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Abstract. We study a d-dimensional branching Brownian motion (BBM) among Poissonian ob-
stacles, where a random trap field in Rd is created via a Poisson point process. In the soft obstacle
model, the trap field consists of a positive potential which is formed as a sum of a compactly sup-
ported bounded function translated at the atoms of the Poisson point process. Particles branch at
the normal rate outside the trap field; and when inside the trap field, on top of complete suppression
of branching, particles are killed at a rate given by the value of the potential. Under soft killing, the
probability that the entire BBM goes extinct due to killing is positive in almost every environment.
Conditional on ultimate survival of the process, we prove a law of large numbers for the total mass
of BBM among soft Poissonian obstacles. Our result is quenched, that is, it holds in almost every
environment with respect to the Poisson point process.

1. Introduction

In this work, we consider a model of a spatial random process in a random environment in
Rd, where the random process is a d-dimensional branching Brownian motion (BBM), and the
random environment is created via a Poisson point process (PPP). We will call an environment in
Rd Poissonian if its randomness is created via a PPP. A random trap field is formed as a positive
potential which is given by the sum of a compactly supported, positive, bounded function translated
at the atoms of the PPP. We specify the interaction between the BBM and the random trap field
via the soft killing rule: the particles are killed at a rate given by the value of the potential inside
the trap field. Furthermore, the branching of particles is assumed to be completely suppressed
inside the trap field whereas particles branch at a fixed rate outside the trap field. We call the
model described here, the model of BBM among soft obstacles. We study the growth of mass, that
is, the population size, of a BBM evolving in a typical such random environment in Rd. Clearly,
the presence of traps tends to decrease the mass compared to a ‘free’ BBM, that is, a BBM in Rd

without any traps. The goal of this paper is to prove a law of large numbers on the reduced mass
of the BBM among soft obstacles.
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The mass of BBM among random obstacles in Rd was first studied by Engländer (2008), where
the random environment was composed of spherical traps of fixed radius with centers given by a
PPP, and the interaction between the BBM and the trap field was given by the mild obstacle rule:
when a particle is inside the traps, it branches at a positive rate lower than usual and there is no
killing of particles. Engländer showed that on a set of full measure with respect to the PPP, a kind
of law of large numbers holds (see Engländer (2008, Theorem 1)) for the mass of the process. His
result was later improved by Öz (2023) to a strong law of large numbers, including the case of zero
branching in the trap field. In both aforementioned works, the challenging part of the proof was the
lower bound of the law of large numbers. Under soft killing considered here, the proof of the lower
bound is even more delicate as the system tends to produce fewer particles due to possible killing
compared to the case of mild obstacles, and there is positive probability for the entire process to
be killed by the trap field in finite time. Therefore, one has to condition the process on survival
for meaningful results. It is more challenging to show that sufficiently many particles are produced
with high probability under soft killing, because at each step of the proof one has to overcome the
effect of possible killing of particles, which makes the analysis significantly more elaborate compared
to the case of mild obstacles with zero branching inside the trap field.

1.1. The model. We now present the model in more detail. Firstly, we introduce the two sources of
randomness, the BBM and the random trap field, and then we develop a model of a random process
in random environment by specifying an interaction between the random components.

1. Branching Browian motion: Let Z = (Zt)t≥0 be a strictly dyadic d-dimensional BBM with
branching rate β > 0, where t represents time. The process can be described as follows. It starts
with a single particle, which performs a Brownian motion in Rd for a random lifetime, at the end
of which it dies and simultaneously gives birth to two offspring. Starting from the position where
their parent dies, each offspring particle repeats the same procedure as their parent independently
of others and the parent, and the process evolves through time in this way. All particle lifetimes
are exponentially distributed with parameter β > 0. For each t ≥ 0, Zt can be viewed as a finite
discrete measure on Rd, which is supported at the positions of the particles at time t. We use Px

and Ex, respectively, to denote the law and corresponding expectation of a BBM starting with a
single particle at x ∈ Rd. For t ≥ 0 and a Borel set A ⊆ Rd, we write Zt(A) to denote the mass of
Z falling inside A at time t, and set Nt = |Zt| = Zt(Rd) to be the (total) mass of BBM at time t.

2. Trap field: The random environment in Rd is created as follows. Let Π be a Poisson point
process in Rd with constant intensity ν > 0, and (Ω,P) be the corresponding probability space with
expectation E. We now describe a way to obtain a random trap field out of Π, along with the
corresponding trapping rule, which serves as the interaction between the BBM and the Poissonian
trap field.

Soft obstacles: Consider a positive, bounded, measurable, and compactly supported killing
function W : Rd → (0,∞), and for ω =

∑
i δxi ∈ Ω and x ∈ Rd, define the potential

V (x, ω) =
∑
i

W (x− xi). (1.1)

In this case, the Poissonian trap field K = K(ω) in Rd is formed as follows:

x ∈ K(ω) ⇔ V (x, ω) > 0. (1.2)

The soft killing rule is that particles branch at the normal rate β when outside K, whereas inside
K they are killed at rate V = V (x, ω) and their branching is completely suppressed. Note that
the special case of constant killing rate inside spherical traps defined in (1.3) below corresponds to
taking W = α1B̄(0,a) with α > 0 except that W is not summed on overlapping balls. A formal
treatment of BBM killed at rate V = V (x, ω) in Rd is given in Le Gall and Véber (2012).
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For ω ∈ Ω we refer to Rd with K(ω) attached simply as the random environment ω, and use
Pω
x to denote the conditional law of the BBM in the random environment ω. For simplicity, set

Pω = Pω
0 . Observe that under the law Pω the BBM has a spatially dependent branching rate

β(x, ω) := β 1Kc(ω)(x).

The main objective of this paper is to prove a quenched law of large numbers (LLN) for the mass
of BBM among the Poissonian trap field introduced above.

We now briefly describe the mild obstacle problem for BBM, which was studied in Engländer
(2008) and Öz (2023), and serves as motivation to study the current problem. Let the trap field be
given by the random set

K = K(ω) :=
⋃

xi∈ supp(Π)

B̄(xi, a), (1.3)

where B̄(x, a) denotes the closed ball of radius a centered at x ∈ Rd. The mild obstacle rule is as
follows: when a particle of BBM is outside K, it branches at rate β2 > 0, whereas when inside K, it
branches at a lower rate β1 with 0 ≤ β1 < β2. That is, under the law Pω, the BBM has a spatially
dependent branching rate

β(x, ω) := β2 1Kc(ω)(x) + β1 1K(ω)(x).

We note that β1 was taken to be strictly positive in Engländer (2008), whereas in Öz (2023) the
case of β1 = 0 was allowed. There is no killing of particles in the mild obstacle model.

Unlike the mild obstacle setting, under soft killing one can show that on a set of full P-measure
there is positive probability for the entire process to be killed in finite time (see Proposition 3.2).
Therefore, to obtain meaningful results, the process is conditioned on the event of ultimate survival.
Recall that Nt = |Zt| denotes the mass of BBM at time t. Let

St = {Nt ≥ 1}, S =
⋂
t≥0

St (1.4)

be, respectively, the event of survival up to time t, and the event of ultimate survival. We may also
write St = {τ > t}, where τ = inf{s ≥ 0 : Ns = 0}. By continuity of measure from above, one
deduces that limt→∞ Pω(St) = Pω(S). Define the law P̂ω as

P̂ω( · ) := Pω( · | S).

Compared to the mild obstacle problem, the main extra challenge is to show that even under soft
killing, in almost every environment conditional on S exponentially many particles are produced for
large times with overwhelming probability. This is carried out in Part 1 of the proof of the lower
bound of Theorem 2.1 by making critical use of Lemma 4.1 and Lemma 5.1.

For quick reference, the following table collects the different probabilities that we use in this
paper. The corresponding expectations will be denoted by similar fonts. In what follows, free refers
to the model where there is no trap field in Rd.

P law of a homogeneous Poisson point process
Px laws of free BBM started by a single particle at x ∈ Rd

Pω
x conditional laws of BBM started by a single particle at x in the environment ω

P̂ω
x P̂ω

x ( · ) := Pω
x ( · | S), where S is the event of ultimate survival of the BBM from killing

Px laws of free Brownian motion started at x ∈ Rd

Pω
x conditional laws of Brownian motion started at x in the environment ω
Table 1.1. The notation and description of the different probabilities used in this paper.
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1.2. History. The aim of this section is to lay the background literature for the current work and
to put it in perspective. The study of spatial branching processes among random obstacles in
Rd has originated from Engländer (2000), in which a BBM among hard Poissonian obstacles was
investigated with the killing rule of trapping of the first particle. That is, the entire process is killed
at the first hitting of the BBM to the trap field K as opposed to killing only the particle that hits
K. Equivalently, the event of survival up to time t is defined as

{T > t} where T = inf{s ≥ 0 : Zt(K) ≥ 1}. (1.5)

In Engländer (2000), Engländer considered a uniform field of traps, and obtained the large-time
asymptotic behavior of the annealed probability of survival in d ≥ 2. Then, Engländer and den
Hollander (2003) studied the more interesting case where the trap intensity was radially decaying
as

dν
dx

∼ ℓ

|x|d−1
, |x| → ∞, ℓ > 0, (1.6)

where dν/dx denotes the density of the mean measure of the PPP with respect to the Lebesgue
measure. It was shown in Engländer and den Hollander (2003) that the decay rate in (1.6) is
interesting, because it gives rise to a phase transition at a critical intensity ℓ = ℓcr > 0, at which the
behavior of the system changes both in terms of the large-time asymptotics of the annealed survival
probability and in terms of the optimal survival strategy. In both Engländer (2000) and Engländer
and den Hollander (2003), the branching rule was taken as strictly dyadic. Then, in Öz et al.
(2017), the asymptotic results for the survival probability of the system studied in Engländer and
den Hollander (2003) were extended to the case of a BBM with a generic branching law, including
the case p0 > 0, where p0 is the probability that a particle gives no offspring at the end of its lifetime,
so that a second mechanism of extinction for the BBM is intrinsically present other than that of
the traps. Recently in Öz and Engländer (2019), conditioning the BBM on the event of survival
from hard Poissonian obstacles, Öz and Engländer proved several optimal survival strategies in the
annealed setting, with particular emphasis on the population size. All works mentioned thus far
assumed the hard killing rule in (1.5).

In Engländer (2008), Engländer proposed the mild obstacle problem for BBM, that is, there is no
killing of particles but the branching is decreased to a nonzero constant inside K, and showed that on
a set of full measure with respect to the PPP a kind of LLN holds for the mass of the process. This
quenched result was recently improved in Öz (2023) to the strong law of large numbers, allowing the
possibility of no branching inside K. The current work is mainly motivated by Engländer (2008)
and Öz (2023), and aims at proving an LLN for the mass of BBM under soft killing in Rd. We
also note that a related problem where a critical BBM that is killed at a small rate ε > 0 inside
soft obstacles was studied in Le Gall and Véber (2012), where the main problem was to find the
asymptotics of the probability that the BBM ever goes outside the ball of radius R centered at the
origin if R is large.

We refer the reader to Engländer (2007) for a survey, and to Engländer (2015) for a detailed
treatment on the topic of BBM among random obstacles. Also, we note that the problem of LLN
for spatial branching processes in a free environment in Rd, that is, without obstacles, dates back
to Watanabe (1967), where an almost sure result on the asymptotic behavior of certain branching
Markov processes was established, covering the SLLN for local mass of BBM in fixed Borel sets
in Rd as a special case. For more on the LLN in a free environment, one can see Biggins (1992)
and Engländer et al. (2010), where the former work proves SLLN for spatial branching processes in
linearly moving Borel sets in both the discrete setting of branching random walk in discrete time
and the continuous setting of BBM, and the latter studies the local growth of mass for a large class
of branching diffusions. Also, Chapters 2 − 4 of Engländer (2015) contains a thorough exposition
about the SLLN of branching diffusions in various settings.
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1.3. Outline. The rest of the paper is organized as follows. In Section 2, we present our main
result. Section 3 contains several preparatory results for the proof of Theorem 2.1. In Section 4,
we construct the almost sure (a.s.) environment that will be used in the soft obstacle problem. In
Section 5, we state and prove a key lemma that will serve as a first step for the proof of our main
result. In Section 6, we present the proof of Theorem 2.1. Section 7 discusses some further related
problems.

2. Main Result

In this section, we present our main result. To this end, we introduce further notation, and define
two relevant constants. Let ωd denote the volume of the d-dimensional unit ball, and λd,r denote
the principal Dirichlet eigenvalue of −1

2∆ on B(0, r) in d dimensions. Set λd = λd,1. Recall that
ν > 0 is the constant intensity of the PPP, and define the positive constants

R0 = R0(d, ν) :=

(
d

νωd

)1/d

(2.1)

and

c(d, ν) := λd

(
d

νωd

)−2/d

.

With these definitions, observe that R0 = R0(d, ν) =
√

λd/c(d, ν). Also, recall the law P̂ω( · ) =
Pω( · | S) with S as in (1.4).

Theorem 2.1 (Quenched LLN for BBM among soft Poissonian obstacles, d ≥ 2). Let the random
environment in Rd be given by (1.1) and (1.2). Then, under the soft killing rule, in d ≥ 2, on a set
of full P-measure,

lim
t→∞

(log t)2/d
(
logNt

t
− β

)
= −c(d, ν) in P̂ω-probability. (2.2)

Remark 2.2 (Quenched LLN). Theorem 2.1 is called a law of large numbers, because it says that the
mass of BBM among Poissonian obstacles grows as its expectation (see Proposition 3.3) as t → ∞
in the sense of convergence in probability. The reason why it is called quenched is that it holds on
a set of full P-measure, that is, in almost every environment.

Remark 2.3 (Robustness). Observe that the result (2.2) does not depend on the details of the killing
potential V , such as supxW (x) = supx V (x, ω) or supx∈K0

{|x| : W (x) > 0}, where K0 stands for
the compact on which W is supported. Moreover, in Öz (2023, Theorem 1), the same formula as
in (2.2) (except that there was no conditioning on ultimate survival) was obtained as the SLLN
for BBM among mild obstacles, where the branching was totally or partially suppressed inside the
traps but there was no killing of particles. This means, the result is not only unaffected by the fine
details of the trapping mechanism, but is also unaffected by the nature of the traps, whether they
be soft or mild. Therefore, Theorem 2.1 above and Öz (2023, Theorem 1) suggest that the LLN
for the mass of BBM among Poissonian obstacles is quite robust to the nature and details of the
trapping mechanism.

This can be explained as follows. In almost every environment, the mass of BBM to the leading
order is entirely determined by what happens inside large trap-free regions rather than what happens
inside the traps. In more detail, ‘large’ clearings (see Definition 3.1) are present in almost every
environment in the case of mild traps but also even under soft killing via a potential of the form
in (1.1) (to make a connection between the two models, set a = supx∈K0

{|x| : W (x) > 0}, where
a is the trap radius in (1.3) in the case of mild traps), and the BBM is able to hit these clearings
soon enough with overwhelming probability regardless of the details of the trapping mechanism.
Once the BBM hits such a large clearing, the sub-BBM emanating from the particle that hits the
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clearing is able to produce sufficiently many particles within this clearing in the remaining time.
It is the growth inside the large clearing that determines the mass, to the leading order, of the
BBM for large times. Obviously, the sub-BBM evolving inside the large clearing does not feel the
effect of the traps. This is why the result is insensitive to the nature and the parameters of the
trapping mechanism. The details of this discussion are presented in the proof of the lower bound
of Theorem 2.1.

3. Preparations

In this section, we collect some preparatory results that will later be used in the proof of Theo-
rem 2.1.

Let us introduce some further notation that will be used throughout the paper. We use N as the
set of positive integers and R+ as the set of positive real numbers. For x ∈ Rd, we denote by |x|
the Euclidean distance of x to the origin. For a set A ⊆ Rd and x ∈ Rd, we define their sum in the
sense of sum of sets as x+A := {x+ y : y ∈ A}. For a set A ⊆ Rd, we denote by ∂A its boundary
in Rd. For two functions f, g : R+ → R+, we write g(t) = o(f(t)) and f(t) ∼ g(t) if g(t)/f(t) → 0
and g(t)/f(t) → c for some positive constant c > 0 as t → ∞, respectively. For an event A, we use
Ac to denote its complement, and 1A its indicator function. We will use c, c1, c2, etc. to denote
generic constants, whose values may change from line to line. The notation c(p) or cp will be used
to mean that the constant c depends on the parameter p.

3.1. Tubular estimate. Let X = (Xt)t≥0 denote a standard Brownian motion in d dimensions, and
(Px : x ∈ Rd) be the laws of Brownian motion started at x with corresponding expectations
(Ex : x ∈ Rd). We now state a previous result, which is taken from Sznitman (1993), and will be
used in the proof of Lemma 5.1. It concerns a Brownian motion in a free environment, and gives
a lower bound on the probability that a Brownian motion stays within a fixed distance from the
central axis of a ‘tube’ connecting its starting point to a given point. For x, y ∈ Rd and t > 0,
consider the line segment {x + (y − x)s/t : 0 ≤ s ≤ t}. One may refer to the set {z ∈ Rd :
inf0≤s≤t |z − (x+ (y − x)s/t)| < a} as a tube (or cylinder) of radius a connecting x and y in Rd.

Proposition A (Tubular estimate for Brownian motion; Sznitman (1993)). Let x, y ∈ Rd be fixed.
There exists a constant cd > 0 that depends only on dimension d such that for all t > 0 and b > 0,

Px

(
sup
0≤s≤t

∣∣∣∣Xs −
(
x+

s

t
(y − x)

) ∣∣∣∣ < b

)
≥ cd exp

[
−λdt

b2
− |y − x|2

2t

]
.

3.2. Survival probability. We first give a definition concerning special random subsets of Rd in the
environment ω, followed by a previous result, which gives an a.s.-environment in the soft obstacle
setting. Then, we prove a preliminary result on the survival probability of the BBM among soft
obstacles.

Definition 3.1. We call A ⊆ Rd a clearing in the random environment ω if A ⊆ Kc. By a clearing
of radius r, we mean a ball of radius r which is a clearing.

Proposition B (Large almost-sure clearings, soft obstacles; Sznitman (1998)). Let the random
environment in Rd be given by (1.1) and (1.2). Then, on a set of full P-measure, there exists ℓ0 > 0
such that for all ℓ > ℓ0 the cube [−ℓ, ℓ]d contains a clearing of radius

Rℓ := R0(log ℓ)
1/d − (log log ℓ)2, ℓ > 1. (3.1)

Proposition 3.2 (Survival probability for BBM among soft obstacles). Let the random environment
in Rd be given by (1.1) and (1.2). Then, under the soft killing rule, on a set of full P-measure,

0 < Pω(S) < 1.
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Proof : Recall the definitions of St and S from (1.4). It is clear that Pω(St) is nonincreasing in t,
and bounded below by zero. Hence, limt→∞ Pω(St) = Pω(S) exists. We will show that on a set of
full P-measure there exist constants c1 = c1(ω) and c2 = c2(ω) such that

0 < c1 ≤ Pω(St) ≤ c2 < 1 (3.2)

for all large t. To prove the upper bound in (3.2), use the single-particle Brownian survival asymp-
totics among soft obstacles from Sznitman (1993, Theorem 2.5), which implies that on a set of full
P-measure the survival probability goes to zero as t → ∞. This means, there exists t0 = t0(ω) such
that for all t ≥ t0 the probability of survival for a single particle up to time t is at most 1/2. Now
consider the event that the initial particle of the BBM does not branch up to time t0 and is killed
by the potential over the interval [0, t0]. Since the branching and motion mechanisms in a BBM are
independent, the probability of this event is bounded below by exp(−βt0)/2. This implies that on
a set of full P-measure, Pω(St) ≤ Pω(St0) ≤ 1− exp(−βt0)/2 for all t ≥ t0.

To prove the lower bound in (3.2), define

Ωs = {ω ∈ Ω : ∃ ℓ1 = ℓ1(ω), ∀ ℓ ≥ ℓ1, [−ℓ, ℓ]d contains a clearing of radius Rℓ}. (3.3)

From Proposition B, we know that P(Ωs) = 1. On the other hand, by the proof of Engländer (2015,
Thm. 5.5.4, p.193), there exists a critical radius, say Rcr, which is given by λd,Rcr = β, such that
for any R > Rcr the probability pR that at least one particle of BBM has not left B(0, R) ever, is
positive. Now let ω ∈ Ωs, and choose R = R(ω) so that

R > Rcr + 1 and e(2R/R0)d > ℓ1(ω),

where ℓ1 is as introduced in (3.3). Then, in the environment ω, by definition of Rℓ and Ωs, the box

C(ω, d) :=
[
−e(2R/R0)d , e(2R/R0)d

]d
contains a clearing of radius R. Let B(x0, R) be this clearing where x0 = x0(ω) and B(x0, R) ⊆
C(ω, d). Consider the following survival strategy for the BBM. Over [0, 1], avoid being killed by
the trap field and send the initial particle to B(x0, 1). We may (but don’t have to) suppress the
branching over [0, 1] so that the initial particle is still alive at time 1. Let this joint strategy have
probability ps. Observe that ps > 0 since the box C(ω, d) is fixed and the killing function W is
bounded. Then, over [1,∞), we know from the proof of Engländer (2015, Thm. 5.5.4, p.193) that
since R > Rcr + 1 at least one particle of the sub-BBM that is initiated at time 1 from within
B(x0, 1) does not ever leave the clearing B(x0, R) with probability pR > 0. Hence, by the Markov
property applied at time 1, for all t ≥ 1,

Pω(St) ≥ Pω(S) ≥ pspR > 0.

This completes the proof of the lower bound in (3.2). □

3.3. Expected mass. A first consideration for the mass of BBM among soft obstacles is to calculate
its expectation and obtain a formula to the leading order which holds in almost every environment.
The expected mass formula below will also be explicitly used in the proof of the upper bound of
Theorem 2.1.

Proposition 3.3 (Expected mass for BBM among soft obstacles). Let β0 > 0 be the constant
branching rate of the BBM outside the trap field K. Then, on a set of full P-measure,

Eω[Nt] = exp

[
β0t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
.

Proof : Consider a general branching mechanism in K such that when inside K particles branch
according to the offspring law (pk)k≥0 as opposed to binary branching. Let µ1 =

∑∞
k=1 kpk be the

associated mean number of offspring. Observe that soft killing under the potential V together with
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complete suppression of branching inside the obstacles is tantamount to the offspring law (pk)k≥0

with p0 = 1 and branching rate V (x, ω) inside K. In this way, both the branching rate and the
offspring mean depend on position as

β(x, ω) = β0 1Kc(ω)(x) + V (x, ω)1K(ω)(x), (3.4)
µ(x, ω) = 21Kc(ω)(x). (3.5)

Note that p0 = 1 implies µ1 = 0. By the construction in (1.2), V = V 1K . Define m(x, ω) =
µ(x, ω) − 1 and m1 = µ1 − 1. Then, β(x, ω)m(x, ω) = β0 − (β0 + V )1K . Applying the classical
first moment formula for spatial branching processes ω-wise (see for instance Gonzalez et al. (2022,
Lemma 1) for a more general version), and using (3.4) and (3.5), we obtain

Eω[Nt] = E0

[
exp

(∫ t

0
β(Xs, ω)m(Xs, ω)ds

)]
= eβ0tE0

[
exp

(
−
∫ t

0
(β01K(ω)(Xs) + V (Xs, ω))ds

)]
.

The expectation on the right-hand side is the survival probability up to t of a single Brownian
motion among soft obstacles with killing function

W̃ (x) = β01K0(x) +W (x), (3.6)

where K0 denotes the compact set on which W is supported, except that the first term in (3.6) is not
summed on the overlapping compacts. This, nonetheless, does not affect the asymptotic behavior
of the survival probability (see Sznitman (1998, Remark 4.2.2)). Note that the function W̃ is also
positive, bounded, measurable, and compactly supported. Hence, the result follows from Sznitman
(1998, Theorem 4.5.1). □

3.4. Large-deviations for BBM in an expanding ball. For a generic standard Brownian motion X =
(Xt)t≥0 and a Borel set A ⊆ Rd, define σA = inf{s ≥ 0 : Xs /∈ A} to be the first exit time of X out
of A. We now describe the model of BBM with deactivation at a boundary, which was introduced
in Öz (2023). For a Borel set A ⊆ Rd, denote by ∂A the boundary of A. Consider a family of Borel
sets B = (Bt)t≥0. Let ZB = (ZBt

t )t≥0 be the BBM deactivated at ∂B, which can be obtained from
Z as follows: for each t ≥ 0, start with Zt, and delete from it any particle whose ancestral line up
to t has exited Bt to obtain ZBt

t . This means, ZBt
t consists of particles of Zt whose ancestral lines

up to t have been confined to Bt over the time period [0, t] (but may have left Bs at an earlier time
s).

The following result is the first part (the low κ regime) of Öz (2023, Theorem 2), and will be
used in the proof of the main result. It gives the large-time asymptotic behavior of the probability
that the mass of BBM deactivated at the boundary of a subdiffusively expanding ball B = (Bt)t≥0

is atypically small.

Theorem C (Lower large-deviations for mass of BBM in an expanding ball; Theorem 2, Öz (2023)).
Let r : R+ → R+ be increasing such that r(t) → ∞ as t → ∞ and r(t) = o(

√
t). Also, let

γ : R+ → R+ be defined by γ(t) = e−κr(t), where κ > 0 is a constant. For t > 0, set Bt = B(0, r(t)),
pt = P0(σBt ≥ t), and nt = |ZBt

t |. Then, for any 0 < κ ≤
√

β/2,

lim
t→∞

1

r(t)
logP

(
nt < γtpte

βt
)
= −κ.

4. The quenched environment

In this section, we construct the a.s., that is, the quenched environment for the problem of
BBM among soft obstacles. The following lemma is a stronger version of Öz (2023, Lemma 1)
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and Sznitman (1998, Lemma 4.5.2), and will be used to prepare the a.s.-environment for the soft
obstacle problem.

Lemma 4.1 (A.s. clearings, soft obstacles, d ≥ 2). Let θ ∈ R+, b ≥ 0, and c ≥ 1 be fixed, and
define the function f : R+ → N by

f(ℓ) =
⌈
eθℓ

3/2
⌉
.

For ℓ > 0, let x1, . . . , xf(ℓ) be any set of f(ℓ) points in Rd, and define the cubes Cj,ℓ = xj + [−ℓ, ℓ]d,
1 ≤ j ≤ f(ℓ). Then, in d ≥ 2, on a set of full P-measure, there exists ℓ0 > 0 such that for each
ℓ ≥ ℓ0, each of C1,ℓ, C2,ℓ, . . . , Cf(ℓ),ℓ contains a clearing of radius Rℓ + b, where Rℓ is given by

Rℓ :=
R0

51/d
(log cℓ)1/d, ℓ > 1. (4.1)

Proof : Let x1, x2, . . . be a sequence of points in Rd, and Cj,ℓ := xj + [−ℓ, ℓ]d for j = 1, 2, . . . For
k ≥ 0, let Aℓ,k be the event that there is a clearing of radius Rℓ + k in each C1,ℓ, C2,ℓ, . . . , Cf(ℓ+1),ℓ.
Also, for k ≥ 0, define

Eℓ,k = {[−ℓ, ℓ]d contains a clearing of radius Rℓ + k}.
Then, by the homogeneity of the PPP and the union bound,

P(Ac
ℓ,k) ≤ f(ℓ+ 1)P(Ec

ℓ,k). (4.2)

We now estimate P(Ec
ℓ,k). Partition [−ℓ, ℓ]d into smaller cubes of side length 2(Rℓ + k). Inscribe a

ball of radius Rℓ + k in each smaller cube, and bound P(Ec
ℓ,k) from above as

P(Ec
ℓ,k) ≤

[
1− e−νωd(Rℓ+k)d

]⌊ℓ/(Rℓ+k)⌋d
≤ exp

[
−
⌊

ℓ

Rℓ + k

⌋d
e−νωd(Rℓ+k)d

]
, (4.3)

where the estimate 1 + x ≤ ex is used. Let

αℓ := ⌊ℓ/(Rℓ + k)⌋d e−νωd(Rℓ+k)d .

Then, using (2.1) and (4.1), and that log⌊ℓ/(Rℓ + k)⌋ ≥ log ℓ
2Rℓ

for large ℓ, it follows that

logαℓ ≥ d log ℓ− d log(2Rℓ)− νωd(Rℓ + k)d

≥ d log ℓ− d log(2Rℓ)−
d

Rd
0

[
(19/18)1/dRℓ

]d
≥
(
d− 2d

9

)
log ℓ ≥ 14

9
log ℓ, (4.4)

for all large ℓ, where the last line follows due to (4.1) and since d ≥ 2 by assumption. It follows
from (4.3) and (4.4) that for a given k > 0, for all large ℓ,

P(Ec
ℓ,k) ≤ e−αℓ ≤ e−ℓ14/9 .

Then, (4.2) yields
∞∑
n=1

P
(
Ac

n,k

)
≤ c(n0) +

∞∑
n=n0

⌈
eθ(n+1)3/2

⌉
e−n14/9

< ∞, (4.5)

where c(n0) is a constant that depends on n0. Applying Borel-Cantelli lemma, we conclude that
with P-probability one, only finitely many Ac

n,k occur. That is, P(Ωs) = 1, where

Ωs = {ω : ∃n1 = n1(ω) ∀n ≥ n1, each C1,n, . . . , Cf(n+1),n has a clearing of radius Rn + k}. (4.6)

Let ω0 ∈ Ωs, and n1 = n1(ω0) be as in (4.6). Observe that

Rn+1 −Rn ≤ R0

51/d

[
(log c(n+ 1))1/d − (log cn)1/d

]
→ 0, n → ∞.
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In particular, there exists n2 ∈ N such that for all n ≥ n2, Rn+1 − Rn ≤ 1. Choose k = b+ 1. (So
far the choice of k > 0 was arbitrary.) Denote by a ∨ b the maximum of the numbers a and b. To
complete the proof, it suffices to show that in the environment ω0 for each ℓ ≥ n3 := n1 ∨ n2, each
C1,ℓ, . . . , Cf(ℓ),ℓ contains a clearing of radius Rℓ + b. Take ℓ ≥ n3 so that there exists n ≥ n3 with
n ≤ ℓ ≤ n+ 1. Fix this integer n. Then, since Rℓ is increasing in ℓ, we have

Rℓ + b ≤ Rn+1 + b ≤ Rn + 1 + b = Rn + k. (4.7)

Furthermore,

f(ℓ) =
⌈
eθℓ

3/2
⌉
≤
⌈
eθ(n+1)3/2

⌉
= f(n+ 1). (4.8)

Then, (4.6), (4.7) and (4.8) imply that for ℓ ≥ n3, each of C1,ℓ, . . . , Cf(ℓ),ℓ contains a clearing of
radius Rℓ+b. This completes the proof since the choice of ω0 ∈ Ωs was arbitrary and P(Ωs) = 1. □

Next, we use Lemma 4.1 with a suitably chosen collection of points (xj : 1 ≤ j ≤ f(ℓ)) and a set
of parameters ℓ, θ, c in order to prepare an a.s.-environment with ‘high’ concentration of ‘large’
clearings, that is, in which the covering radius of the ‘large’ clearings is sufficiently small. We will
use this a.s.-environment as the quenched setting for the problem of BBM among soft obstacles.

Proposition 4.2 (An a.s.-environment, soft obstacles, d ≥ 2). Let k > 0 be fixed, and C(0, kt) =
[−kt, kt]d be the cube centered at the origin with side length 2kt. Let ρ : R+ → R+ be such that

ρ(t) = (log t)2/3, t > 1. (4.9)

For b > 0, define the set of environments Ωs = Ωs(k, b) as

Ωs = {ω ∈ Ω : ∃ t0 ∀ t ≥ t0, ∀x ∈ C(0, kt) ∃y ∈ B(x, ρ(t)) such thatB
(
y,Rρ(t) + b

)
⊆ Kc}, (4.10)

where Rρ(t) is as in (4.1) with c = 1. Then, in d ≥ 2, P(Ωs) = 1.

Proof : Consider the simple cubic packing of C(0, kt) with balls of radius ρ(t)/(2
√
d). Then, at most

nt :=

⌈
kt

ρ(t)/(2
√
d)

⌉d
(4.11)

balls are needed to completely pack C(0, kt), say with centers (zj : 1 ≤ j ≤ nt). For each j, let
Bj

t = B(zj , ρ(t)/(2
√
d)). Now consider generically a simple cubic packing of Rd by balls (Bj : j ∈ N)

of radius R > 0, and let x ∈ Rd be any point. It is easy to deduce from elementary geometry that
minj maxz∈Bj |x − z| < (

√
d/2)4R, where

√
d/2 is the distance between the center and any vertex

of the d-dimensional unit cube C(0, 1/2). Then, since the radius of the packing balls is ρ(t)/(2
√
d)

in our case, it follows that

∀x ∈ C(0, kt), min
1≤j≤nt

max
z∈Bj

t

|x− z| < ρ(t). (4.12)

We now combine the simple cubic packing of C(0, kt) and Lemma 4.1. Set ℓ = ρ(t)/(2
√
d) =

(log t)2/3/(2
√
d) in Lemma 4.1. Then, t = e(2ℓ

√
d)3/2 , and it follows from (4.11) that for all large ℓ,

nt ≤
(2k)d

ℓd
ed(2ℓ

√
d)3/2 ≤ ed(2ℓ

√
d)3/2 .

Now, with the choices ℓ = ρ(t)/(2
√
d), θ = d(2

√
d)3/2, c = 2

√
d and xj = zj for j ≤ nt, where

(zj : 1 ≤ j ≤ nt) are as above, in view of (4.12) and since ℓ → ∞ as t → ∞, Lemma 4.1 implies the
following. For fixed k > 0 and b > 0, on a set of full P-measure, there exists t0 > 0 such that for all
t ≥ t0, B(x, ρ(t)) contains a clearing of radius R0

51/d
(log ρ(t))1/d + b for each x ∈ C(0, kt). □
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In the subsequent proofs, Ωs = Ωs(k, b) given in (4.10) with a suitable pair (k, b), will be our
quenched environment for the problem of BBM among soft obstacles (see Figure 4.1).

The term ‘overwhelming probability’ is henceforth used with a precise meaning, which is given
as follows.

Definition 4.3 (Overwhelming probability). Let (At)t>0 be a family of events indexed by time t,
and P be the relevant probability. We say that At occurs with overwhelming probability if

lim
t→∞

P(Ac
t) = 0.

kt

ρ(t)√
d

kt

ρ(t)/
√
d

.
0

.
ρ(t)

Figure 4.1. Illustration of a typical environment ω in Ωs = Ωs(k, 0) at a time
t ≥ t0(ω) in d = 2. The red balls represent clearings of radius Rρ(t). The larger ball
with red boundary has radius ρ(t) and is included in the figure to illustrate that any
ball of radius ρ(t) inside [−kt, kt]d contains at least one clearing of radius Rρ(t).

5. Hitting the moderate clearings

In this section we show that on the set of full P-measure developed in the previous section, that is,
on Ωs given in (4.10), the BBM hits clearings of a certain size over [0, t] for large t with overwhelming
P̂ω-probability. In the rest of the paper, two types of clearings will be considered according to size:
moderate clearings have r(t) ∼ (log log t)1/d and large clearings have r(t) ∼ (log t)1/d, where r = r(t)
is used as the radius of a clearing. The following lemma will play a central role in the proof of the
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lower bound of Theorem 2.1. It is on the hitting probability and the position of hitting over [0, t]
of a BBM among soft obstacles to moderate clearings conditioned on survival over [0, t], and says
that with overwhelming probability, the BBM hits such a clearing within the horizon [−kt, kt]d over
[0, t]. As before we use Z = (Zt)t≥0 to denote a BBM in d dimensions, Px as the law of a free BBM
started with a single particle at position x ∈ Rd, and Pω

x as the conditional law of a BBM started
with a single particle at position x ∈ Rd in the environment ω. Set Pω = Pω

0 . Also, recall the
definition of R0 from (2.1). The range (accumulated support) of Z is the process defined by

R(t) =
⋃

0≤s≤t

supp(Zs).

Lemma 5.1 (Hitting probability of BBM to moderate clearings). Let r : R+ → R+ be such that

r(t) =
1

3

R0

51/d

(
2

3

)1/d

(log log t)1/d, t > e. (5.1)

Let k >
√
2β be fixed. For ω ∈ Ω and t > 0, define

Φω
t = {x ∈ Rd : B(x, r(t)) ⊆ Kc(ω)}, Φ̂ω

t = Φω
t ∩ [−kt, kt]d. (5.2)

Then, in d ≥ 2, there exists Ω1 ⊆ Ω with P(Ω1) = 1 such that for every ω ∈ Ω1,

lim
t→∞

Pω
(
R(t) ∩ Φ̂ω

t = ∅
∣∣ St

)
= 0.

Proof : Call x ∈ Rd a good point for ω ∈ Ω at time t if B(x, r(t)) is a clearing (see Definition 3.1) in
the random environment ω. That is,

Φω
t := {x ∈ Rd : B(x, r(t)) ⊆ Kc(ω)}

is the set of good points associated to the pair (ω, t). Given ω ∈ Ω, for t > 0 define the events

Et = Et(ω) = {R(t) ∩ Φ̂ω
t = ∅}.

In words, Et is the event that the BBM does not hit a good point inside [−kt, kt]d associated to
the pair (ω, t) over [0, t]. By Proposition 3.2, on a set of full P-measure, there exists c1 = c1(ω) > 0
such that for all large t,

Pω(Et | St) =
Pω(Et ∩ St)

Pω(St)
≤ c1P

ω(Et ∩ St). (5.3)

In the rest of the proof, we bound Pω(Et ∩ St) from above in a typical environment ω.
For t > 1, introduce the time scale

h(t) := (log t)2/3.

For notational convenience1, suppose that t/h(t) is an integer. Split the interval [0, t] into t/h(t)
pieces as

[0, h(t)], [h(t), 2h(t)], . . . , [t− h(t), t],

and for j = 1, 2, . . . , t/h(t), define the intervals Ij,t as

Ij,t = [(j − 1)h(t), jh(t)].

Next, for t > e, introduce two space scales as follows: use ρ(t), previously defined in (4.9), as the
larger space scale, and r(t) given in (5.1) as the smaller space scale. That is, we have

ρ(t) = h(t) = (log t)2/3, r(t) =
1

3

R0

51/d

(
2

3

)1/d

(log log t)1/d.

1We would like to avoid the floor function in notation.
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Observe that 2r(t) ≤ Rρ(t) for all large t, where Rℓ is as in (4.1) with c = 1 therein. Hence, for each
ω ∈ Ωs(k, 0) (see (4.10) for the definition), for all large t any ball of radius ρ(t) centered within
C(0, kt) contains a clearing of radius 2r(t). In the rest of the proof, we set Ωs = Ωs(k, 0) with
k >

√
2β fixed. Recall that P(Ωs) = 1 by Proposition 4.2.

For an interval I ⊆ [0,∞), define the range of Z over I as

R(I) =
⋃
s∈I

supp(Zs).

Next, for t > 1 and j = 1, 2, . . . , t/h(t), define the events

Ej,t = {R(Ij,t) ∩ Φ̂ω
t = ∅}, Sj,t := {Njh(t) ≥ 1}.

Observe that

Et ∩ St =

t/h(t)⋂
j=1

(Ej,t ∩ Sj,t). (5.4)

Also, for t > 0, let
Mt := inf{r ≥ 0 : R(t) ⊆ B(0, r)} (5.5)

be the radius of the minimal ball containing the range of BBM at time t, and for t > 1 and
j = 1, 2, . . . , t/h(t) define the events

Fj,t = {Mjh(t) ≤ kjh(t)}, Ft = F1,t ∩ . . . ∩ Ft/h(t),t. (5.6)

We now apply repeated conditioning at times h(t), 2h(t), . . . , t−h(t), and at each intermediate time
jh(t), we will throw away the rare event F c

j,t. Note that F c
j,t is indeed a rare event since k >

√
2β

by assumption and it is well-known that the speed of a strictly dyadic BBM is
√
2β. Let ω ∈ Ωs.

Then, using (5.4), (5.6), and the union bound,

Pω(Et, St) ≤ Pω(Et, St, Ft) + Pω(F c
1,t) + . . .+ Pω(F c

t/h(t),t)

= Pω

t/h(t)⋂
j=1

(Ej,t, Sj,t, Fj,t)

+

t/h(t)∑
j=1

Pω(F c
j,t)

= Pω

t/h(t)⋂
j=2

(Ej,t, Sj,t, Fj,t)

∣∣∣∣ E1,t, S1,t, F1,t

Pω(E1,t, S1,t, F1,t) +

t/h(t)∑
j=1

Pω(F c
j,t).

Iterating the argument above at times 2h(t), . . . , t−h(t), and noting that Sj,t = ∩j
k=1Sk,t, we obtain

Pω(Et, St) ≤ Pω (E1,t, S1,t, F1,t)

t/h(t)∏
j=2

Pω

(
Ej,t, Sj,t, Fj,t

∣∣∣∣ Sj−1,t ,

j−1⋂
k=1

(Ek,t, Fk,t)

)
+

t/h(t)∑
j=1

Pω(F c
j,t)

from which it follows that

Pω(Et, St) ≤ Pω(E1,t)

t/h(t)∏
j=2

Pω

(
Ej,t

∣∣∣∣ Sj−1,t ,

j−1⋂
k=1

(Ek,t, Fk,t)

)
+

t/h(t)∑
j=1

Pω(F c
j,t). (5.7)

In the rest of the proof, we find an upper bound that is valid for large t on the right-hand side of
(5.7) in an environment ω ∈ Ωs.

(i) Upper bound on Pω(F c
j,t) in any environment

To estimate Pω(F c
j,t) = Pω(Mjh(t) > kjh(t)), we need some control on the spatial spread of the

BBM at time jh(t). We start by noting an ω-wise comparison between a BBM among soft obstacles
and a free BBM. (Recall that free refers to the model where V ≡ 0, that is, there is no killing and
the BBM branches at rate β everywhere in Rd.) The following stochastic domination is clear since
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the presence of V > 0 can only kill particles as well as suppressing their branching, and otherwise
has no effect on the motion of particles. As before, we use (Py : y ∈ Rd) for the laws of a free BBM
starting with a single particle at y ∈ Rd, and set P = P0.

Remark 5.2 (Comparison 1, free environment versus soft killing). For t > 0 and B ⊆ Rd, let Zt(B)
denote the mass of Z that fall inside B at time t. Then, for all y ∈ Rd, B ⊆ Rd Borel, k ∈ N, and
t > 0,

Py(Zt(B) < k) ≤ Pω
y (Zt(B) < k) for each ω ∈ Ω. (5.8)

Then, for any r > 0, it follows by taking B = (B(0, r))c and k = 1 in (5.8) that

P (Mt ≤ r) ≤ Pω(Mt ≤ r), (5.9)

where Mt is as defined in (5.5). Observe that Mt/t is a kind of speed for the BBM, and measures
the spread of Z from the origin over the time interval [0, t].

Let Nt denote the set of particles of Z that are alive at time t, and for u ∈ Nt, let (Yu(s))0≤s≤t

denote the ancestral line up to t of particle u. By the ancestral line up to t of a particle present at
time t, we mean the continuous trajectory traversed up to t by the particle, concatenated with the
trajectories of all its ancestors. Note that when V ≡ 0, (Yu(s))0≤s≤t is identically distributed as a
Brownian trajectory (Xs)0≤s≤t for each u ∈ Nt. Also note that Nt = |Nt|. Then, using the union
bound, for γ > 0,

P (Mt > γt) = P

(
∃u ∈ Nt : sup

0≤s≤t
|Yu(s)| > γt

)
≤ E[Nt]P0

(
sup
0≤s≤t

|Xs| > γt

)
. (5.10)

It is a standard result that E[Nt] = exp(βt) (one can deduce this, for example, from Karlin and Tay-
lor (1975, Sect. 8.11)), and from Öz et al. (2017, Lemma 5) we have that P0

(
sup0≤s≤t |Xs| > γt

)
=

exp[−γ2t/2(1+o(1))]. Set γ = k and replace t by jh(t) in (5.10). Then, combining (5.9) and (5.10),
and recalling that k >

√
2β,

Pω(F c
j,t) = Pω(Mjh(t) > kjh(t)) ≤ P (Mjh(t) > kjh(t))

≤ E[Njh(t)]P0

(
sup

0≤s≤jh(t)
|Xs| > kjh(t)

)
= exp[jh(t)(β − k2/2)(1 + o(1))]. (5.11)

It follows from (5.11) that when k >
√
2β,

t/h(t)∑
j=1

Pω(F c
j,t) ≤ t exp[−h(t)(k2/2− β)(1 + o(1))]. (5.12)

(ii) Upper bound on Pω (E1,t) in a typical environment

Next, for ω ∈ Ωs, we find an upper bound on Pω (E1,t) that is valid for large t. We will estimate
Pω(Ec

1,t) from below, and in order to do that, since Ec
1,t = {R(I1,t)∩ Φ̂ω

t ̸= ∅}, we look for a hitting
strategy to Φ̂ω

t . We start by noting an ω-wise comparison between a Brownian motion (BM) among
soft obstacles and a BBM among soft obstacles. The following comparison is obvious since each
particle of BBM follows a Brownian trajectory while alive under the laws Pω

y .

Remark 5.3 (Comparison 2, BM versus BBM). Let (Pω
y : y ∈ Rd) be the laws under which X is

a BM starting at position y and is killed at rate V = V (x, ω) in the environment ω. Then, for all
y ∈ Rd, t > 0 and B ⊆ Rd Borel,

Pω
y ((∪0≤s≤t{Xs}) ∩B ̸= ∅) ≤ Pω

y (R(t) ∩B ̸= ∅) for each ω ∈ Ω.
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That is, even under the killing potential V , it is easier for a BBM to hit any set B than it is for a
single BM. We note that a similar comparison between a free BBM and a free BM also holds.

The remark above implies that

Pω
0

(
(∪0≤s≤h(t){Xs}) ∩ Φ̂ω

t ̸= ∅
)
≤ Pω(Ec

1,t), (5.13)

and hence, it suffices to estimate Pω
0

(
(∪0≤s≤h(t){Xs}) ∩ Φ̂ω

t ̸= ∅
)

from below. Let ω ∈ Ωs and
choose t large enough. Then, in the environment ω, B1,t := B(0, ρ(t)) contains a clearing of radius
2r(t), hence a ball of radius r(t), say B1,t, that is entirely contained in Φω

t . Since ρ(t) ≤ kt for large
t, we have B1,t ⊆ Φ̂ω

t ∩ B1,t. Let e be the unit vector in the direction of the center of B1,t in Rd.
Consider the following strategy for a standard BM: over [0, h(t)], avoid being killed by the potential
V , stay in the tube

Tt :=

{
z ∈ Rd : inf

0≤s≤h(t)

∣∣∣∣z − ρ(t)e
s

h(t)

∣∣∣∣ < r(t)

}
,

and hit B1,t. The probability of this joint event is at least

exp

[
−h(t) sup

x∈Tt

V (x, ω)

]
P0

(
sup

0≤s≤h(t)

∣∣∣∣Xs − ρ(t)e
s

h(t)

∣∣∣∣ < r(t)

)
, (5.14)

where the second factor is a lower bound for the probability that the particle stays inside Tt and hits
B1,t. Indeed, if the event

{
sup0≤s≤h(t)

∣∣Xs − ρ(t)e s
h(t)

∣∣ < r(t)
}

is realized, this means the particle
is in B(ρ(t)e, r(t)) at time h(t), which, by continuity of Brownian paths, implies that it must have
hit B1,t over the interval [0, h(t)]. By Sznitman (1998, Lemma 4.5.2), for all large t,

exp

[
−h(t) sup

x∈Tt

V (x, ω)

]
≥ exp[−h(t) log ρ(t)]. (5.15)

By the tubular estimate in Proposition A, and since r(t) ≥ 1 for all large t,

P0

(
sup

0≤s≤h(t)

∣∣∣∣Xs − ρ(t)e
s

h(t)

∣∣∣∣ < r(t)

)
≥ cd exp

[
−λdh(t)−

ρ2(t)

2h(t)

]
(5.16)

for all large t, where cd > 0 is a constant that only depends on the dimension. Then, it follows from
(5.13)-(5.16) that for all large t,

Pω(Ec
1,t) ≥ cd exp

[
−
(
h(t) log ρ(t) + λdh(t) +

ρ2(t)

2h(t)

)]
. (5.17)

Using ρ(t) = h(t), we see that exp[−2h(t) log h(t)] is smaller than the right-hand side of (5.17) for
large t, and hence conclude that for all large t,

Pω(E1,t) ≤ 1− e−2h(t) log h(t). (5.18)

This completes the estimate for Pω (E1,t) when ω ∈ Ωs.

(iii) Applying the Markov property at times h(t), 2h(t), . . . , t− h(t).

For t > 1 and j = 2, . . . , t/h(t), abbreviate

Aj−1,t := Sj−1,t ∩ (∩j−1
i=1 (Ei,t, Fi,t)).

We now estimate Pω(Ej,t | Aj−1,t) in (5.7). Recall the definition of Fj,t from (5.6). Observe that
conditional on Aj−1,t, at time (j − 1)h(t) the BBM has at least one particle alive and all particles
are within a distance of k(j − 1)h(t) from the origin. Pick any particle that is alive2 at time
(j − 1)h(t), call it u∗, and let y

(j)
t := Yu∗((j − 1)h(t)) denote its position at that time. Since

2For concreteness, we may for instance pick the one that is closest to the origin at time (j − 1)h(t).
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Fj−1,t ⊂ Aj−1,t and k(j − 1)h(t) ≤ k(t − h(t)) for all j = 1, . . . , t/h(t), conditional on Aj−1,t we
have that y

(j)
t ≤ k(t− h(t)). Now let ω ∈ Ωs and choose t large enough. Then, in the environment

ω, Bj,t := B
(
y
(j)
t , ρ(t)

)
contains a clearing of radius 2r(t), hence a ball of radius r(t), say Bj,t, that

is entirely contained in Φω
t and also in [−kt, kt]d since y

(j)
t ≤ k(t − h(t)) and ρ(t) = h(t). That

is, Bj,t ⊆ Φ̂ω
t ∩ Bj,t. Then, applying the Markov property at time (j − 1)h(t), a tubular estimate

argument similar to the one used in step (ii) for the case j = 1 yields that for all large t,

Pω (Ej,t | Aj−1,t) ≤ 1− e−2h(t) log h(t), j = 2, . . . , t/h(t). (5.19)

Then, combining (5.7), (5.12), (5.18) and (5.19) yields the following conclusion. Provided k >
√
2β,

in any environment ω ∈ Ωs for all large t,

Pω(Et ∩ St) ≤
[
1− e−2h(t) log h(t)

]t/h(t)
+ t exp[−h(t)(k2/2− β)(1 + o(1))]

≤ exp

[
−e−2h(t) log h(t) t

h(t)

]
+ t exp[−h(t)(k2/2− β)(1 + o(1))]

where we have used the estimate 1 + x ≤ ex. Since h(t) = (log t)2/3, it follows that

lim
t→∞

Pω(Et ∩ St) = 0.

This completes the proof of Lemma 5.1 in view of (5.3). □

Remark 5.4. Note that any conditioning on the events St (or on S) changes the law of the BBM. In
particular, the ancestral lines are no longer Brownian. In the proof of Lemma 5.1, the conditioning
on St was carried out in stages over successive subintervals [(j− 1)h(t), jh(t)] in order to work with
Brownian paths.

Also, observe that the trivial bound Pω(Et ∩ St) ≤ Pω(Et) is not useful for proving Lemma 5.1,
because the event Et is realized if the entire process is killed before hitting Φ̂ω

t , which has a proba-
bility bounded below by a positive number uniformly for all large t.

In case of mild obstacles, where there is no killing but only a suppression of branching inside traps,
each ancestral line is Brownian under Pω, and therefore it is sufficient to prove the counterpart of
Lemma 5.1 for a single Brownian motion (see Lemma 2 in Öz (2023)). In contrast, in case of soft
obstacles, one has to estimate Pω(Et ∩ St) for the entire BBM. On the event Et ∩ St there is at
least one particle at time t whose ancestral line is Brownian under Pω and who has survived up to
time t, but we don’t know which particle, and a standard union bound argument over all possible
particles existing at time t would not be successful in showing that Pω(Et ∩ St) → 0 as t → ∞.

We emphasize that all of the aforementioned difficulties arise due to the soft killing mechanism
in the model, which was not present in the mild obstacle problem.

6. Proof of Theorem 2.1

6.1. Proof of the upper bound. For the proof of the upper bound, let Ω1 ⊂ Ω be the intersection of
the sets of full P-measure in Proposition 3.2 and Proposition 3.3, and let ω ∈ Ω1. Recall that the
law P̂ω is defined by P̂ω( · ) = Pω( · | S), and denote by Êω the corresponding expectation. Write

Êω[Nt]P
ω(S) = Eω[Nt1S ] ≤ Eω[Nt].

We know from Proposition 3.2 that 0 < Pω(S) < 1, and therefore,

Êω[Nt] ≤
Eω[Nt]

Pω(S)
. (6.1)
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By the Markov inequality, we then have

P̂ω

(
Nt > exp

[
βt+

(−c(d, ν) + ε)t

(log t)2/d

])
≤ Êω[Nt] exp

[
−βt+

(c(d, ν)− ε)t

(log t)2/d

]
,

which, along with (6.1) and Proposition 3.3 implies that

P̂ω

(
(log t)2/d

(
logNt

t
− β

)
+ c(d, ν) > ε

)
≤ exp

[
−εt(log t)−2/d + o

(
t(log t)−2/d

)]
.

This proves the upper bound of the LLN in (2.2).

6.2. Proof of the lower bound. The proof of the lower bound is split into three parts for better
readability. Let ε > 0. In what follows, in a typical environment ω, we find an upper bound that is
valid for large t on

P̂ω

(
(log t)2/d

(
logNt

t
− β

)
+ c(d, ν) < −ε

)
= P̂ω

(
Nt < exp

[
t

(
β − c(d, ν) + ε

(log t)2/d

)])
.

Throughout the proof, we assume that d ≥ 2 so that Lemma 5.1 is applicable.

Part 1: Upper bound on exponentially few total mass
For a Borel set B ⊆ Rd and t ≥ 0, as before Zt(B) denotes the mass of Z that fall inside B at

time t. In this part of the proof, we will show that on a set of full P-measure, for any 0 < δ < β,
the event

At = {∃ z0 = z0(ω) ∈ [−kt, kt]d such that Zt(B(z0, r(t))) ≥ eδt}, (6.2)

with r(t) as in (5.1) and k >
√
2β, occurs with overwhelming P̂ω-probability. Observe that At

corresponds to producing exponentially many particles and keeping them close to each other and
also to the origin at time t. The main ingredient in this part of the proof will be Lemma 5.1.

Let 0 < δ < β, and choose α such that 0 < α < 1 − δ/β. Also, for concreteness, set k =
√
3β.

Recall the definitions of Φω
t (the set of good points associated to the pair (ω, t)) and Φ̂ω

t = Φω
t ∩

[−kt, kt]d from (5.2). Split the interval [0, t] into two pieces as [0, αt] and [αt, t]. We will show that
with overwhelming probability, a particle of the BBM hits a point in Φ̂ω

αt, say z0 ∈ [−kαt, kαt]d,
over [0, αt], and then the sub-BBM emanating from this particle starting at z0 produces at least eδt
particles over [αt, t] inside B(z0, r(αt)).

For t > 0, define the events
Et := {R(αt) ∩ Φ̂ω

αt ̸= ∅}.
Let τ = τ(ω) = inf{s > 0 : R(s) ∩ Φ̂ω

αt ̸= ∅} be the first time that Z hits a good point within the
cube [−kαt, kαt]d associated to the pair (ω, αt). Observe that Et = {τ ≤ αt}. Estimate

Pω (Ac
t ∩ Sαt) = Pω (Ac

t ∩ Sαt ∩ Ec
t ) + Pω (Ac

t ∩ Sαt ∩ Et)

≤ Pω (Ec
t | Sαt) + Pω (Ac

t | Et) . (6.3)

By Lemma 5.1, on a set of full P-measure,

lim
t→∞

Pω(R(αt) ∩ Φ̂ω
αt = ∅ | Sαt) = lim

t→∞
Pω(Ec

t | Sαt) = 0. (6.4)

Conditional on Et = {τ ≤ αt}, let z0 be the (random) point where Z first hits Φ̂ω
αt. Now apply the

strong Markov property of BBM at time τ , and then apply Theorem C to the sub-BBM initiated
at time τ from position z0 by the particle that first hits Φ̂ω

αt. Note that t − τ ≥ (1 − α)t, and by
definition of Φ̂ω

αt, B(z0, r(αt)) is a clearing with z0 ∈ [−kαt, kαt]d. In detail, for t > 1 let

s := (1− α)t, r̂(s) =
1

3

R0

51/d

(
2

3

)1/d [
log log

(
αs

1− α

)]1/d
, Bs := B(0, r̂(s)).
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Observe that r̂(s) = r(αt). Also, δt < (1− α)βt = βs due to the choice α < 1− δ/β. Next, let

ps := Pz0(σB(z0,r̂(s)) ≥ s) = P0 (σBs ≥ s) ,

where, as before, Px denotes the law of a standard BM started at x, and σA = inf{s ≥ 0 : Xs /∈ A}
denotes the first exit time of the BM out of A. By a standard result on Brownian confinement in
balls (see for instance Proposition B in Öz (2023)),

ps = exp

[
− λds

(r̂(s))2
(1 + o(1))

]
.

Then, on a set of full P-measure, Theorem C upon setting γs = exp[−
√
β/2 r̂(s)] for instance implies

that for all large t,

Pω (Ac
t | Et) ≤ P

(∣∣ZBs
s

∣∣ < eδt
)
≤ P

(∣∣ZBs
s

∣∣ < e−
√

β/2 r̂(s)pse
βs
)
= e−

√
β/2 r̂(s)(1+o(1)), (6.5)

where At is as in (6.2), ZB = (ZBu
u )u≥0 is a BBM with deactivation at ∂B as in Theorem C, and

we have used in the first inequality that B(z0, r(αt)) is a clearing . Finally, in view of s = (1−α)t,
we reach the following conclusion via (6.3), (6.4) and (6.5). On a set of full P-measure, for all large
t,

Pω (Ac
t | S) =

Pω(Ac
t ∩ S)

Pω(S)
≤ c(ω)Pω(Ac

t ∩ S)

≤ c(ω)Pω(Ac
t ∩ Sαt) → 0, t → ∞. (6.6)

where we have used Proposition 3.2 in the first inequality, and that S ⊆ Sr for any r > 0 in the
second inequality. This completes the first part of the proof of the lower bound of Theorem 2.1.

Part 2: Time scales within [0, t] and moving a particle into a large clearing
Introduce two time scales, m(t) and ℓ(t), where m(t) = o(t) and ℓ(t) log ℓ(t) = o(m(t)). We will

split the time interval [0, t] into three pieces: [0,m(t)], [m(t),m(t) + ℓ(t)] and [m(t) + ℓ(t), t]. (This
way of splitting [0, t] is different from the corresponding splitting of [0, t] used in Engländer (2008)
and Öz (2023) for the proofs of the mild obstacle problem.) More precisely, let ℓ,m : R+ → R+ be
such that

(i) limt→∞ ℓ(t) = ∞,
(ii) limt→∞

log t
log ℓ(t) = 1,

(iii) ℓ(t) log ℓ(t) = o(m(t)),
(iv) m(t) = o(ℓ2(t)),
(v) m(t) = o(t(log t)−2/d).

In this part of the proof, our goal is to show that on a set of full P-measure with overwhelming P̂ω-
probability, at time m(t) + ℓ(t) there is a particle within distance 1 of the center, say x0, of a large
clearing. This can be achieved by combining two partial strategies as follows. Firstly, sufficiently
many particles are produced over [0,m(t)] and kept close to each other at time m(t), and then at
least one of the sub-BBMs initiated by these particles at time m(t) contributes a particle to B(x0, 1)
at time m(t) + ℓ(t) (see Figure 6.2).

Partial strategy 1. Let 0 < δ < β and I(t) = ⌊eδm(t)⌋. Then, since limt→∞m(t) = ∞, it follows
from (6.2) and (6.6) that on a set of full P-measure,

lim
t→∞

Pω(Ac
m(t) | S) = 0, (6.7)

where

Am(t) =
{
∃ z0 = z0(ω) ∈ [−km(t), km(t)]d with Zm(t)

(
B(z0, c[log logm(t)]1/d)

)
≥ I(t)

}
(6.8)
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with 0 < c < R0 (see (5.1)). We now choose our ‘new origin’ as the point z0 in (6.8) for the rest of
the proof, that is, for the evolution of the system over [m(t), t].

km(t)

km(t)

.
0

ℓ(t)

ℓ(t)

R(t) + 1
.

Figure 6.2. Illustration of the partial strategies 1 and 2 regarding the time in-
tervals [0,m(t)] and [m(t),m(t) + ℓ(t)]. On the left, the small grey ball represents
B(z0, c[log logm(t)]1/d), and the red ball represents B(x0, R(t) + 1), which are both
clearings. The larger ball with red boundary has radius ℓ(t), and is shown zoomed
in on the right. With overwhelming probability, for large t, there are at least I(t)

particles (represented by black dots on the right) inside B(z0, c[log logm(t)]1/d) at
time m(t), and at least one of these particles initiates a sub-BBM that contributes a
particle to B(x0, 1) at time m(t) + ℓ(t). Finally over [m(t) + ℓ(t), t], desiredly many
particles are produced inside the clearing B(x0, R(t) + 1).

Partial strategy 2. Let z0 = z0(ω) ∈ [−km(t), km(t)]d be as in (6.8). By a similar argument
as in the proof of Proposition 4.2, it follows from a close-packing of [−km(t), km(t)]d by balls of
radius ℓ(t)/(2

√
d) together with Öz (2023, Lemma 1) (which is an extension of Proposition B) upon

choosing n = d+ 1, a = 1, and ℓ = ℓ(t)/(2
√
d) therein that on a set of full P-measure, for all large

t any ball of radius ℓ(t) centered within [−km(t), km(t)]d contains a clearing of radius

R(t) + 1 = Rℓ(t) + 1 ≍ R0[log(ℓ(t))]
1/d ≍ R0[log t]

1/d, (6.9)

where Rℓ(t) is as in (3.1), and we have used assumption (ii). In (6.9) and hereafter, we use f(t) ≍ g(t)

to mean f(t)/g(t) → 1 as t → ∞. To see why the choice n = d+ 1 in Öz (2023, Lemma 1) works,
observe that the number of balls of radius ℓ(t)/(2

√
d) needed to completely pack [−km(t), km(t)]d

is at most ⌈
km(t)

ℓ(t)/(2
√
d)

⌉d
≤
(
kℓ2

ℓ

)d

≤ ℓd+1

for all large t, where we have used assumption (iv) in the first inequality. In particular, on a set of
full P-measure B(z0(ω), ℓ(t)) contains a clearing of radius R(t) + 1 for all large t. Let x0 = x0(ω)
denote the center of this clearing. We will next show that on a set of full P-measure the event

Ct := {∃x0 = x0(ω) ∈ Rd with Zm(t)+ℓ(t)(B(x0, 1)) > 0 and B(x0, R(t) + 1) ⊆ Kc}



510 Mehmet Öz

occurs with overwhelming Pω-probability conditional on Am(t).
Consider a particle inside B(z0, c[log logm(t)]1/d) at time m(t), and call it generically particle u.

Let qu(t) be the probability that the sub-BBM initiated by u at time m(t) contributes a particle to
B(x0, 1) at time m(t) + ℓ(t). For an upper bound on qu(t), we consider the worst case scenario:

(a) assume that u is located at the boundary of B(z0, c[log logm(t)]1/d) at time m(t) in the
opposite direction of x0 with respect to the ‘origin’ z0,

(b) neglect possible branching of u over [m(t),m(t) + ℓ(t)],
(c) assume that the Brownian path initiated by u travels through the trap field K over the

entire interval [m(t),m(t) + ℓ(t)].

By Sznitman (1998, Lemma 4.5.2), on a set of full P-measure, we have

sup
[z0−ℓ(t),z0+ℓ(t)]d

V ( · , ω) = o(log ℓ(t)), t → ∞.

Then, for each particle u that is inside B(z0, c[log logm(t)]1/d) at time m(t), in view of the inequal-
ities c[log logm(t)]1/d ≤ ℓ(t) and |x0 − z0| ≤ ℓ(t), we have for all large t,

qu(t) ≥ exp

[
−(2ℓ(t))2

2ℓ(t)
(1 + o(1))− ℓ(t) log ℓ(t)

]
≥ exp [−2ℓ(t) log ