1
2σn). Once

again, in order for the random walks to meet, at least one of them must traverse at least half of
one of the paths p′ or p′′ (because after the removal of zk the connected component of Xρ is a tree).
The argument follows the same lines as in the previous case, and we refrain from spelling out the
details. □
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Proposition 3.7 (Exponential scaling of meeting time starting in stationarity). Let Gd,n(ω) be a
regular random graph. There exists a sequence of random variables Θd = (Θ

(n)
d )n∈N such that

sup
t≥0

∣∣∣∣∣∣∣∣
P(τπ⊗πmeet > t)

exp

(
−2 Θ

(n)
d t

n

) − 1

∣∣∣∣∣∣∣∣
P−→ 0 , (3.7)

and
Θ

(n)
d

P−→ θ
(n)
d =

d− 2

d− 1
.

Proof : We show that for the discrete-time version of the process, in which at each time step one
randomly chosen walk performs a jump, we have

sup
t≥0

∣∣∣∣∣∣∣
Pdt(τπ⊗πmeet > t)(

1− Θd
n

)t − 1

∣∣∣∣∣∣∣ P−→ 0. (3.8)

The claim in (3.7) follows by Poissonisation. For the discrete-time process we can exploit the full
power of the FVTL in Theorem 2.2. The proof comes in several steps.

1. Consider the multi-graph Γ with vertex set VΓ = {(x, y) : x, y ∈ [n], x ̸= y} ∪ {∆}, where ∆ is
the merge of the vertices on the diagonal that retains the edges, i.e., the edge set EΓ is such that

((x, y), (v, w)) ∈ EΓ if and only if

{
x = v and (y, w) ∈ E,

y = w and (x, v) ∈ E,

and
(∆, (v, w)) ∈ EΓ if and only if (v, w) ∈ E,

with each edge adjacent to ∆ having multiplicity 2. Roughly, Γ is such that every vertex except ∆
has degree 2d, while ∆ has degree 4m = 2dn. It follows that the sum of the degrees in Γ equals
2mΓ = 2dn(n − 1) + 2dn = 2dn2, and that the number of vertices is given by N = n2 − n + 1.
Throughout the proof, Pr denotes the distribution of the simple random walk on Γ, and PΓ denotes
the associated transition matrix. The stationary distribution πΓ of this random walk is given by

πΓ(∆) =
1

n
,

while, for all (x, y) with x ̸= y,

πΓ(x, y) =
1

n2
.

To understand the reason underlying the definition of the multi-graph Γ, note that

Pdt(τπ⊗πmeet > t) = Pr(τπΓ
∆ > t), t ≥ 0. (3.9)

2. Concerning the mixing time in (2.2), it is not hard to show that we can choose Tmix ≤ log2 n. For

completeness, we provide a full proof by adapting the proof of Cooper et al. (2010, Lemma 12) to
our asynchronous setting. As shown in Friedman (2008), the second largest eigenvalue of P , denoted
by λ⋆, is bounded away from 1 whp, from which it follows via Levin and Peres (2017, Corollary
12.13) that the same holds for the matrix P⊗2 =

1
2(P ⊗ I + I ⊗ P ). Write λ⊗2 (respectively, λΓ) to

denote the spectral gap of the matrix P⊗2 (respectively, PΓ). By Levin and Peres (2017, Theorem
13.10) and with the abbreviation

Φ⊗2 = min
S⊂V 2 : π⊗2(S)≤ 1

2

∑
x∈S π⊗2(x)

∑
y∈Sc P⊗2(x,y)

π⊗2(S)
(3.10)
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for the conductance of the product chain, we know that

1
2Φ

2
⊗2 ≤ 1− λ⊗2 ≤ 2Φ⊗2. (3.11)

Therefore Φ⊗2 is bounded away from 0 whp. By the construction of Γ, we must have Φ⊗2 ≤ ΦΓ,
where the latter is the conductance of the Markov chain PΓ. Indeed, the graph Γ is constructed
from G×G by contracting some vertices and retaining the edges. Moreover, again by (3.11) to the
Markov chain PΓ,

1− λΓ ≥ 1
2Φ

2
Γ ≥ 1

2Φ
2
⊗2 > 0. (3.12)

Hence, we deduce that λΓ must be bounded away from 1 whp. Finally, by Levin and Peres (2017,
Theorem 12.4), we conclude that O(log n) steps suffice to get (2.2).

3. Thus, Assumptions (1) and (3) in Theorem 2.2 are satisfied whp with N = n2−n+1, QN = PΓ,
µN = πΓ. Moreover, choosing x = ∆ we easily check the whp existence of a unique quasi-stationary
distribution, thanks to the fact that d ≥ 3, G is connected, and the two random walks move
asynchronously. In order to use the FVTL, we are left to compute the expected number of returns
to ∆ before time Tmix ≤ log2 n, starting at ∆. For t ≥ 1, put

Rt(∆) =

t∑
s=0

Pr
(
Xs = ∆ | X0 = ∆

)
.

We will show that, for T = log2 n,

RT (∆)
P−→ 1 +

1− θd
θd

=
1

θd
=

d− 1

d− 2
. (3.13)

The term 1 comes from the fact that the random walk starts at ∆.

4. We start by giving the heuristics of the proof. Call (x, y) the vertex of Γ visited at time 1. By
Proposition 2.6(ii), the probability that the edge e = (x, y) ∈ E is LTLE(15 logd n

)
is 1 − o(1). On

this event, the probability that there will be a second visit to ∆ before Tmix is upper bounded by
1

d−1 . A simple combination of these arguments yields an upper bound. As for the lower bound, the
probability that the random walk on Γ starting at (x, y) reaches a vertex (v, w) with distG(v, w) ≥ σn
before reaching ∆ is θd+ o(1). Once at (v, w), the probability that the random walk visits ∆ before
Tmix is o(1). Hence, up to o(1) corrections, RTmix(∆) can be estimated by the expectation of a
geometric random variable with parameter θd+ o(1), representing the first excursion of the random
walk that hits (v, w) with distG(v, w) ≥ σn before returning to ∆.

