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Abstract. In this paper, we consider the hypothesis testing of correlation between two m-uniform
hypergraphs on n unlabelled nodes. Under the null hypothesis, the hypergraphs are independent,
while under the alternative hypothesis, the hyperdges have the same marginal distributions as in the
null hypothesis but are correlated after some unknown node permutation. We focus on two scenarios:
the hypergraphs are generated from the Gaussian-Wigner model and the dense Erdös-Rényi model.
We derive the sharp information-theoretic testing threshold. Above the threshold, there exists a
powerful test to distinguish the alternative hypothesis from the null hypothesis. Below the threshold,
the alternative hypothesis and the null hypothesis are not distinguishable. The threshold involves m
and decreases as m gets larger. This indicates testing correlation of hypergraphs (m ≥ 3) becomes
easier than testing correlation of graphs (m = 2).

1. Introduction

Graph matching is a fundamental problem in network data analysis. It refers to the problem
of identifying a mapping between the nodes of two graphs that preserves as much as possible the
relationships between nodes. Graph matching is a powerful technique and is widely used in a variety
of scientific fields. For instance, in shape matching and object recognition, graph matching is used
to find the correspondence between object graph and its feature graph (Berg et al. (2005); Cho and
Lee (2012)); in social network analysis, graph matching identifies all the accounts belonging to the
same individual (Korula and Lattanzi (2014)); in computational biology, graph matching can be
applied to match brain-graphs (Vogelstein et al. (2015)). Graph matching problem is NP hard in
the worst case and various algorithms have been developed to recover the latent mapping (Cour
et al. (2006); Vogelstein et al. (2015); Korula and Lattanzi (2014); Cho and Lee (2012); Barak et al.
(2019); Berg et al. (2005); Ding et al. (2021); Yu et al. (2021)). In practice, whether there exists a
meaningful matching between two graphs is unknown. To solve this issue, Barak et al. (2019); Wu
et al. (2023); Mao et al. (2021) initiate the study of testing the correlation of two graphs. Especially,
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Wu et al. (2023) derives the sharp information-theoretic threshold for testing correlated Gaussian-
Wigner graphs and dense Erdös-Rényi graphs and Mao et al. (2021) propose a test procedure with
polynomial-time complexity.

Many complex networks in the real world can be formulated as hypergraphs. Unlike ordinary
graphs where the data structure is typically unique, e.g., edges only contain two vertices, hyper-
graphs demonstrate a number of possibly overlapping data structures so that an edge may contain
arbitrarily many vertices. For instance, in coauthorship networks (Estrada and Rodriguez-Velazquez
(2005); Ouvrard et al. (2017); Ramasco et al. (2004); Newman (2001); Yuan et al. (2022)), an edge
represents a group of arbitrarily many coauthors; in folksonomy network, an edge may represent a
triple (user, resource, annotation) structure (Ghoshal et al. (2009)); in login network an edge may
represent a (user, remote host, login time, logout time) structure (Ghoshdastidar and Dukkipati
(2014)). Recently, there is increasing interest in hypergraph matching problem, that is, to estab-
lish the correspondence between nodes of two unlabelled hypergraphs (Zass and Shashua (2008);
Duchenne et al. (2011); Lee et al. (2011); Nguyen et al. (2017); Park et al. (2014); Liao et al. (2021);
Hou et al. (2023); Wang et al. (2022)). In this paper, we study the hypothesis testing of correla-
tion for hypergraphs and characterize how the sharp testing threshold in Wu et al. (2023) varies in
hypergraph.

An undirected m-uniform hypergraph is a pair Hm = ([n], E) in which [N ] := {1, 2, . . . , n} is a
vertex set and E is a set of hyperedges. Each hyperedge in E consists of exactly m vertices in [n].
The corresponding adjacency tensor is an m-dimensional symmetric array A ∈ (Bn)⊗m satisfying
Ai1i2...im ∈ B for 1 ≤ i1 < i2 < · · · < im ≤ n, in which B ⊂ R. Here, symmetry means that
Ai1i2...im = Aj1j2...jm whenever i1, i2, . . . , im is a permutation of j1, j2, . . . , jm. If |{i1, i2, . . . , im}| ≤
m − 1, then Ai1i2...im = 0, i.e., no self-loops are allowed. In particular, B = {0, 1} corresponds to
binary hypergraphs. The general B corresponds to weighted hypergraphs. For convenience, we also
denote the hypergraph Hm = ([n], E) as Hm = ([n], A).

Let Pn be the permutation group on [n]. Two hypergraphs Hm,1 = ([n], A1) and Hm,2 = ([n], A2)
are said to be isomorphic, denoted as Hm,1

∼= Hm,2 if there is a permutation π ∈ Pn such that
A1,i1i2...im = A2,πi1

πi2
...πim

for all 1 ≤ i1 < i2 < · · · < im ≤ n. Clearly isomorphism defines an
equivalence relation and denote the equivalence class of Hm,1 as Hm,1. Each hypergraph Hm ∈ Hm,1

is called an unlabelled hypergraph of Hm,1.
For two hypergraphs Hm,1 = ([n], A1) and Hm,2 = ([n], A2), suppose (A1,i1i2...im , A2,i1i2...im),

(1 ≤ i1 < i2 < · · · < im ≤ n) are independently and identically distributed random variables with
A1,i1i2...im and A2,i1i2...im sharing the same marginal distribution. Given two unlabelled hypergraphs
(random sample) Ã1 ∈ Hm,1 and Ã2 ∈ Hm,2, our purpose is to test the following hypergraph
correlation hypothesis.

H0 : A1,i1i2...im and A2,i1i2...im are independent, 1 ≤ i1 < i2 < · · · < im ≤ n;

H1 : A1,i1i2...im and A2,i1i2...im are correlated, 1 ≤ i1 < i2 < · · · < im ≤ n. (1.1)

When m = 2, (1.1) is just the graph correlation hypothesis testing problem studied in Barak et al.
(2019); Wu et al. (2023); Mao et al. (2021). It is not immediately clear what role m ≥ 3 plays in
the hypothesis testing problem (1.1). This motivates us to study (1.1) for general m ≥ 2.

In this paper, we focus on two scenarios.

(I) Gaussian-Wigner hypergraph: For all 1 ≤ i1 < i2 < · · · < im ≤ n, A1,i1i2...im and
A2,i1i2...im follow the bivariate normal distribution with mean zero, variance one and cor-
relation coefficient ρ ∈ [0, 1]. Then (1.1) is simplified to H0 : ρ = 0, v.s. H1 : ρ > 0.
Under H0, A1,i1i2...im and A2,i1i2...im are independent and follow the standard normal dis-
tribution. Under H1, A1,i1i2...im and A2,i1i2...im follows the standard normal distribution
but are correlated with correlation ρ. This model is a natural extension of the correlated
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Gaussian-Wigner model proposed in Ding et al. (2021) and has been studied in Ding et al.
(2021); Fan et al. (2023a); Ganassali et al. (2022) when m = 2.
(II) Erdös-Rényi hypergraph: Let Hm and H′

m be independent random Erdös-Rényi m-
uniform hypergraphs with hyperedge probability p ∈ [0, 1]. The we can restate (1.1) as
follows: H0 is equivalent to that Hm,1 and Hm,2 are generated from Hm and H′

m respec-
tively by keeping each hyperedge independently with probability s ∈ [0, 1]; H1 is equivalent
to that Hm,1 and Hm,2 are similarly generated from the same hypergraph Hm. Under H0,
the hypergraphs Hm,1 and Hm,2 are independently subsampled from two independent hy-
pergraphs Hm and H′

m. Hence, the correlation is zero. Under H1, the hypergraphs Hm,1 and
Hm,2 are independently subsampled from the same hypergraph Hm. In this case, the hyper-
graphs Hm,1 and Hm,2 are correlated and the correlation between (A1,i1i2...im , A2,i1i2...im),
(1 ≤ i1 < i2 < · · · < im ≤ n) is ρ = s(1−p)

1−ps . When m = 2, this model is the correlated Erdös-
Rényi model proposed in Pedarsani and Grossglauser (2011) and has been widely studied
in the graph matching problem Ding et al. (2021); Wu et al. (2023); Fan et al. (2023b);
Ganassali and Massoulié (2020); Mossel and Xu (2019). Figure 1.1-Figure 1.3 provide an
illustration of the correlated Erdös-Rényi hypergraphs..

The above two models serve as prototypes of random hypergraph matching. As far as we know,
this is the first time that the two models have been studied in hypergraph setting.

Figure 1.1. A random 3-uniform hypergraph with 3 hyperedges and 10 nodes, denoted as H3.

Figure 1.2. Two labeled hypergraphs that are subsampled from H3 in Figure 1.1 with s = 0.8.
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Figure 1.3. The observed hypergraphs that are unlabeled versions of the hypergraphs in
Figure 1.2.

We shall use the total variation distance to measure the difference between H1 and H0. The total
variation distance between two probability measures P,Q on a sigma-algebra F of subsets of the
sample space Ω is defined as

TV (P,Q) = sup
E∈F

|P (E)−Q(E)|.

Let P,Q be probability measures under H0, H1 respectively. Then H0 and H1 are said to be
indistinguishable if TV (P,Q) = o(1) and distinguishable if TV (P,Q) = 1 + o(1).

In this paper, we adopt the Bachmann-Landau notation o(1), O(1). For two positive sequences
an, bn, denote an ≍ bn or an = Θ(bn) if 0 < c1 ≤ an

bn
≤ c2 <∞ for constants c1, c2. Denote an ≫ bn

or bn ≪ an if limn→∞
an
bn

= ∞. We write an = Ω(bn) if an ≥ cbn for a constant c > 0. I[E] denotes
the indicator function of event E.

The rest of the paper is organized as follows. In section 2, we present the main result and related
proof for Gaussian-Wigner Model. Section 3 provides the main result and proof for Erdös-Rényi
Model. Some necessary lemmas are given in section 4.

2. Gaussian-Wigner Hypergraph

In this section, we study the hypergraph correlation test problem under the Gaussian-Wigner
model. Denote π ∼ Unif(Pn) if π is uniformly and randomly selected from Pn. In this case, the
hypothesis (1.1) is reformulated as follows.

H0 :

(
A1,i1i2...im

A2,i1i2...im

)
i.i.d.∼ N

[(
0
0

)
,

(
1 0
0 1

)]
,

H1 :

(
A1,i1i2...im

A2,πi1
πi2

...πim

)
i.i.d.∼ N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
, conditional on π ∼ Unif(Pn). (2.1)

When m = 2, the Gaussian-Wigner model is proposed in Ding et al. (2021) and studied in Ganas-
sali et al. (2022); Fan et al. (2023a); Wu et al. (2023). The following result provides the sharp
information-theoretic threshold for hypothesis testing problem (2.1).

Theorem 2.1 (Gaussian-Wigner hypergraph). Let m ≥ 2 be any fixed integer. Then H0 and H1

in (2.1) are distinguishable if

ρ2 ≥ 2n log n(
n
m

) .
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H0 and H1 in (2.1) are indistinguishable if

ρ2 <
(1− ϵ)2n log n(

n
m

) , (2.2)

for any constant ϵ > 0.

For Gaussian-Wigner model, a phase transition phenomenon occurs at the threshold 2n logn

(n
m)

: H1

and H0 are distinguishable if and only if the correlation is above the threshold. Theorem 2.1
generalizes Theorem 1 in Wu et al. (2023) to m-uniform hypergraph with m ≥ 2. When m = 2, we
have

2n log n(
n
2

) =
4 log n

n− 1
,

(1− ϵ)2n log n(
n
2

) =
(4− 4ϵ) log n

n− 1
. (2.3)

Since ϵ is an arbitrary positive constant, the thresholds (2.3) are the same as those in Theorem 1
of Wu et al. (2023). When m = 3, we have

2n log n(
n
3

) =
12 log n

(n− 1)(n− 2)
,

(1− ϵ)2n log n(
n
3

) =
(12− 12ϵ) log n

(n− 1)(n− 2)
. (2.4)

For large n, the thresholds in (2.4) is smaller than that in (2.3), which implies the indistinguishable
region of 3-uniform hypergraph (m = 3) is smaller than graph (m = 2). Table 2.1 summarizes the
thresholds for m = 2, 3, 4, 5, 6. In general, the threshold decreases at rate logn

nm−1 as a function of m.
This indicates that testing correlated Gaussian-Wigner hypergraphs (m ≥ 3) is easier than testing
correlated Gaussian-Wigner graphs (see result for m = 2 in Wu et al. (2023)).

m 2 3 4 5 6
threshold 4 logn

n−1
12 logn

(n−1)(n−2)
48 logn

(n−1)(n−2)(n−3)
240 logn

(n−1)(n−2)(n−3)(n−4)
1440 logn

(n−1)(n−2)(n−3)(n−4)(n−5)

Table 2.1. The testing threshold for m-uniform Gaussian Wigner hypergraph.

The proof of Theorem 2.1 follows the same strategy as Wu et al. (2023). For the positive part, we
show that the generalized maximum likelihood estimator can achieve asymptotic power approaching
one. For the negative part, the truncated second moment method is used to show that no test can
achieve high power. However, technical derivations are nontrivial and more involved for general
m. In particular, cares need to be taken w.r.t. the design of generalized MLE and the study of
truncated second moment for arbitrary m.

Proof of Theorem 2.1: (Positive Part). Note that one minus the total variation distance is less than
or equal to the sum of type I error and type II error of any test. Hence we only need to construct
a test with type I error and type II error convergent to zero. We shall construct a powerful test
statistic based on the maximum likelihood method. Since the testing problem is easier for larger
ρ2, then we can assume ρ2 = 2n logn

(n
m)

. For convenience, let tn = ρ
(
n
m

)
−
√(

n
m

)
n0.25.

Let π be a uniformly and randomly selected permutation on [n] such that A1,i1i2...im and
A2,πi1

πi2
...πim

follow the bivariate normal distribution with mean zero, variance one and correla-
tion coefficient ρ ∈ [0, 1].
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Under H1, the likelihood ratio given π is equal to

Q(A1, A2|π)
P (A1, A2)

=
1√

1− ρ2
(n
m)

exp

− ρ2

2(1− ρ2)

∑
1≤i1<···<im≤n

(A2
1,i1i2...im +A2

2,πi1
πi2

...πim
)


× exp

 ρ

1− ρ2

∑
1≤i1<···<im≤n

A1,i1i2...imA2,πi1
πi2

...πim

 . (2.5)

Hence, to maximize the likelihood ratio with respect to π is equivalent to maximizing T (π) given
by

T (π) =
∑

1≤i1<···<im≤n

A1,i1i2...imA2,πi1
πi2

...πim
.

Then we define the test statistic as Tn = maxπ T (π).
Under the alternative hypothesis, we shall show P(Tn ≥ tn) = 1 + o(1). By the Hanson-Wright

inequality in Lemma 4.1, it is easy to verify that

P(Tn ≤ tn) ≤ P(T (π) ≤ tn) ≤ e−cn
m+0.5

2 + e−c
√
n,

for some constant c > 0. Then P(Tn ≤ tn) = o(1) and hence P(Tn ≥ tn) = 1 + o(1).
Under the null hypothesis, we show P(Tn ≥ tn) = o(1). Note that A1,i1i2...im and A2,πi1

πi2
...πim

are independent for any π and they follow the standard normal distribution. For λ := tn
(n
m)

= o(1),

the Chernoff bound in Lemma 4.2 yields

P(T (π) ≥ tn) = P(eT (π) ≥ etn) ≤ exp

{
−λtn −

(
n
m

)
2

log(1− λ2)

}

= exp

{
−2n log n− n0.5 + 2

√
2n log nn0.25 + n log n+

n0.5

2
+ o(n)

}
.

Note that n! ≤ enn+0.5e−n. Then by the union bound, it follows that

P(Tn ≥ tn) ≤ n!P(T (π) ≥ tn) = exp(−n+ o(n)) = o(1).

Then the proof is complete. □

Proof of Theorem 2.1: (Negative Part). It is well-known that if the second moment of the likelihood
ratio converges to one under H0, then the total variation distance between the two probability
measures converges to zero. Therefore, to prove the negative result, it suffices to prove that

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ 1 + o(1),

under H0. The details are given in the following Proposition 2.2 and Proposition 2.4. □

Before presenting Proposition 2.2 and Proposition 2.4, we provide some basic facts about per-
mutation. Each permutation π ∈ Pn can be decomposed into product of disjoint cycles. Each cycle
forms an orbit of any element in the cycle. Let Km be the complete m-uniform hypergraph on [n].
Then π induces a permutation πK on the hyperedge set of Km by

πK(i1, i2, . . . , im) = (πi1 , πi2 , . . . , πin), i1 < i2 < · · · < im.

We call π node permutation and πK hyperedge permutation. Let nk denote the number of cycles
(orbits) in π with length k and Nk the number of hyperedge cycles (hyperedge orbits) with length
k. Note that Nk can be expressed as a function of nt, (t ≤ k). For example, let m = 3. Then
N1 =

(
n1

3

)
+ n1n2 + n3.
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Proposition 2.2. For any fixed integer m ≥ 2, if ρ2 < (1−ϵ)n logn

(n
m)

for any constant ϵ ∈ [0, 1), then

H0 and H1 are indistinguishable for both Gaussian Wigner model and Erdos-Renyi model.

Proof of Proposition 2.2: We only need to focus on m ≥ 3, since the result for m = 2 is given in Wu
et al. (2023). Denote π̃ be an independent copy of π. Firstly, we consider Gaussian Wigner model.
Define

L1(A1,i1i2...im , A2,πi1
πi2

...πim
)

=
1√

1− ρ2
exp

{
−ρ2(A2

1,i1i2...im
+A2

2,πi1
πi2

...πim
) + 2ρA1,i1i2...imA2,πi1

πi2
...πim

2(1− ρ2)

}
,

and
Li1i2...im = L1(A1,i1i2...im , A2,πi1

πi2
...πim

)L1(A1,i1i2...im , A2,π̃i1
π̃i2

...π̃im
).

By (2.5), the second moment of the likelihood ratio under H0 is equal to

E

[(Q(A1, A2)

P (A1, A2)

)2]
= Eπ,π̃

(
E
[Q(A1, A2|π)
P (A1, A2)

Q(A1, A2|π̃)
P (A1, A2)

])
= Eπ,π̃

(
E
[ ∏

1≤i1<···<im≤n

Li1i2...im

])
. (2.6)

Denote σ = π−1 ◦ π̃. For a hyperedge orbit O induced by σ, define

LO =
∏

{i1,...,im}∈O

Li1i2...im .

Since π̃(e) = π ◦ σ(e) for any hyperedge e, then LO only depends on A1,e, A2,πe for e ∈ O.
Let O be the set of hyperedge orbits of σ. Note that the hyperedge orbits are mutually disjoint

and A1,i1i2...im and A2,i1i2...im are i.i.d. under H0. Then by (2.6), we have

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
= Eπ,π̃

(∏
O∈O

E(LO)

)
= Eπ,π̃

[ (n
m)∏

k=1

(
1

1− ρ2k

)Nk
]
, (2.7)

where the second equality follows from Proposition 1 in Wu et al. (2023) and Nk is the number of
hyperedge orbits with length k.

Note that
∑(n

m)
k=2Nk ≤ nm. According to (2.2), ρ4nm = O

(
logn
nm−2

)
= o(1) for m ≥ 3. Conse-

quently,
(n
m)∏

k=2

(
1

1− ρ2k

)Nk

≤
(

1

1− ρ4

)(n
m)

≤ exp

(
nmρ4

1− ρ4

)
= 1 + o(1).

Then

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ (1 + o(1))Eπ,π̃

[(
1

1− ρ2

)N1
]
≤ (1 + o(1))Eπ,π̃

[
exp

(
N1ρ

2

1− ρ2

)]
≤ 1 + o(1).

(2.8)
where the last step follows from the following Lemma 2.3. Then the proof is complete for Gaussian
Wigner model.

For Erdos-Renyi model, by a similar argument and using Proposition 1 in Wu et al. (2023), we
have

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
= Eπ,π̃

(
n
m)∏

k=1

(
1 + ρ2k

)Nk

 .
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By the condition ρ2 < (1−ϵ)n logn

(n
m)

and m ≥ 3, it follows that

(n
m)∏

k=2

(
1 + ρ2k

)Nk

≤
(
1 + ρ4

)(n
m) ≤ exp

(
nmρ4

)
= 1 + o(1).

Hence

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ (1 + o(1))Eπ,π̃

[(
1 + ρ2

)N1
]
≤ (1 + o(1))Eπ,π̃

[
exp

(
N1ρ

2
)]

≤ 1 + o(1).

Here the last inequality follows from Lemma 2.3. □

Lemma 2.3. Let N1 be the number of hyperedge orbits of σ = π−1 ◦ π̃ with length one. If ρ2 <
(1−ϵ)n logn

(n
m)

for any positive constant ϵ, then

Eπ,π̃

[
exp

(
N1ρ

2

1− ρ2

)]
≤ 1 + o(1).

Proof of Lemma 2.3: Let nk be the number of k-nodes cycles of permutation σ. Since the cycles of σ
are disjoint, then nk ≤ n. Note that 1-hyperedge orbit is just a single hyperedge and this hyperedge
can only involve nodes in k-nodes cycles with k ≤ m. Hence, N1 = R(n1, n2, . . . , nm), where
R(n1, n2, . . . , nm) is a polynomial in n1, n2, . . . , nm. If a hyperedge contains a k-node cycle, then we
only need to selectm−k nodes to form a hyperedge. Hence, any terms in R(n1, n2, . . . , nm) involving
k-node cycles are bounded by nkn

m−k = O(nm−k+1). Since ρ2 < (1−ϵ)n logn

(n
m)

, then ρ2nm−k+1 =

O
(

logn
nk−2

)
= o(1) for k ≥ 3. If a term in R(n1, n2, . . . , nm) contains nk2, then it is bounded by

ρ2nk2n
m−2k = O

(
logn
nk−1

)
= o(1) for k ≥ 2. Hence, we have

ρ2N1 = ρ2
[(
n1
m

)
+ n2

(
n1

m− 2

)]
+ o(1).

Then

Eπ,π̃

[
exp

(
N1ρ

2

1− ρ2

)]
= (1 + o(1))Eπ,π̃

[
exp

(
ρ2

1− ρ2

[(
n1
m

)
+ n2

(
n1

m− 2

)])]
= (1 + o(1))Eπ,π̃

[
exp

(
ρ2

1− ρ2

[(
n1
m

)
+ n2

(
n1

m− 2

)])
I[0 ≤ n1 <

√
n]

]
+ (1 + o(1))Eπ,π̃

[
exp

(
ρ2

1− ρ2

[(
n1
m

)
+ n2

(
n1

m− 2

)])
I[
√
n ≤ n1 ≤ n]

]
= (a) + (b).

If n1 <
√
n, then

ρ2
[(
n1
m

)
+ n2

(
n1

m− 2

)]
= O

(
n

m
2 log n

nm−1
+
n1+

m−2
2 log n

nm−1

)
= o(1), m ≥ 3.

Hence (a) = 1 + o(1).
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Next, we show (b) = o(1) if ρ2 < (1−ϵ)n logn

(n
m)

. Let Zt, (1 ≤ t ≤ k) be independent Poisson

variables with Zt ∼ Poi(1t ). By Lemma 4.3, we have

(b) ≤ (1 + o(1))EZ1,Z2

[
exp

(
ρ2

1− ρ2

[(
Z1

m

)
+ Z2

(
Z1

m− 2

)])
I[
√
n ≤ Z1 ≤ n]

]
e

3
2

= (1 + o(1))e
3
2EZ1

[
exp

(
ρ2

1− ρ2

(
Z1

m

))
I[
√
n ≤ Z1 ≤ n]EZ2

(
exp

(
ρ2

1− ρ2
Z2

(
Z1

m− 2

))∣∣∣∣Z1

)]
.

(2.9)

By the moment generating function of Poisson distribution, we have

EZ2

(
exp

(
ρ2

1− ρ2
Z2

(
Z1

m− 2

)) ∣∣∣∣∣Z1

)
= exp

[
1

2

(
e

ρ2

1−ρ2
( Z1
m−2) − 1

)]
.

On the event
√
n ≤ Z1 ≤ n, it follows that

ρ2

1− ρ2

(
Z1

m− 2

)
= O

(
log n

nm−1
nm−2

)
= o(1).

Hence, by (2.9), k! ≥
(
k
e

)k and ρ2 < (1−ϵ)n logn

(n
m)

, we have

(b) ≤ (1 + o(1))e
3
2EZ1

[
exp

(
ρ2

1− ρ2

(
Z1

m

))
I[
√
n ≤ Z1 ≤ n]

]
= (1 + o(1))e

3
2
−1

n∑
k=

√
n

exp

(
ρ2

1− ρ2

(
k

m

))
1

k!

≤ (1 + o(1))e
3
2
−1

n∑
k=

√
n

exp

(
ρ2

1− ρ2

(
k

m

)
− k log k − k

)

≤ (1 + o(1))e
3
2
−1

n∑
k=

√
n

exp

(
k

(
(1− ϵ)

log n

nm−1
km−1 − log k

)
− k

)
. (2.10)

Define f(k) = (1− ϵ) logn
nm−1k

m−1 − log k. The derivative of f(k) is equal to

f ′(k) = (1− ϵ)(m− 1)
log n

nm−1
km−2 − 1

k
.

Solving f ′(k) = 0 yields k0 = n

((1−ϵ)(m−1) logn)
1

m−1
. Then f(k) is decreasing for k ≤ k0 and increasing

for k ≥ k0. Hence,

f(k) ≤ max
{
f(
√
n), f(n)

}
= max

{
(1− ϵ)

log n

nm−1

√
n
m−1 − log

√
n, (1− ϵ)

log n

nm−1
nm−1 − log n

}
= max

{
−1

2
log n(1 + o(1)),−ϵ log n

}
.

By (2.10), for a positive consant c, we have

(b) ≤ (1 + o(1))e
3
2
−1e(logn−

√
n−c

√
n logn) = o(1).

Then the proof is complete. □

The bound in Proposition 2.2 is not sharp. The conditional second moment method will be used
to close the gap. The result is summarized in the following Proposition 2.4.
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Proposition 2.4. If n logn

(n
m)

≤ ρ2 < (1−ϵ)2n logn

(n
m)

for any positive constant ϵ, then H0 and H1 are

indistinguishable.

Proof of Proposition 2.4: We use the conditional second moment method as in Wu et al. (2023) to
prove Proposition 2.4.

Let I be the set of fixed points of σ and O1 be the set of subsets in I with cardinality m. Then
for any {i1, . . . , im} ∈ O1, {πi1 , . . . , πim} = {π̃i1 , . . . , π̃im}. For S ⊂ [n] and a positive constant C,
define event ES as

ES =

{ ∑
{i1,i2,...im}⊂S

A2
1,i1i2...im ≥

(
|S|
m

)
− tS ,

∑
{i1,i2,...im}⊂S

A2
2,πi1

...πim
≥
(
|S|
m

)
− tS ,

∑
{i1,i2,...im}⊂S

A1,i1i2...imA2,πi1
...πim

≤ ρ

(
|S|
m

)
+ tS

}
,

where tS is of order n
m+1

2 . Let

E = ∩S⊂[n],|S|≥ n

2
1

m−1

ES .

We shall use E to truncate the second moment. By Lemma 2.5, P(E) = 1 − o(1) under H1.
Hence, we have

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
= Eπ,π̃

(∏
O∈O

E(LOI[A1, A2, π ∈ E]I[A1, A2, π̃ ∈ E])

)
. (2.11)

For n1 ≤ n

2
1

m−1
, by a similar argument as in the proof of Lemma 2.3, one has

∏
O∈O

E(LOI[A1, A2, π ∈ E]I[A1, A2, π̃ ∈ E]) ≤ E

(∏
O∈O

LO

)
=
∏
O∈O

1

1− ρ2|O|

=
∏

O∈O1

1

1− ρ2|O|

∏
O/∈O1

1

1− ρ2|O|

=

(
1

1− ρ2

)(n1
m)+n2( n1

m−2)
(

1

1− ρ4

)(n
m)

(1 + o(1))

≤ exp

(
ρ2

1− ρ2

[(
n1
m

)
+ n2

(
n1

m− 2

)])
(1 + o(1)).

Suppose n1 ≥ n

2
1

m−1
. Since ρ2 ≥ n logn

(n
m)

, then n
m+1

2 = o(ρ
(
n1

m

)
). In this case, on event EI , we get

∑
{i1,i2,...im}⊂S

A2
1,i1i2...im ≥

(
|S|
m

)
(1 + o(1)),

∑
{i1,i2,...im}⊂S

A2
2,πi1

...πim
≥
(
|S|
m

)
(1 + o(1)),

∑
{i1,i2,...im}⊂S

A1,i1i2...imA2,πi1
...πim

≤ ρ

(
|S|
m

)
(1 + o(1)).
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Then it follows that

E

[∏
O∈O

LOI[A1, A2, π ∈ E]I[A1, A2, π̃ ∈ E]

]

≤ E

[∏
O∈O

LOI[A1, A2, π ∈ EI ]

]

= E

 ∏
{i1,i2,...im}⊂I

Li1i2...imI[A1, A2, π ∈ EI ]

 ∏
O/∈O1

1

1− ρ2|O| .

Further, on event EI , the following inequalities hold.

E
[ ∏
{i1,i2,...im}⊂I

Li1i2...imI[A1, A2, π ∈ EI ]
]

≤ 1

(1− ρ2)(
n1
m)

E

[
exp

{
− ρ2

(1− ρ2)

∑
{i1,i2,...im}⊂I

(A2
1,i1i2...im +A2

2,πi1
πi2

...πim
)

}

× exp

 2ρ

1− ρ2

∑
{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
πi2

...πim

 I[A1, A2, π ∈ EI ]

]

≤ 1

(1− ρ2)(
n1
m)

exp

{
−(1 + o(1))2ρ2

(1− ρ2)

(
n1
m

)}

× E

[
exp

{
2ρ

1− ρ2

∑
{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
πi2

...πim

}
I

[ ∑
{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
πi2

...πim
≤ ρ

(
n1
m

)]]

≤ 1

(1− ρ2)(
n1
m)

exp

{
−(1 + o(1))2ρ2

(1− ρ2)

(
n1
m

)}

× E

[
exp

 2ρ

1− ρ2

1− ρ2

2

∑
{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
πi2

...πim
+ (1− 1− ρ2

2
)ρ

(
n1
m

)
]

=
1

(1− ρ2)(
n1
m)

exp

{
−(1 + o(1))2ρ2

(1− ρ2)

(
n1
m

)}
exp

{
ρ2(1 + ρ2)

1− ρ2

(
n1
m

)}
exp

{
−1

2

(
n1
m

)
log(1− ρ2)

}
= exp

{
(1 + o(1))ρ2

2

(
n1
m

)}
.

In the second last equality we used the fact that E[eλXY ] = 1
1−λ2 for independent standard normal

random variables X,Y and |λ| < 1.
Then we can bound the second moment of the likelihood ratio under H0 as

E

[(
Q(A1, A2)

P (A1, A2)

)2
]

= (1 + o(1))E
[
exp

(
ρ2

1− ρ2

[(
n1
m

)
+ n2

(
n1

m− 2

)])
I[n1 ≤

n

2
1

m−1

]

]
+(1 + o(1))E

[
exp

{
ρ2

2

(
n1
m

)
+

ρ2

1− ρ2
n2

(
n1

m− 2

)}
I[n1 ≥

n

2
1

m−1

]

]
= (c) + (d).
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By the proof of Lemma 2.3 and ρ2 < (1−ϵ)2n logn

(n
m)

, we have

(c) = (1 + o(1))E
[
exp

(
ρ2

1− ρ2

(
n1
m

))
I[n1 ≤

√
n]

]
+ (1 + o(1))E

[
exp

(
ρ2

1− ρ2

(
n1
m

))
I[
√
n < n1 ≤

n

2
1

m−1

]

]

≤ 1 + o(1) + e
3
2
−1

n

2
1

m−1∑
k=

√
n

exp

(
k

(
(1− ϵ)

2 log n

nm−1
km−1 − log k

)
− k

)
.

Let f(k) = (1− ϵ)2 logn
nm−1 k

m−1 − log k. Similar to the proof of Lemma 2.3, it is easy to verify

f(k) ≤ max

{
f(
√
n), f

(
n

2
1

m−1

)}
= max

{
−1

2
log n(1 + o(1)),−ϵ log n(1 + o(1))

}
.

Hence, (c) = 1 + o(1).
For (d), by Lemma 4.3, one has

(d) = (1 + o(1))E
[
exp

(
ρ2

2

(
n1
m

))
I[n1 ≥

n

2
1

m−1

]

]
≤ e

3
2
−1

n∑
k= n

2
1

m−1

exp

(
k

(
(1− ϵ)

log n

nm−1
km−1 − log k

)
− k

)
.

Let f(k) = (1− ϵ) logn
nm−1k

m−1 − log k. Similar to the proof of Lemma 2.3, it is easy to verify

f(k) ≤ max

{
f(n), f

(
n

2
1

m−1

)}
= max

{
−1

2
log n(1 + o(1)),−ϵ+ 1

2
log n

}
.

Hence, (d) = o(1). Then it follows that

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ 1 + o(1).

The proof is complete. □

Lemma 2.5. Under H1, P(E) = 1− o(1).

Proof of Lemma 2.5: For integer k with n

2
1

m−1
≤ k ≤ n, let δk = 2−k

(
n
k

)−1, S be a subset with

|S| = k and tS = C
(√(

k
m

)
log 1

δk
+ log 1

δk

)
= Cn

m+1
2 (1 + o(1)). By Hanson-Wright inequality in

Lemma 4.1, we have P(Ec
S) ≤ 6δk. Hence,

P(Ec) ≤ 6
n∑

k= n

2
1

m−1

(
n

k

)
δk ≤ 6n2

− n

2
1

m−1 = o(1).

Then the proof is complete. □
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3. Erdös-Rényi Hypergraph

In this section, we study the hypergraph correlation test under the Erdös-Rényi model. In this
case, the hypothesis (1.1) is reformulated as follows.

H0 : A1,i1i2...im , A2,i1i2...im
i.i.d.∼ Bern(ps),

H1 : A1,i1i2...im
i.i.d.∼ Bern(ps), A2,πi1

πi2
...πim

i.i.d.∼ Bern

(
sA1,i1i2...im + (1−A1,i1i2...im)

ps(1− s)

1− ps

)
,

conditional on π ∼ Unif(Pn). (3.1)

It is easy to verify the correlation between A1,i1i2...im and A2,πi1
πi2

...πim
under H1 is

ρ =
s(1− p)

1− ps
.

When p = o(1), ρ = s(1 + o(1)). In this case, s measures the scale of correlation. For m = 2, the
correlated Erdös-Rényi graph model is proposed in Pedarsani and Grossglauser (2011) and widely
studied in graph matching problem (Barak et al. (2019); Mossel and Xu (2019); Ding et al. (2021);
Wu et al. (2023); Mao et al. (2021)).

The following theorem provides a sharp testing threshold for hypothesis (3.1) when the Erdös-
Rényi hypergraphs are dense.

Theorem 3.1 (Erdös-Rényi model). Let m ≥ 2 be a fixed integer. Then H0 and H1 in (3.1) are
distinguishable if

s2 ≥ n log n(
n
m

) (
log 1

p − 1 + p
)
p
.

Suppose p is bounded away from one and log 1
p = o(log n). Then H0 and H1 in (3.1) are indistin-

guishable if

s2 <
(1− ϵ)n log n(

n
m

) (
log 1

p − 1 + p
)
p
, (3.2)

for any constant ϵ > 0.

Theorem 3.1 generalizes the result of the dense regime in Theorem 2 of Wu et al. (2023) to
m-uniform hypergraph with m ≥ 2. For m = 2, we have

n log n(
n
2

) (
log 1

p−1+p
)
p
=

2 log n

(n− 1)p
(
log 1

p−1+p
) , (1− ϵ)n log n(

n
2

) (
log 1

p−1+p
)
p
=

(2− 2ϵ) log n

(n− 1)p
(
log 1

p−1+p
) .
(3.3)

Since ϵ is an arbitrary positive constant, the thresholds in (3.3) coincide with that in Theorem 2 of
Wu et al. (2023). When m = 3, we have

n log n(
n
3

) (
log 1

p − 1 + p
)
p

=
6 log n

(n− 1)(n− 2)p
(
log 1

p − 1 + p
) , (3.4)

(1− ϵ)n log n(
n
3

) (
log 1

p − 1 + p
)
p

=
(6− 6ϵ) log n

(n− 1)(n− 2)p
(
log 1

p − 1 + p
) . (3.5)

The thresholds in (3.4) and (3.5) are smaller than that in (3.3), which implies the indistinguishable
region of 3-uniform hypergraph (m = 3) is smaller than graph (m = 2). Table 3.2 summarizes the
thresholds for m = 2, 3, 4, 5. Generally, the sharp testing boundary n logn

(n
m)

(
log 1

p
−1+p

)
p

decreases as
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m gets larger. This shows that testing correlated Erdös-Rényi hypergraph (m ≥ 3) is easier than
testing correlated Erdös-Rényi graphs (see result for m = 2 in Wu et al. (2023)).

m 2 3 4 5
threshold 2 logn

(n−1)p
(
log 1

p
−1+p

) 6 logn

(n−1)(n−2)p
(
log 1

p
−1+p

) 24 logn

(n−1)(n−2)(n−3)p
(
log 1

p
−1+p

) 120 logn

(n−1)(n−2)(n−3)(n−4)p
(
log 1

p
−1+p

)

Table 3.2. The testing threshold for m-uniform Erdös-Rényi hypergraph.

The proof of Theorem 3.1 follows the same proof strategy as in Wu et al. (2023). For the positive
result, we show that the generalized maximum likelihood estimator can achieve asymptotic power
one. For the negative result, the truncated second moment method is used to show that no test can
achieve high power. However the proof is not trivial and straightforward. How to incorporate m in
the proof needs special care.

Proof of Theorem 3.1: (Positive Part). Note that one minus the total variation distance is less
than or equal to the sum of type I error and type II error of any test. Hence we only need to
construct a test with type I error and type II error convergent to zero. Similar to the Gaussian
Wigner model, we shall use the maximum likelihood method to construct a powerful test statistic.
The likelihood ratio given π is equal to

Q(A1, A2|π)
P (A1, A2)

=
∏

1≤i1<···<im≤n

(1− s)A1,i1i2...im

(
1− 2ps+ ps2

1− ps

)1−A1,i1i2...im

×
∏

1≤i1<···<im≤n

1

1− ps

(
(1− ps)(1− s)

1− 2ps+ ps2

)A2,πi1
πi2

...πim

×
(
1− 2ps+ ps2

p(1− s)2

)∑
1≤i1<···<im≤n A1,i1i2...im

A2,πi1
πi2

...πim

.

Let Tn = maxπ T (π) with T (π) =
∑

1≤i1<···<im≤nA1,i1i2...imA2,πi1
πi2

...πim
.

The correlation coefficient ρ for Erdos-Renyi model is given by

ρ =
s(1− p)

1− ps
.

Larger s implies larger correlation ρ. Hence, it is easier to test the correlation. Then we can assume

s2 =
n log n(

n
m

) (
log 1

p − 1 + p
)
p
, (3.6)

which implies p≫ 1
nm−1 and

(
n
m

)
ps2 ≫ n. Let tn =

(
n
m

)
ps2(1− τn) with

((
n
m

)
ps2
)−0.5 ≪ τn < 1.

Under H1, we show P(Tn ≥ tn) = 1 + o(1). Note that the product A1,i1i2...imA2,πi1
πi2

...πim
are

independent and follow Bernoulli(ps2). Hence T (π) ∼ Binomial(
(
n
m

)
, ps2). By Chenorff bound in

Lemma 4.2, it is easy to get

P(Tn ≤ tn) ≤ P(T (π) ≤ tn) ≤ e−
τ2n
2 (

n
m)ps

2
= o(1).

Next, we show under H0, P(Tn ≥ tn) = o(1). In this case, A1,i1i2...imA2,πi1
πi2

...πim
are independent

and follow Bernoulli(p2s2). Hence T (π) ∼ Binomial(
(
n
m

)
, p2s2). By the multiplicative Chernoff
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bound in Lemma 4.2, we have

P(Tn ≥ tn) ≤ n!P(T (π) ≥ tn)

≤ n! exp

((
n

m

)
p2s2

[
1− τn
p

log
1− τn
p

+ 1− 1− τn
p

])
= n! exp

((
n

m

)
ps2(1− τn) log

1− τn
ep

−
(
n

m

)
p2s2

)
≤ n! exp

[
−
(
n

m

)
ps2
(
log

1

p
− 1 + p

)
+ τn

(
n

m

)
ps2 log

1

p

]
≤ e exp

[
−n+ τn

(
n

m

)
ps2 log

1

p
+ 0.5 log n

]
.

If p is bounded away from one, then
(
n
m

)
ps2 = O(n log n). Taking τn =

((
n
m

)
ps2
)−0.5

log n and
noting that log 1

p = o(log n) yields P(Tn ≥ tn) = o(1).

Suppose p = 1 + o(1). Take τn =
((

n
m

)
ps2
)−ϵ with m−1

2m−1 < ϵ < 0.5. Note that for some positive
constant c > 0, by (3.6) it follows that

log
1

p
− 1 + p =

(1− p)2

p
(1− 1

2p
)(1 + o(1)) ≥ c

log n

nm−1
.

Besides, log 1
p <

1−p
p . Hence

τn

(
n

m

)
ps2 log

1

p
= O

(
(n log n)1−ϵ

(1− p)2(1−ϵ)
(1− p)

)
= O

(
log n)ϵn1+(m−1)−ϵ(2m−1)

)
= o(n).

Then P(Tn ≥ tn) = o(1). The proof is complete. □

Proof of Theorem 3.1: (Negative Part). It is well-known that if the second moment of the likelihood
ratio converges to one under H0, then the total variation distance between the two probability
measures converges to zero. To prove the negative result, we only need to prove

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ 1 + o(1), (3.7)

under H0.
We shall use the truncation method as in Wu et al. (2023) to prove (3.7). Assume p ∈ (0, 1− ϵ0)

for a constant ϵ0 ∈ (0, 1) and log 1
p = o(log n). Note that the smaller s is, the harder it is to test

the correlation. Hence we assume

s2 =
(1− ϵ)n log n(

n
m

) (
log 1

p − 1 + p
)
p
, (3.8)

for any constant ϵ ∈ (0, 1). In this case,

s2 = o(1), s2 ≫ n(
n
m

) = n−(m−1),

(
n

m

)
ps2 ≫ n. (3.9)

Now we define the truncation event. Let w(x) be the solution of equation w(x)ew(x) = x for
x ≥ −1

e . Define ζ(k) as

ζ(k) =

(
k

m

)
ps2 exp

(
1 + w

(
k log 2en

k

eps2
(
k
m

) − 1

e

))
, k ≥ m.
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Let

αp =

(
log

1

p
− 1 + p

)
p.

Clearly, αp ≥ cn−o(1) for some constant c > 0 and nα
1

m−1
p ≥ cn1−o(1). Define event E as

E = ∩
nα

1
m−1
p ≤|S|≤n,S⊂[n]

ES ,

where ES is given by

ES =

{ ∑
{i1,i2,...im}⊂S

A1,i1i2...im ≥
(
|S|
m

)
ps−

√
2

(
|S|
m

)
ps|S| log 2en

|S|
,

∑
{i1,i2,...im}⊂S

A2,πi1
...πim

≥
(
|S|
m

)
ps−

√
2

(
|S|
m

)
ps|S| log 2en

|S|
,

∑
{i1,i2,...im}⊂S

A1,i1i2...imA2,πi1
...πim

≤ ζ(|S|)

}

Lemma 3.2. Under H1, P(E) = 1− e−Ω(nα
1

m−1
p ).

Proof of Lemma 3.2: For S ⊂ [n] with |S| = k, let δk =
(

k
2en

)k and tn =
√
2
(|S|
m

)
ps log 1

δk
and

vn =

(
k

m

)
ps2 exp

(
1 + w

(
log 1

δk

eps2
(
k
m

) − 1

e

))
.

By the multiplicative Chernoff bound in Lemma 4.2, we have

P

 ∑
{i1,i2,...im}⊂S

A1,i1i2...im ≤
(
|S|
m

)
ps− tn

 ≤ exp

(
− log

1

δk

)
=

(
k

2en

)k

,

P

 ∑
{i1,i2,...im}⊂S

A2,πi1
...πim

≤
(
|S|
m

)
ps− tn

 ≤ exp

(
− log

1

δk

)
=

(
k

2en

)k

,

P

 ∑
{i1,i2,...im}⊂S

A1,i1i2...imA2,πi1
...πim

≥ vn

 ≤ exp

(
− log

1

δk

)
=

(
k

2en

)k

.

Hence,

P(Ec) ≤
n∑

k=nα
1

m−1
p

(
n

k

)
3δk ≤ 3

n∑
k=nα

1
m−1
p

1

2k
= e−Ω(nα

1
m−1
p ).

Then the proof is complete. □

We use E to truncate the second moment. Let

Li1i2...im = L1(A1,i1i2...im , A2,πi1
πi2

...πim
)L1(A1,i1i2...im , A2,π̃i1

π̃i2
...π̃im

),

with

L1(x, y) =
1− η

1− ps

(
1− s

1− η

)x+y (s(1− η)

η(1− s)

)xy

, η =
ps(1− s)

1− ps
.
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Then by Lemma 3.2 we have

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
= (1 + o(1))Eπ,π̃

(∏
O∈O

E(LOI[A1, A2, π ∈ E]I[A1, A2, π̃ ∈ E])

)
. (3.10)

Next we show the expectation in the right-hand side of (3.10) is less than or equal to 1 + o(1).

If n1 ≤ nα
1

m−1
p , then∏

O∈O
E(LOI[A1, A2, π ∈ E]I[A1, A2, π̃ ∈ E]) ≤

∏
O∈O

E(LO) =
∏
O∈O

(1 + ρ2|O|).

If n1 > nα
1

m−1
p , then∏

O∈O
E(LOI[A1, A2, π ∈ E]I[A1, A2, π̃ ∈ E]) ≤

∏
O∈O

E(LOI[EI ]))

=
∏

O/∈O1

E(LO)
∏

O∈O1

E(LOI[EI ]))

=
∏

O/∈O1

(1 + ρ2|O|)
∏

{i1,...,im}⊂I

E(Li1i2...imI[EI ])

Note that for n1 > nα
1

m−1
p ≥ cn1−o(1),

t2n(
n1

m

)2
p2s2

= O

(
log n

n1

nm−1
1 ps

)
= o

(
log n

n
m−1

2
−o(1)

)
= o(1).

Hence, on EI with n1 > nα
1

m−1
p , one has∑

{i1,i2,...im}⊂I

A1,i1i2...im ≥
(
n1
m

)
ps(1 + o(1)),

∑
{i1,i2,...im}⊂I

A2,πi1
...πim

≥
(
n1
m

)
ps(1 + o(1)),

∑
{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
...πim

≤ ζ(n1).

Next, we consider the order of ζ(n1). Define

γ =
n1 log

2en
n1(

n1

m

)
ps2

.

Lemma 3.3. [I]. If γ = o(1), then ζ(n1) =
(
n1

m

)
ps2(1 + o(1)).

[II]. If γ = Θ(1), then ζ(n1) = Θ
((

n1

m

)
ps2
)
. For n1 > nα

1
m−1
p , ζ(n1) = o

((
n1

m

)
s2
)
.

[III]. If γ ≫ 1, then ζ(n1) = (e+ o(1))
(
n1

m

)
ps2 γ

log γ . For n1 > nα
1

m−1
p , ζ(n1) = o

((
n1

m

)
s2
)
.

Proof of Lemma 3.3: [I] follows from the fact that w(γ−1
e ) = −1 +

√
2γ +O(γ) if γ = o(1).

For [II], if γ = Θ(1), it is obvious that ζ(n1) = Θ
((

n1

m

)
ps2
)
. Suppose n1 > nα

1
m−1
p and p ≥ c for

some constant c > 0. Then s2 = Θ
(

logn
nm−1

)
, n1 = Θ(n) and

γ = O

(
log n

n1

nm−1s2

)
=
O(1)

log n
= o(1),

which contradicts γ = Θ(1). Hence, p = o(1).
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For [III], note that w(x) = log x− log log x+ o(1) if x≫ 1. Then ζ(n1) = (e+ o(1))
(
n1

m

)
ps2 γ

log γ .

If n1 > nα
1

m−1
p , then

pγ = O

(
log n

n1

αpnm−1s2

)
= O

(
log 1

p

log n

)
= o(1).

The proof is complete. □

By Lemma 3.3, we get ζ(n1) =
(
n1

m

)
ps2 + o

((
n1

m

)
s2
)

for n1 > nα
1

m−1
p . Then

∏
{i1,...,im}⊂I

E(Li1i2...imI[EI ]) ≤
(

1− η

1− ps

)2(n1
m)(1− s

1− η

)4(1+o(1))(n1
m)ps

× E

(s(1− η)

η(1− s)

)2
∑

{i1,i2,...im}⊂I A1,i1i2...im
A2,πi1

...πim

I[
∑

{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
...πim

≤ ζ(n1)]


= exp

(
−2(1 + o(1))

(
n1
m

)
ps2(1− p)

)

× E

λ∑{i1,i2,...im}⊂I A1,i1i2...im
A2,πi1

...πim I[
∑

{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
...πim

≤ ζ(n1)]

 ,
where λ =

(
s(1−η)
η(1−s)

)2
= (1 + o(1)) 1

p2
.

Note that for any t ∈ [0, 1],

E

λ∑{i1,i2,...im}⊂I A1,i1i2...im
A2,πi1

...πim I[
∑

{i1,i2,...im}⊂I

A1,i1i2...imA2,πi1
...πim

≤ ζ(n1)]


≤ E

[
λ
t
∑

{i1,i2,...im}⊂I A1,i1i2...im
A2,πi1

...πim
+(1−t)ζ(n1)

]
= λζ(n1)

(
1 + (λt − 1)p2s2

)(n1
m)

λtζ(n1)
.

Let g(y) =
(1+(y−1)p2s2)(

n1
m)

yζ(n1)
. It is easy to verify that g(y) attains minimum value at y0 =

ζ(n1)(1−p2s2)

p2s2((n1
m)−ζ(n1))

∈ [1, λ]. Let h(x) = −x log x− (1− x) log(1− x). Then

∏
{i1,...,im}⊂I

E(Li1i2...imI[EI ]) ≤ exp

(
−2(1 + o(1))

(
n1
m

)
ps2(1− p)

)
λζ(n1)

(
1 + (y0 − 1)p2s2

)(n1
m)

y
ζ(n1)
0

= exp

(
−
(
n1
m

)
ps2(2− p) + ζ(n1)(log s

2 + o(1)) +

(
n1
m

)
h

(
ζ(n1)(

n1

m

) ))

= exp

(
−
(
n1
m

)
ps2(2− p) + ζ(n1) log

e
(
n1

m

)
s2

ζ(n1)
+ o(ζ(n1))

)
.
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Then the second moment of the likelihood ratio is bounded by

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ (1 + o(1))E

[∏
O∈O

(1 + ρ2|O|)I[n1 ≤ nα
1

m−1
p ]

]

+E

 ∏
O/∈O1

(1 + ρ2|O|) exp

(
−
(
n1
m

)
ps2(2− p) + ζ(n1) log

e
(
n1

m

)
s2

ζ(n1)
+ o(ζ(n1))

)
I[n1 ≥ nα

1
m−1
p ]

 .
Recall that ρ = (1 + o(1))s and log 1

p = o(log n). Then

ρ4nm =
log2 n

nm−2+o(1) log2 1
p

= o(1).

By the proof of Lemma 2.3, we have∏
O/∈O1

(1+ρ2|O|) = (1+ρ2)n2( n1
m−2)(1+o(1))(1+ρ4)n

m
= (1+o(1))(1+ρ2)n2( n1

m−2) ≤ (1+o(1))eρ
2n2( n1

m−2).

Besides, ∏
O∈O1

(1 + ρ2|O|) = (1 + ρ2)(
n1
m) ≤ eρ

2(n1
m).

Then we get

E

[(
Q(A1, A2)

P (A1, A2)

)2
]
≤ (1 + o(1))E

[
eρ

2(n1
m)+ρ2n2( n1

m−2)I[n1 ≤ nα
1

m−1
p ]

]

+ (1 + o(1))E

[
exp

(
ρ2n2

(
n1
m−2

)
−
(
n1
m

)
ps2(2−p) + ζ(n1) log

e
(
n1

m

)
s2

ζ(n1)
+o(ζ(n1))

)
I[n1 ≥ nα

1
m−1
p ]

]
= (e) + (f).

Next, we are going to show (e) = 1 + o(1) and (f) = o(1).
We show (e) = 1 + o(1) first. Similar to the proof of Lemma 2.3, we have

E
[
eρ

2(n1
m)+ρ2n2( n1

m−2)I[n1 ≤ nα
1

m−1
p ]

]
= E

[
eρ

2(n1
m)+ρ2n2( n1

m−2)I[n1 ≤
√
n]
]
+ E

[
eρ

2(n1
m)+ρ2n2( n1

m−2)I[
√
n < n1 ≤ nα

1
m−1
p ]

]
≤ 1 + o(1) + e

3
2E
[
eρ

2(Z1
m )I[

√
n < Z1 ≤ nα

1
m−1
p ]

]

≤ 1 + o(1) + e−1

nα
1

m−1
p∑

k=
√
n

eρ
2( k

m)−k log k−k

= 1 + o(1) + e−1

nα
1

m−1
p∑

k=
√
n

e
k
(

(1−ϵ) logn
αp

km−1

nm−1−log k
)
−k

Let f(k) = (1−ϵ) logn
αp

km−1

nm−1 − log k. It is easy to see

f(k) ≤ max{f(
√
n), f(nα

1
m−1
p )} = −min{0.5, ϵ} log n.

Hence (e) ≤ 1 + o(1).
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Next, we prove (f) = o(1). To this end, for a large positive constant C, define

β1 =

 log2
m!(n

m)ps
2

n

m!(n
m)ps2
n

 1
m−1

, β2 =

 log
m!(n

m)ps
2

n

C
m!(n

m)ps2
n

 1
m−1

.

Then n1 falls in one of the three intervals [β1n, n], [β2n, β1n] and [nα
1

m−1
p , β2n].

If n1 ∈ [β1n, n], then γ = o(1) and hence ζ(n1) = (1 + o(1))
(
n1

m

)
ps2. In this case,

E

[
exp

(
ρ2n2

(
n1

m− 2

)
−
(
n1
m

)
ps2(2− p) + ζ(n1) log

e
(
n1

m

)
s2

ζ(n1)
+ o(ζ(n1))

)
I[n1 ≥ nβ1]

]

= E
[
exp

(
ρ2n2

(
n1

m− 2

)
−
(
n1
m

)
ps2(2− p) +

(
n1
m

)
ps2 log

e

p

)
I[n1 ≥ nβ1]

]
≤ e1.5E

[
exp

((
Z1

m

)
s2αp

)
I[Z1 ≥ nβ1]

]
≤ e0.5

n∑
k=β1n

e
k
(

(1−ϵ) logn

nm−1 km−1−log k
)
−k

= o(1).

If n1 ∈ [β2n, β1n], then γ = C
m!(m−1)(1 + o(1)) and hence ζ(n1) = Θ

((
n1

m

)
ps2
)
. In this case, for

some constant C1,

E

[
exp

(
ρ2n2

(
n1

m− 2

)
−
(
n1
m

)
ps2(2− p) + ζ(n1) log

e
(
n1

m

)
s2

ζ(n1)
+ o(ζ(n1))

)
I[β2n ≤ n1 ≤ nβ1]

]

≤ E
[
exp

(
ρ2n2

(
n1

m− 2

)
+ C1

(
n1
m

)
ps2 log

e

p

)
I[β2n ≤ n1 ≤ nβ1]

]
≤ e1.5E

[
exp

(
C1

(
Z1

m

)
ps2 log

1

p

)
I[β2n ≤ Z1 ≤ nβ1]

]
≤ e0.5

β1n∑
k=β2n

e
k
(
C1

(1−ϵ) logn

nm−1 km−1−log k
)
−k

= o(1).

If n1 ∈ [nα
1

m−1
p , β2n], then γ ≥ Cm!

m−1(1 + o(1)). For sufficiently large C, we have ζ(n1) =

O

(
n1 log

2en
n1

log γ

)
. Then

ζ(n1) log
e
(
n1

m

)
s2

ζ(n1)
+ o(ζ(n1)) ≤ n1Rn,

where

Rn = C2

log n
n1

log γ
log

nm−1
1 s2 log γ

log n
n1

,
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for a constant C2. Suppose Rn = o(log n), then

E

[
exp

(
ρ2n2

(
n1

m− 2

)
−
(
n1
m

)
ps2(2− p) + ζ(n1) log

e
(
n1

m

)
s2

ζ(n1)
+ o(ζ(n1))

)
I[α

1
m−1
p n ≤ n1 ≤ nβ2]

]

≤ E
[
exp

(
ρ2n2

(
n1

m− 2

)
−
(
n1
m

)
ps2(2− p) + n1Rn

)
I[α

1
m−1
p n ≤ n1 ≤ nβ2]

]
≤ e1.5E

[
exp

(
−
(
Z1

m

)
ps2 + Z1o(log n)

)
I[α

1
m−1
p n ≤ n1 ≤ nβ2]

]

≤ e0.5
β2n∑

k=α
1

m−1
p n

e
−k

(
(1−ϵ) logn

nm−1(log 1
p−1+p)

km−1+log k−o(logn)

)
−k

= o(1).

Here in the last equality we used the fact that log 1
p − 1 + p ≥ c > 0 for some constant c, since p is

bounded away from one.
Below we prove Rn = o(log n). Note that log 1

αp
= o(log n) and hence

Rn = C2

log n
n1

log γ
log

nm−1
1 s2

log n
n1

+ C2

log n
n1

log γ
log log γ = C2

log n
n1

log γ
log

nm−1
1 s2

log n
n1

+ o(log n).

Then it suffices to show
log n

n1

log γ
log

nm−1
1 s2

log n
n1

= o(log n). (3.11)

Let x = n
n1

∈ [ 1
β2
, α

− 1
m−1

p ]. Then γ = Θ
(
xm−1 log x
nm−1ps2

)
. To prove (3.11), we only need to prove

max

x∈[ 1
β2

,α
− 1

m−1
p ]

log x

log xm−1 log x
nm−1ps2

log
nm−1s2

xm−1 log n
= o(log n). (3.12)

Let δ =

(
log logn

log 1
αp

)−1

. Then δ = o(1). To prove (3.12), it suffices to show ψ(x) ≤ 0, with ψ(x)

given by

ψ(x) = log(x) log
nm−1s2

xm−1 log n
− δ log(n) log

xm−1 log x

nm−1ps2
.

Straightforward calculation yields

ψ′(x) =
log(nm−1s2)− 2(m− 1) log x− log log x− 1− (m− 1)δ log n− δ logn

log x

x
.

It is easy to see that

log 1
αp

δ log n
=

log logn

log 1
αp

logn

log 1
αp

= o(1).

Hence

log(nm−1s2) = log log n+ log
1

αp
= o(δ log n).

This implies ψ′(x) ≤ 0 for x ∈ [ 1
β2
, α

− 1
m−1

p ]. Then ψ(x) ≤ ψ( 1
β2
). Since 1

βm−1
2

log 1
β2

= C
m−1(1 +

o(1))nm−1ps2, then
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ψ

(
1

β2

)
= log

(
1

β2

)
log

nm−1s2

1
βm−1
2

log n
− δ log(n) log

1
βm−1
2

log 1
β2

nm−1ps2

= log

(
1

β2

)
log

1

Cp
− log(C)δ log n,

which is negative if p is bounded away from zero. Assume p = o(1). Then

1

δ
log

(
1

β2

)
= O

log
log n

log 1
αp

log

logn

log 1
αp

log logn

log 1
αp

 = O

(
log2

log n

log 1
αp

)
= o

(
log n

log 1
αp

)
,

which implies ψ
(

1
β2

)
≤ 0 for large n. Then the proof is complete. □

4. Additional Lemmas

In this section, several lemmas are given. Firstly, we present the Hanson-Wright inequality (Wu
et al. (2023)) below.

Lemma 4.1 (Hanson-Wright). Let X,Y ∈ Rd be standard Gaussion random variables such that
(Xi, Yi), i = 1, 2, . . . , d are independent and have correlation coefficient ρ. Then with probability at
1− 2δ,

|XTY − dρ| ≤ C

(
d

√
log

1

δ
+ log

1

δ

)
,

for a constant C > 0.

The following lemma presents the Chernoff bound for binomial distribution (Wu et al. (2023)).

Lemma 4.2 (Chernoff bound). Let X ∼ Bin(n, p) and µ = np. Then for any δ > 0,

P(X ≥ (1 + δ)µ) ≤ e−µ(1+δ) log(1+δ)−δ,

P(X ≤ (1− δ)µ) ≤ e−
δ
2
µ.

Particularly, for τ = µ exp
(
1 +W ( t

eµ − 1
µ)
)

with W (x) be the solution to the equation f(x)ef(x) =
x, then

P(X ≤ τ) ≤ e−t.

The following lemma presents a fact about random permutation (Arratia and Tavaré (1992)).

Lemma 4.3. Let nt be the number of t-cycles in a random permutation σ ∈ Pn. Let Zt ∼
Poisson(1t ) be independent Poisson random variables.. Then

E(g(n1, n2, . . . , nL)) ≤ e1+
1
2
+···+ 1

LE(g(Z1, Z2, . . . , ZL)),

for any nonnegative function g.
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5. Conclusion and Future Problems

In this paper, we study the problem of testing hypergraph correlation. We derive the sharp sta-
tistical testing limit for both Gaussian-Wigner uniform hypergraphs and dense Erdös-Rényi uniform
hypergraphs. Below the limit, it is impossible to distinguish the alternative hypothesis from the
null hypothesis. Above the limit, we construct tests that can achieve asymptotic power one.

We conclude the paper with several possible future topics: 1) Derive sharp detection limit for
sparse Erdös-Rényi uniform hypergraphs. The main difficulty lies in the proof of the impossibility.
The key step of the proof in Wu et al. (2023) is to analyze the pseudoforest structure of graphs. The
pseudoforest structure of hypergraph is much more complex than the graph case. 2) Determine the
sharp detection limit for heterogeneous hypergraphs or graphs. It is well-known that real networks
are usually heterogeneous, that is, the degrees of nodes are not the same Ke et al. (2020); Jin et al.
(2021); Gao et al. (2018). It is interesting to study how the degree heterogeneity changes the limit.
3) Investigate how side information affects the detection limit. Real networks usually have node
covariates or other side information. It is shown that incorporating side information can improve
the limit of community detection Mossel and Xu (2016); Deshpande et al. (2018); Weng and Feng
(2022); Zhao et al. (2021). It is interesting to study whether similar result holds in testing graph
or hypergraph correlation.
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