5. With this heuristics in mind, we are ready to provide the proof of (3.13). We will do so by first
assuming that

Pr
(
1
5 logd n ≤ τ+∆ ≤ T | X0 = ∆

) P−→ 0 (3.14)

and

Pr
(
τ+∆ ≤ 1

5 logd n | X0 = ∆
) P−→ 1− θd. (3.15)
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Write

RT (∆) = 1 +
T∑

s=1

Pr
(
Xs = ∆ | X0 = ∆

)
= 1 +

T∑
r=1

T∑
s=r

Pr
(
Xs = ∆, τ+∆ = r | X0 = ∆

)
= 1 +

T∑
r=1

T∑
s=r

Pr
(
Xs = ∆ | Xr = ∆

)
Pr
(
τ+∆ = r | X0 = ∆

)
= 1 +

T∑
r=1

Pr
(
τ+∆ = r | X0 = ∆

) T−r∑
s=0

Pr
(
Xs = ∆ | X0 = ∆

)
= 1 +

T∑
r=1

Pr
(
τ+∆ = r | X0 = ∆

)
RT−r(∆).

(3.16)

To establish the upper bound in (3.13), observe that (3.16) yields

RT (∆) ≤ 1 + Pr
(
τ+∆ ≤ T | X0 = ∆

)
RT (∆),

which yields

RT (∆) ≤
(
1− Pr

(
τ+∆ ≤ T | X0 = ∆

))−1
,

and the claim follows by combining (3.14) and (3.15).

6. To establish the lower bound in (3.13), observe that (3.16) yields

RT (∆) ≥ 1 +

1
5 logd n∑
r=1

Pr
(
τ+∆ = r | X0 = ∆

)
RT−r(∆)

≥ 1 + Pr
(
τ+∆ ≤ 1

5 logd n | X0 = ∆
)
R

T−1
5 logd n

(∆).

By iterating the estimate above, we obtain

RT (∆) ≥
5T/ logd n∑

i=0

Pr
(
τ+∆ ≤ 1

5 logd n | X0 = ∆
)i

=
1

θd
− oP(1), (3.17)

where the last equality follows from (3.15) and uses the choice T = log2 n made earlier. This
concludes the verification of the hypotheses of Theorem 2.2.

7. To conclude the proof, we still need to verify (3.14) and (3.15). We start with (3.14). By
Proposition 2.6(iii), we have

Pr
(
X1 ∈ LTLE

(
1
5 logd n

)
| X0 = ∆

) P−→ 1. (3.18)

Indeed, by construction, the random walk on Γ starting at ∆ after a single step visits a (x, y) ∈ E
uniformly at random. Assume that X1 = (x, y) ∈ LTLE

(
1
5 logd n

)
, and let τ̃ denote the first time

at which the process on Γ is found at some (w, z) with distG(w, z) = σn. Then, up to time τ∆ ∧ τ̃ ,
the random walk (Xt)t≥1 can be coupled with a biased random walk on Z (given by the distance
between the two vertices) that starts from 1, jumps to the right (respectively, left) with probability
d−1
d (respectively, 1

d). Call this random walk (Wt)t≥0, and let τj , j ∈ Z, be its first hitting of j.
Then a gambler’s ruin argument yields

E1

(
τ0 ∧ τσn

)
≤ dσn

d− 2
,
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which implies

Pr
(
τ0 ∧ τσn > 1

5 logd n− 1 | X0 = 1
)
≤ Pr

(
τ0 ∧ τσn > σ3

n | X0 = 1
)
≤ 1

σn
(3.19)

for all n sufficiently large. Compute

Pr
(
τ+∆ ∧ τ̃ ≤ 1

5 logd n | X0 = ∆
)

≥
∑

(x,y)∈(VΓ\{∆})∩LTLE
(
1
5 logd n

)Pr (X1 = (x, y) | X0 = ∆
)
Pr
(
τ+∆ ∧ τ̃ ≤ 1

5 logd n− 1 | X0 = (x, y)
)

(3.19)
≥

(
1− 1

σn

)
Pr
(
X1 ∈ LTLE

(
1
5 logd n

)
| X0 = ∆

)
.

Note that the last line above converges to 1 in probability as n → ∞ (see (3.18)), which with the
help of Lemma 3.6 concludes the verification of (3.14).

8. We are left with proving (3.15). In this case, we can assume once again that X1 ∈ LTLE(15 logd n),
which in particular implies that, up to time 1

5 logd n, the random walk can be perfectly coupled with
a biased random walk on Z that starts at 1 and jumps to the right (respectively, left) with probability
d−1
d (respectively, 1

d). The claim follows by noting that

Pr
(
τ+∆ ≤ 1

5 logd n | X0 = ∆
)
= oP(1) + Pr

(
τ0 ≤ 1

5 logd n− 1 | X0 = 1
)

= oP(1) + Pr
(
τ0 < ∞ | X0 = 1

)
= o(1) +

1

d− 1
,

which concludes the verification of (3.15). □

The next lemma identifies the tail of the meeting time of random walks starting from afar.

Lemma 3.8 (Tail of meeting time of distant random walks). Let Gd,n(ω) be a regular random graph
and consider two independent random walks. Then

max
x,y : dist(x,y)≥σn

sup
t≥0

∣∣∣P(τx,ymeet > t
)
− e−

2tθd
n

∣∣∣ P−→ 0. (3.20)

Proof : We need to deduce from Proposition 3.7 an (additive) analogous result when the two random
walks start far away. For that we use Lemma 3.6.

For simplicity we work again in discrete time, so that what we actually need to show is

max
x,y : dist(x,y)≥σn

max
t≥0

∣∣∣∣Pdt(τx,ymeet > t)−
(
1− θd

n

)t∣∣∣∣ P−→ 0. (3.21)

Fix x and y such that dist(x, y) ≥ σn, and let E be the event that the two random walks meet
before time T . Since T = log2 n, Lemma 3.6 states that Pr(E) ≤ e−c0σn whp for every pair (x, y) as
above. Hence, if t ≤ T , then

min
x,y : dist(x,y)≥σn

Pdt
(
τx,ymeet > t

)
≥ 1− e−c0σn . (3.22)

On the other hand, since T ≥ Tmix, if t > T , then

max
(x,y)∈VΓ

|Pr
(
Xx

t = v, Y y
t = w

)
− πΓ(v, w)| ≤

1

n6
. (3.23)
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Therefore

Pdt
(
τx,ymeet > t

)
=

∑
(v,w)∈VΓ\{∆}

Pr
(
τ
(x,y)
∆ > T, Xx

T = v, Y y
T = w

)
Pr
(
τ
(v,w)
∆ > t− T

)
≤

∑
(v,w)∈VΓ\{∆}

Pr
(
Xx

T = v, Y y
T = w

)
Pr
(
τ
(v,w)
∆ > t− T

)
≤

∑
(v,w)∈VΓ\{∆}

πΓ(v, w) Pr
(
τ
(v,w)
∆ > t− T

)
+

1

n6

≤ Pr
(
τπΓ
∆ > t− T

)
+

1

n4
.

On the other hand,

Pdt
(
τx,ymeet > t

)
=

∑
(v,w)∈VΓ\∆

Pr
(
τ
(x,y)
∆ > T, Xx

T = v, Y y
T = w

)
Pr
(
τ
(v,w)
∆ > t− T

)

≥

 ∑
(v,w)∈VΓ\{∆}

Pr
(
Xx

T = v, Y y
T = w

)
Pr
(
τ
(v,w)
∆ > t− T

)−Pdt
(
τx,ymeet ≤ T

)
(3.23)
≥

∑
(v,w)∈VΓ\{∆}

πΓ(v, w) Pr
(
τ
(v,w)
∆ > t− T

)
− 1

n6
−Pdt

(
τx,ymeet ≤ T

)
(3.22)
= Pr

(
τπΓ
∆ > t− T

)
− 1

n4
− e−c0σn .

This, when combined with Proposition 3.7, implies the claim. Indeed, thanks to (3.8) and (3.9) we
have

Pr
(
τπΓ
∆ > t− T

)
= (1 + o(1))

(
1− θd

n

)t−T
.

Moreover,∣∣∣(1− θd
n

)t
−
(
1− θd

n

)t−T ∣∣∣ = (1− θd
n

)t∣∣∣1− (1− θd
n

)−T ∣∣∣ ≤ e−
tθd
n

∣∣∣1− (1− θd
n

)−T ∣∣∣
and the latter converges to zero as n → ∞, uniformly in t ≥ 0. □

The next proposition identifies the tail of the meeting time of random walks starting from the
vertices of a typical edge.

Proposition 3.9 (Tail of meeting time of adjacent random walks on a LTLE). Let Gd,n(ω) be a
regular random graph. Then, for all tn such that limn→∞ tn = ∞ and limn→∞ tn/n = s ∈ [0,∞),

max
e=(x,y)∈LTLE( 1

5
logd n)

∣∣∣P(τx,ymeet > tn)− θde
−2sθd

∣∣∣ P−→ 0.

Proof : Note that it is enough to assume that tn ≥ σ3
n, since otherwise the claim follows from Lemma

3.4. Let τx,yfar be the first time at which the two random walks are at distance at least σn, and τx,yexit the
first time at which one of the two random walks exits the locally tree-like neighbourhood of radius
1
5 logd n of e. Put τx,y0 = τx,ymeet ∧ τx,yfar ∧ τx,yexit. For simplicity, we start by analysing the discrete-time
process. Up to time τx,y0 , the process can be coupled to a biased random walk on Z that steps to
the right with probability d−1

d and to the left with probability 1
d . In particular,

Edt
[
τx,y0

]
≤ dσn

d− 2
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because τx,y0 is bounded by the exit time of the biased random walk from the interval [1, σn], and
therefore

Pdt
(
τx,y0 = τx,yexit

)
≤ Pdt

(
τx,yexit ≤ σ3

n

)
+Pdt

(
τx,y0 > σ3

n

)
≤ 0 +

1

σ3
n

dσn
d− 2

= o(1),
(3.24)

where the last term follows from the Markov inequality. Similarly, by a gambler ruin argument,

Pdt
(
τx,yfar > σ3

n

)
= o(1),

and therefore
P
(
τx,ymeet > tn

)
= P

(
τx,ymeet > tn, τ

x,y
0 = τx,yfar ≤ σ3

n

)
+ o(1). (3.25)

Recall the usual asuymptotic notation in which, for any two sequences fn and gn, fn ∼ gn is
shorthand for fn = (1+ o(1))gn. The probability in the right-hand side of (3.25) can be written, in
the discrete-time setting, as

Pdt
(
τx,ymeet > tn, τ

x,y
0 = τx,yfar ≤ σ3

n

)
=

σ3
n∑

u=0

∑
(v,w) : dist(v,w)>σn

Pdt(τx,y0 = τx,yfar = u, (Xτx,y0
, Yτx,y0

) = (v, w))P(τv,wmeet > tn − u)

∼
σ3
n∑

u=0

∑
(v,w) : dist(v,w)>σn

Pdt(τx,y0 = τx,yfar = u, (Xτx,y0
, Yτx,y0

) = (v, w))

(
1− θd

n

)tn−u

=

(
1− θd

n

)tn σ3
n∑

u=0

Pdt(τx,y0 = τx,yfar = u)

(
1− θd

n

)−u

∼
(
1− θd

n

)tn σ3
n∑

u=0

Pdt(τx,y0 = τx,yfar = u) ∼ e−sθdPdt(τx,y0 = τx,yfar ≤ σ3
n) ∼ θd e

−sθd whp,

where in the first approximation we use Lemma 3.8 and in the last approximation that the proba-
bility for the biased random walk to exit [1, σn] at the right converges to θd as n → ∞. In order to
pass to the continuous-time setting, it is enough to realise that, for all ε ∈ (0, s),

P
(
τx,ymeet > tn

)
=

∞∑
u=0

Pr (Poisson(2tn) = u)Pdt
(
τx,ymeet > u

)
=

2(s+ε)n∑
u=2(s−ε)n∨0

Pr (Poisson(2sn) = u)Pdt
(
τx,ymeet > u

)
+ oP(1)

= θd e
−2sθd +OP(ε),

after which the claim follows by taking the limit ε ↓ 0. □

The next two statements turn the result in Proposition 3.9 into a statement about the expected
density of discordant edges at time O(n) for the voter model.

Corollary 3.10 (Discordant edges at small distances). Let Gd,n(ω) be a d-regular random graph,
let e = (x, y) be in LTLE(15 logd n), and consider the voter model with initial density u ∈ (0, 1).
Then, for all tn such that limn→∞ tn = ∞ and limn→∞ tn/n = s ∈ [0,∞),∣∣∣Pu

(
e ∈ Dtn

)
− 2u(1− u) θd e

−2sθd
∣∣∣ P−→ 0.

Proof : The claim follows from Proposition 3.9 via duality. □
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Proposition 3.11 (Expected density of discordant edges). Let Gd,n(ω) be a d-regular random
graph, and consider the voter model with initial density u ∈ (0, 1). Then, for all tn such that
limn→∞ tn = ∞ and limn→∞ tn/n = s ∈ [0,∞),∣∣∣Eu[Dtn ]− 2u(1− u) θd e

−2sθd
∣∣∣ P−→ 0.

Proof : The claim follows from Corollary 3.10 and the same argument as in the proof of Proposition
3.5. □

Proof of Theorem 1.1: Proposition 3.5 takes care of the case where tn is bounded, Proposition 3.11
takes care of the case where tn → ∞ and tn/n → s ∈ [0,∞), while the case tn/n → ∞ follows from
domination. □

4. Beyond the expectation

In this section we prove Theorem 1.2. We start with a proposition that implies the first statement
of the theorem.

Proposition 4.1 (Concentration for worst case initialization). Consider times tn such that tn → ∞
and tn/n → 0. Then, for any ε > 0,

sup
ξ∈{0,1}V

Pξ (|Dtn −Eξ [Dtn ]| > ε)
P−→ 0.

Proof : Putting E⋆ = LTLE(15 logd n) ⊂ E and recalling that |E⋆| = m − o(n) whp by Proposition
2.6 (ii), we have

E[|Dt|2] =
∑

e,e′∈E
P
(
e, e′ ∈ Dt

)
=

∑
e,e′∈E⋆

P
(
e, e′ ∈ Dt

)
+ o(n2)

=
∑
e∈E⋆

 ∑
e′∈E⋆, dist(e,e′)>σn

P
(
e, e′ ∈ Dt

)
+O(dσn)

+ o(n2),

(4.1)

with σn as in (3.5). Fix e = (x, y), e′ = (x′, y′) ∈ E⋆ such that dist(e, e′) > σn, and consider the
event

E = Ee,e′ :=
{
τx,x

′

meet ∧ τx,y
′

meet ∧ τy,x
′

meet ∧ τy,y
′

meet > t
}
.

We observe that, on the event E , the events {e ∈ Dt} and {e′ ∈ Dt} are negatively correlated.
Indeed, denote by σe (respectively, σe′) a realisation of length t of the two independent random
walk trajectories starting at x and y (respectively, x′ and y′). Let H(σe) denote the set of possible
realisations of σe′ that never meet the trajectory σe. We then have

Pξ(e, e
′ ∈ Dt, E) =

∑
σe∈{e∈Dt}

∑
σe′∈{e′∈Dt}∩H(σe)

Pξ(σe)Pξ (σe′ | σe)

=
∑

σe∈{e∈Dt}

∑
σe′∈{e′∈Dt}∩H(σe)

Pξ(σe)Pξ (σe′)

≤
∑

σe∈{e∈Dt}

∑
σe′∈{e′∈Dt}

Pξ(σe)Pξ (σe′) = Pξ(e ∈ Dt)Pξ(e
′ ∈ Dt),

(4.2)

which gives the claimed negative dependence.
Furthermore, by Lemma 3.8, we have P(Ec) = oP(1), which together with (4.2) guarantees that

Pξ

(
e, e′ ∈ Dt

)
≤ Pξ

(
e, e′ ∈ Dt, E

)
+Pξ(Ec) ≤ Pξ(e ∈ Dt)Pξ

(
e′ ∈ Dt

)
+ oP(1).
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Inserting the latter inequality into (4.1), we get

Eξ[|Dt|2] =
∑
e∈E⋆

 ∑
e′∈E⋆, dist(e,e′)>σn

Pξ

(
e, e′ ∈ Dt

)
+O(dσn)

+ o(n2)

≤
∑
e∈E⋆

 ∑
e′∈E⋆, dist(e,e′)>σn

[
Pξ(e ∈ Dt)Pξ

(
e′ ∈ Dt

)
+ oP(1)

]
+O(dσn)

+ o(n2)

≤ Eξ[|Dt|]2 + oP(n
2) + o(n2) = (1 + oP(1))Eξ[|Dt|]2.

Therefore, by Chebyshev’s inequality,

Pξ

(∣∣|Dt| −Eξ|Dt|
∣∣ > εm

)
≤ Pξ

(∣∣|Dt| −Eξ|Dt|
∣∣ > εEξ|Dt|

)
≤

Varξ(|Dt|)
ε2Eξ[|Dt|]2

= oP(1).

□

We next consider times tn such that tn/n → s ∈ (0,∞) and use results from Chen et al. (2016).
Let

γn = E[τπ⊗πmeet] (4.3)

be the expected meeting time of two independent continuous-time simple random walks with uni-
formly chosen initial positions. Chen et al. (2016) (see Theorems 2.1 and 2.2 therein) provide
conditions on the underlying sequence of graphs under which the process (Bn

γnt)t≥0, recording the
proportion of type-1 vertices (recall (1.4)), converges as n → ∞ in the space of càdlàg paths to the
Fisher-Wright diffusion (B̄t)t≥0 for γn as in (4.3). In the case of d-regular random graphs,

γn =
1

2
θ−1d n+ oP(1), (4.4)

and the requirements in Chen et al. (2016) are easily verified whp.
The following lemma is the central estimate that we need in order to establish convergence of the

proportion of discordant edges.

Lemma 4.2 (Linking density of discordant edges to density of type-1). Let sn converge to a finite
value. Then

Eu

[∣∣∣Dsnγn − 2θdBn
snγn(1− Bn

snγn)
∣∣∣] P−→ 0.

Before proving this lemma, we conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 (ii): Recall that we are assuming that tn/n → s. Consider sn = tn/γn and
note that limn→∞ sn = 2s θd, due to (4.4). Hence Lemma 4.2 yields

Eu

[∣∣∣Dtn − 2θdBn
tn(1− Bn

tn)
∣∣∣] P−→ 0. (4.5)

Moreover, since x 7→ x(1− x) is continuous and so is the Fisher-Wright diffusion (B̄t)t≥0, Proposi-
tion A.2 implies that

2θdBn
tn(1− Bn

tn) converges in distribution to 2θdB̄2s θd(1− B̄2s θd).

In view of (4.5), the same holds whp for Dtn , which concludes the proof. □

To prove Lemma 4.2, we use the following concentration estimate derived in Chen et al. (2016).
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Lemma 4.3 (Concentration on arbitrary connected graphs). Fix a finite connected graph G on n
vertices and m edges and let (ηt)t≥0 denote the voter model evolving on G. For any 0 ≤ s ≤ t,

sup
η0

∣∣∣Eη0 [Dt]− 2P[τ e > s]
1

n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣

≤ P
[
τ e ∈ (s, t]

]
+ 4P

[
τ e > s

]
dTV(t− s),

where τ e denotes the meeting time of two random walks starting from the two vertices at the end of
a uniformly chosen edge of G, and dTV is defined as in (2.3).

The proof of Lemma 4.3 is provided in Chen et al. (2016, Lemma 6.1). Note that it applies to any
deterministic connected graph on which the voter dynamics takes place.

We will also need the asymptotic estimate

P
[
τ e ≥ k log2 n

] P−→ θd, k ∈ N, (4.6)

which follows from Proposition 3.9.

Proof of Lemma 4.2: Fix δn = 2 log2 n, and split

Eu

[∣∣∣Dsnγn − 2θdBsnγn(1− Bsnγn)
∣∣∣] ≤ Eu

[∣∣∣Dsnγn − 2θdBsnγn−δn(1− Bsnγn−δn)
∣∣∣]

+ 2θdEu

[∣∣∣Bsnγn−δn(1− Bsnγn−δn)− Bsnγn(1− Bsnγn)
∣∣∣]. (4.7)

We will show that each of the expectations in the right-hand side above converges to zero.

1. Apply the Markov property at time snγn − δn, to obtain

Eu

[∣∣∣Dsnγn − 2θdBsnγn−δn(1− Bsnγn−δn)
∣∣∣] ≤ sup

η0
Eη0

[∣∣∣Dδn − 2θdB0(1− B0)
∣∣∣]

≤ sup
η0

Eη0

[∣∣Dδn −Eη0 [Dδn ]
∣∣]+ sup

η0

∣∣∣Eη0 [Dδn ]− 2θd
1

n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣. (4.8)

The first expectation in the right-hand side of (4.8) converges to zero by Proposition 4.1 and the
fact that |Dδn − Eη0 [Dδn ]| is bounded by one. To control the second expectation in (4.8), apply
Lemma 4.3 with t = δn = 2 log2 n and s = log2 n, to obtain

sup
η0

∣∣∣Eη0 [Dδn ]− 2θd
1

n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣

≤ sup
η0

∣∣∣Eη0 [Dδn ]− 2P
[
τ e ≥ log2 n

] 1
n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣+ 2

∣∣∣P[τ e ≥ log2 n
]
− θd

∣∣∣
≤ P

[
τ e ∈ (log2 n, 2 log2 n]

]
+ 4P

[
τ e > log2 n

]
dTV (log

2 n) + 2
∣∣∣P[τ e ≥ log2 n

]
− θd

∣∣∣.
Note that both

P
[
τ e ∈ (log2 n, 2 log2 n]

]
= P

[
τ e > 2 log2 n

]
−P

[
τ e > log2 n

]
and ∣∣∣P[τ e ≥ log2 n

]
− θd

∣∣∣
converge to zero whp by (4.6), while dTV(log

2 n) goes to zero thanks to Proposition 2.6 (iv). Hence
also the second expectation in (4.8) vanishes, and so we have

Eu

[∣∣∣Dtnγn − 2θdBtnγn−δn(1− Btnγn−δn)
∣∣∣] P−→ 0. (4.9)

2. It remains to show that the second term in the right-hand side of Eq. (4.7) vanishes whp, for which
we argue by continuity in the proper topology. For an arbitrary T > 0, let [0, T ] × D[0, T ] denote
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the product of [0, T ] with the càdlàg space D[0, T ] endowed with the J1-Skorohod topology. For a
given s > 0 and an arbitrary evaluation function h : [0, T ]×D[0, T ] → R defined via h(t, ϕ) = ϕ(t),
we consider the incremental function h̃ : [0, T ]2 ×D[0, T ] → R given by

h̃(t, u, ϕ) = |h(t, ϕ)− h(u, ϕ)|,
and note that, by continuity of the modulus function and Lemma A.1, all points in [0, T ]2 ×C[0, T ]
are continuity points of h̃. In particular, since δn

γn
→ 0 and with s = limn→∞ sn < T , we have that

Eu

[∣∣∣Bsnγn(1− Bsnγn)− Bsnγn−δn(1− Bsnγn−δn)
∣∣∣] = Eu

[∣∣∣h(sn, (Buγn(1− Buγn))u∈[0,T ]

)
− h
(
sn − δn

γn
, (Buγn(1− Buγn))u∈[0,T ]

)∣∣∣] = Eu

[
h̃
(
sn, sn − δn

γn
, (Buγn(1− Buγn))u∈[0,T ]

)]
P−→ Eu

[
h̃
(
s, s, (B̄u(1− B̄u))u∈[0,T ]

)]
= 0,

(4.10)

where the limit is justified by (1.6) and Proposition A.2 .

3. Combine (4.7), (4.9), and (4.10), to conclude the proof. □

5. Uniform concentration

In this section we prove Theorem 1.3, i.e., we sharpen the result in Theorem 1.2.1 to a uniform
bound over sublinear times up to the scale n1−o(1). Note that, up to a union bound on the set of
jump times for the process Dn

t , the proof amounts to showing the following.

Proposition 5.1 (Strengthening of the pointwise concentration). Consider the voter model with
initial density u ∈ (0, 1) on a regular random graph Gd,n(ω). For any fixed ε, δ, a > 0,

1

{
max
t≤n1−ε

Pu (|Dt −Eu[Dt]| > δ) ≤ n−a
}

P−→ 1.

Proof : The proof comes in several steps. To ease the reading, we drop the subindex u from the
notation of the voter measure Pu and abbreviate pt = E[Dt].

1. Fix
t ≤ n1−ε, Kn = log2 n,

and let A be a collection of Kn edges of the graph sampled uniformly at random, independently of
the voter dynamics. Call

DA
t :=

1

Kn

∑
e∈A

1{e∈Dt}

the fraction of edges in the random set A that are discordant at time t. By the triangle inequality,
we have

P (|Dt − pt| > δ) ≤ P
(∣∣Dt −DA

t

∣∣ > 1
2δ
)
+P

(∣∣DA
t − pt

∣∣ > 1
2δ
)
. (5.1)

Note that, given Dt = q, the quantity DA
t is distributed as Z/Kn, where Z ∼ Bin(Kn, q). Therefore,

conditioning on Dt = q ∈ [0, 1], we can bound the first term on the right-hand side of (5.1) by means
of the Chernoff bound

P

(∣∣Dt −DA
t

∣∣ > 1
2δ

∣∣∣∣ |Dt|
m

= q

)
≤ 2 exp

(
− δ2

12q
Kn

)
≤ 2 exp

(
− δ2

12
Kn

)
. (5.2)

Since the bound in (5.2) is uniform over q ∈ [0, 1] and t ≤ n1−ε, we conclude that, for every a > 0,
P-a.s.,

max
t≤n1−ε

P
(∣∣Dt −DA

t

∣∣ > 1
2δ
)
≤ 2 exp

(
− δ2

12
Kn

)
≤ n−a, (5.3)

for all n sufficiently large.
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2. We next show that a similar bound holds for the second term on the right-hand side of (5.1).
The latter will be proved by means of duality. Consider a system of n independent random walks
starting from the different vertices of G and evolving independently. We consider a (multi)sub-set
of 2Kn random walks starting at the extremes of the edges in the random set A. Note that these
are distributed at time zero as ⊗Knν, where ν is the probability distribution on [n]2 defined as

ν(x, y) = π(x)
1

d
1x∼y, (x, y) ∈ [n]2.

Moreover, since π ≡ 1
n , the two marginal distributions of ν coincide with the stationary distribution,

i.e., for every x ∈ [n], ∑
z∈[n]

ν(x, z) =
∑
z∈[n]

ν(z, x) =
1

n
.

Observe that
pt = E[Dt] =

1

m

∑
e∈E

P(e ∈ Dt) = Pν(e ∈ Dt). (5.4)

In order to simplify the notation, when considering a system of 2K independent random walks
starting at ⊗Knν, for each of the Kn random edges A = {e1, . . . , eKn}, we label the extremes as e−j
and e+j , for all j ∈ {1, . . . ,Kn}. For i, j ≤ Kn, define the quantities

τ ei,ej := τ
e−i ,e−j
meet ∧ τ

e+i ,e−j
meet ∧ τ

e−i ,e+j
meet ∧ τ

e+i ,e+j
meet . (5.5)

When τ ei,ej ≤ t we say that the edges i and j interact before t. We say that τ ei,ej = 0 when
{e−i , e

+
i } ∩ {e−j , e

+
j } ≠ ∅. Note that, for all i, j ≤ Kn and t ≥ 0,

P⊗Knν(τ
ei,ej ≤ t) = Pν⊗ν(τ

e1,e2 ≤ t) ≤ 4Pπ⊗π(τ
x,y
meet ≤ t). (5.6)

Indeed, the inequality in (5.6) follows from the definition of ν and a union bound.
We next argue that for all t = o(n) the probability on the right-hand side of (5.6) can be bounded

above whp by

Pπ⊗π(τ
x,y
meet ≤ t) = O

(
t

n

)
. (5.7)

Let us start by pointing out that the FVTL is not enough to deduce (5.7). Indeed, the FVTL is
particularly suited to have sharp estimates of the right tail of the hitting time of a set on time scales
that are at least as big as the mean hitting time. For this reason, we will exploit a result in Aldous
and Brown (1992) that in a sense complements the FVTL on short time scales (see also Hermon
et al. (2022, Lemma 2.11)).

Lemma 5.2. For an irreducible and reversible continuous-time Markov chain with stationary dis-
tribution µ and any subset of states A,∣∣∣∣P(τµA ≤ t)− t

E[τµA]

∣∣∣∣ ≤ ( t

E[τµA]

)2

+
1

λ⋆ E[τµA]
, 0 ≤ t ≤ E[τµA], (5.8)

where τµA is the hitting time of the set A when starting with distribution µ, and λ⋆ denotes the
minimal non-trivial eigenvalue of the infinitesimal generator of the process.

In our setting we can think of the Markov chain as the simple random walk on G⊗G and of A as
the diagonal, so that µ = π ⊗ π, λ⋆ ∈ (0, 1) and E[τµA] = E[τπ⊗π∆ ] = Θ(n), where the latter follows
by Proposition 3.7. Note that, as soon as t/n → 0, we have that the term on the right-hand side of
(5.8) is O(t/n), as for t/E[τµA], so that (5.7) immediately follows. Finally, as already pointed out in
the second step of the proof of Proposition 3.7, the fact that λ⋆ is bounded away from 0 and 1 as
n → ∞ has been proved by Friedman (2008).

The following lemma states that it is unlikely to have within A a density of edges interacting
before time t.
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Lemma 5.3. Consider a system of n independent random walks, each starting from a different
vertex of a regular random graph Gd,n(ω). Select a sub(multi)set A of E of size 2Kn with joint
distribution ⊗Knν. Fix ε > 0 and γ ∈ (0, 1), t ≤ n1−ε and Kn = log2 n. Let I ⊂ A be the maximal
subset such that

∀e ∈ I, ∃f ∈ A \ {e} s.t. τ e,f ≤ t ,

and call

Et,γ := {|I| > γKn} ,

where τ e,f is defined as in (5.5). Then, for all a > 0,

P⊗Knν (Et,γ) ≤ n−a whp.

Before proving Lemma 5.3, we show how the latter can be exploited to conclude the proof of
Proposition 5.1.

3. To conclude the proof of Proposition 5.1, we argue as follows. Let

Ht = {|DA
t − pt| > δ} (5.9)

be the event of interest. Consider a system of 2Kn independent random walks starting at the
extremes of the vertices in A, and let these evolve up to time t. Recall that I ⊂ A denotes the set
of edges in A interacting within time t with other edges in A. Consider the event Et,γ in Lemma
5.3 for which we know that, for every constants a, γ > 0, whp

P(Et,γ) ≤ n−a.

Therefore

P (Ht) ≤ P(Ht ∩ Ec
t,γ) + n−a. (5.10)

In order to conclude the proposition, it suffices to bound the probability on the right-hand side of
the above display.

4. In order to get the desired bound we next show negative correlation for the discordancy of a
collection of edges, in the spirit of the proof of Proposition 4.1.

Lemma 5.4 (Negative correlation under no-meeting events). Consider a sub(multi)set of edges
Ak = {e1, . . . , ek} sampled according to ⊗kν, and let Gt,k be the event in which the 2k independent
random walks starting at the extremes of the k edges never meet before time t. Then, for all
j ∈ {0, 1, 2, . . . , k},

P⊗kν (Exactly j of the k edges are discordant at time t, Gt,k) ≤ Pr (Bin(k, pt) = j) .

Proof : For e = (x, y) ∈ Ak, call σe a realisation of length t of the two independent trajectories
starting at x and y. For 2 ≤ j ≤ k, call H(σ1, . . . , σj−1) the set of the possible realisations of σj
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that never meet the 2(j − 1) trajectories σ1, . . . , σj−1. Observe that

P⊗kν(ei ∈ Dt, ∀i ≤ j, ei ̸∈ Dt,∀i > j, Gt,k)

=
∑

σ1∈{e1∈Dt}

∑
σ2∈{e2∈Dt}∩H(σ1)

· · ·
∑

σk∈{ek ̸∈Dt}∩H(σ1,...,σk−1)

k∏
j=1

P (σi | ∩j<iσj)

=
∑

σ1∈{e1∈Dt}

∑
σ2∈{e2∈Dt}∩H(σ1)

· · ·
∑

σk∈{ek ̸∈Dt}∩H(σ1,...,σk−1)

k∏
j=1

P (σi)

≤
∑

σ1∈{e1∈Dt}

∑
σ2∈{e2∈Dt}

· · ·
∑

σk∈{ek ̸∈Dt}

k∏
j=1

P (σi)

=

j∏
i=1

P⊗kν(ei ∈ Dt)

k∏
i=j+1

P⊗kν(ei ̸∈ Dt)

= pjt (1− pt)
k−j ,

where in the last equality we use the identity in (5.4). By the product form of ⊗kν the result
immediately follows. □

5. We next show how to exploit Lemma 5.4 to conclude that

P(Ht ∩ Ec
t,γ) ≤ n−a, for all a ≥ 0, (5.11)

which implies, thanks to (5.1), (5.3) and (5.10), the validity of Proposition 5.1.
First of all, we split the event Ht ∩ Ec

t,γ into two parts, depending on the sign of the deviation:

P(Ht ∩ Ec
t,γ) = P(DA

t − pt > δ, Ec
t,γ) +P(pt −DA

t > δ, Ec
t,γ). (5.12)

For the first probability in the right-hand side of (5.12) we estimate

P(DA
t − pt > δ, Ec

t,γ) = P

 1

Kn

∑
e∈I

1e∈Dt +
1

Kn

∑
e∈A\I

1e∈Dt − pt > δ, Ec
t,γ


≤ P

 1

Kn

∑
e∈A\I

1e∈Dt − pt > δ − γ, Ec
t,γ


≤ P

 1

Kn − |I|
∑

e∈A\I

1e∈Dt > pt + δ − γ, Ec
t,γ


≤ P

(
Bin(Kn − |I|, pt) >

(
1 +

δ − γ

pt

)
pt(Kn − |I|) , Ec

t,γ

)
≤ e−Θ(log2 n).

(5.13)

Here, in the first inequality we use that |I|/Kn ≤ γ under Ec
t,γ , in the third inequality we use Lemma

5.4, while the last inequality follows from the Chernoff bound by choosing γ = δ/2. By the same
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argument, for the second quantity in the right-hand side of (5.12) we estimate

P(pt −DA
t > δ, Ec

t,γ) ≤ P

pt −
1

Kn

∑
e∈A\I

1e∈Dt > δ, Ec
t,γ


≤ P

 1− γ

Kn − |I|
∑

e∈A\I

1e∈Dt < pt − δ, Ec
t,γ


= P

 ∑
e∈A\I

1e∈Dt <

(
1− δ − ptγ

pt(1− γ)

)
pt(Kn − |I|), Ec

t,γ


≤ P

(
Bin(Kn − |I|, pt) <

(
1− δ − ptγ

pt(1− γ)

)
pt(Kn − |I|), Ec

t,γ

)
≤ e−Θ(log2 n).

(5.14)

Hence (5.11) follows via (5.13) and (5.14). □

Proof of Lemma 5.3: The proof comes in several steps. For simplicity, we suppress the dependence
on γ from the notation.

1. For a vertex x ∈ [n], we call Px the subset of times [0, t] in which the random walk starting at x
moves. Put

Ptot =
{
∀x ∈ [n], |Px| ≤ nε/2t

}
and note that

P
(
Ptot

)
≥ 1− nPr

(
Poisson(t) > nε/2t

)
≥ 1− n−a, for all a > 0,

where the last inequality holds for all n large enough. Therefore it is enough to show that, for all
a > 0,

P⊗Knν

(
Et,γ ∩ Ptot

)
≤ n−a whp.

Due to the maximality of the set I we have

P⊗Knν

(
Et,γ ∩ Ptot

)
≤

∑
I⊂A : |I|≥γKn

P⊗Knν

(
I = I, Ptot

)
≤

Kn∑
C=γKn

(
Kn

C

)
P⊗Cν

(
max
e∈I

min
f∈I\{e}

τ e,f ≤ t, Ptot

)
,

(5.15)

where in the second line, since edges in A are i.i.d. with law ν, and with a slight abuse of notation,
we can take for I the set of the first C edges of A. Given I, associate to it one possible collection
of first interactions between its vertices. Call this set

BI = {(1, j1), . . . , (C, jC)},
where (ℓ, jℓ) stands for the event that the first edge with which the edge eℓ interacts is ejℓ .

2. For every choice of BI , we denote by Et(I,BI) the event Et,γ in which the set of interacting edges
is I and BI = {(1, j1), . . . , (C, jC)} is the set of first interactions. Then

P⊗Cν

(
Et(I,BI) ∩ Ptot

)
≤ P⊗Cν

(
τ e1,ej1 ≤ t,Ptot(1)

) C∏
ℓ=2

P⊗Cν

(
τ eℓ,ejℓ ≤ t, Ptot(ℓ) | Fℓ−1

)
, (5.16)

where, for ℓ ∈ {1, . . . , C}, we put

Ptot(ℓ) := {|Pe−ℓ
| ≤ nε/2t} ∩ {|Pe+ℓ

| ≤ nε/2t} ∩ {|Pe−jℓ
| ≤ nε/2t} ∩ {|Pe+jℓ

| ≤ nε/2t}
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and
Fℓ := ∩ι≤ℓ{τ eι,ejι ≤ t} ∩ Ptot(ι), ℓ = {2, . . . , C}.

By construction, regardless of the specific ordering of the elements in the set BI , there is a collection
of at least C/2 indices ℓ ∈ {1, . . . , C} such that

|Ξℓ| :=
∣∣{eℓ, ejℓ} ∩ {e1, ej1 , . . . , eℓ−1, ejℓ−1

}
∣∣ ≤ 1.

We claim that, for every ℓ ∈ {1, . . . , C} for which |Ξℓ| = 0,

P⊗Cν (τ
eℓ,ejℓ ≤ t | Fℓ−1, |Ξℓ| = 0) ≤ Pν⊗ν

(
τ e,f ≤ t

)
+

4C

n
= O

(
C + t

n

)
. (5.17)

Indeed,

P⊗Cν (τ
eℓ,ejℓ ≤ t | Fℓ−1, |Ξℓ| = 0)

≤ P⊗Cν

(
τ eℓ,ejℓ ≤ t, {e−ℓ , e

+
ℓ , e

−
jℓ
, e+jℓ} ∩ ∪ι<ℓ{e−ι , e+ι , e−jι , e

+
jι
} = ∅ | Fℓ−1, |Ξℓ| = 0

)
+

4ℓ

n

= P⊗Knν

(
τ eiℓ ,ejℓ ≤ t, {e−ℓ , e

+
ℓ , e

−
jℓ
, e+jℓ} ∩ ∪ι<ℓ{e−ι , e+ι , e−jι , e

+
jι
} = ∅

)
+

4ℓ

n

≤ P⊗Knν (τ
eiℓ ,ejℓ ≤ t) +

4C

n
.

Therefore, by (5.6), we conclude that, under |Ξℓ| = 0,

P⊗Cν (τ
eℓ,ejℓ ≤ t | Fℓ−1, |Ξℓ| = 0) ≤ 4Pπ⊗π(τ

x,y
meet ≤ t) +

4C

n
, (5.18)

and (5.17) follows by inserting (5.7) into (5.18).

3. Assume now that for some ℓ ∈ {1, . . . , C} we have |Ξℓ| = 1. More precisely, under Fℓ−1 ∩
{|Ξℓ| = 1}, one among eℓ and ejℓ is still unsampled at step ℓ. Without loss of generality, assume
that eℓ is such an unsampled random edge. By the same argument used to derive (5.18), and putting

Jℓ :=
{
{e−ℓ , e

+
ℓ }
⋂

∪ι<ℓ{e−ι , e+ι , e−jι , e
+
jι
} = ∅

}
,

we bound

P⊗Cν

(
τ eℓ,ejℓ ≤ t,Ptot(ℓ) | Fℓ−1, |Ξℓ| = 1

)
≤ 2P⊗Cν

(
τ eℓ,ejℓ ≤ t,Ptot(ℓ),Jℓ | Fℓ−1, |Ξℓ| = 1

)
+

8C

n
.

Arguing as in Oliveira (2013, Proposition 4.5), we get that, under |Ξℓ| = 1 with eℓ unsampled at
step ℓ,

P⊗Cν

(
τ eℓ,ejℓ ≤ t,Ptot(ℓ),Jℓ

∣∣ Fℓ−1, |Ξℓ| = 1
)

≤ P⊗Cν

(
τ eℓ,ejℓ ≤ t

∣∣ Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ)
)

= P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ∧ τ

e+ℓ ,e−jℓ
meet ∧ τ

e−ℓ ,e+jℓ
meet ∧ τ

e+ℓ ,e+jℓ
meet ≤ t

∣∣ Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ)

)
≤ 4P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ≤ t

∣∣ Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ)

)
= 4E

[
P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ≤ t

∣∣ Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ), Pe−ℓ
, Pe−jℓ

) ∣∣∣∣Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ)

]
,

(5.19)
where the second inequality follows from the equality of the marginals. Note that, conditionally on
Fℓ−1 and Jℓ, for all s ≤ t the position of the random walk starting at e−ℓ is distributed according
to π. On the other hand, the position of the random walk starting at e−jℓ at time s is distributed
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in a non-trivial way. Moreover, the positions of the two random walks at time s are independent.
Hence

P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ≤ t

∣∣ Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ), Pe−ℓ
, Pe−jℓ

)
≤

∑
s∈P

e−
ℓ
∪P

e−
jℓ

P⊗Cν

(
X

(e−ℓ )
s = X

(e−jℓ
)

s

∣∣ Fℓ−1, |Ξℓ| = 1, Jℓ, Ptot(ℓ), Pe−ℓ
, Pe−jℓ

)

≤
∑

s∈P
e−
ℓ
∪P

e−
jℓ

max
λ

∑
x∈[n]

λ(x)π(x) ≤
|Pe−ℓ

∪ Pe−jℓ
|

n
.

(5.20)

Inserting (5.20) into the expectation in (5.19), we obtain

P⊗Cν

(
τ eiℓ ,ejℓ ≤ t,Ptot(ℓ),Jℓ

∣∣ Fℓ−1, |Ξℓ| = 1
)
≤ 8nε/2t

n
. (5.21)

Inserting (5.18)–(5.21) into (5.16), we obtain

P⊗Cν

(
Et(I,BI) ∩ Ptot

)
≤

(
8(nε/2t+ C)

n

)C/2

≤

(√
8(nε/2t+K)

n

)C

=: ΓC . (5.22)

4. By (5.15), (5.22) and the fact that there are (C − 1)C different ways to select the set BI , we are
now ready to conclude that whp

P⊗Knν

(
Et,γ ∩ Ptot

)
≤

Kn∑
C=γKn

(
Kn

C

)
CCΓC ≤

Kn∑
C=γKn

(K2
nΓ)

C .

Since, by our choice of t and Kn,
K2

nΓ ≤ n−ε/5

for all n large enough, we obtain

P⊗Knν

(
Et,γ ∩ Ptot

)
≤ Knn

− εγ
5
Kn ,

concluding the proof. □

Appendix A. Auxilliary facts for càdlàg processes

In the next lemma, for an arbitrary T > 0, we let [0, T ] × D[0, T ] denote the product of [0, T ]
with the càdlàg space D[0, T ] endowed with the J1-Skorohod topology.

Lemma A.1. Consider the function h : [0, T ]×D[0, T ] → R defined via h(s, ϕ) = ϕ(s). Every point
in [0, T ]× C[0, T ] is a continuity point of h.

Proof : Assume that (sn, ϕn) is a sequence that converges to (s, ϕ), with ϕ ∈ C[0, T ]. We need to
verify that h(sn, ϕn) converges to h(s, ϕ). Indeed, if ϕn converges to ϕ, then there exists a sequence
of increasing functions λn : [0, T ] → [0, T ] with λn(0) = 0 and λn(T ) = T such that λn(u) → u and
ϕn(u)− ϕ(λn(u)) → 0 uniformly over u ∈ [0, T ]. From this we obtain

||ϕn − ϕ||∞ ≤ ||ϕn − ϕ ◦ λn||∞ + ||ϕ ◦ λn − ϕ||∞ → 0,

since any function in C[0, T ] is uniformly continuous. In particular, ϕn converges to ϕ uniformly,
which readily implies that ϕn(sn) → ϕ(s) and concludes the proof of the lemma. □

Proposition A.2. Assume that (Xn
u )u∈[0,T ] is a sequence of càdlàg processes that converge in dis-

tribution to a process (Xu)u∈[0,T ] that has almost surely continuous trajectories. For any sequence
tn → t ∈ [0, T ], Xn

tn converges in distribution to Xt.
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Proof : From the assumptions of the proposition, it follows that ((Xn
u )u∈[0,T ], tn)n∈N converges in

distribution to ((Xu)u∈[0,T ], t). Let h : [0, T ] × D[0, T ] → R as in Lemma A.1. Note that, since
(Xu)u∈[0,T ] is almost surely continuous, it follows that Xn

tn = h(tn, (X
n
u )u∈[0,T ]) converges in distri-

bution to Xt = h(t, (Xu)u∈[0,T ]). □
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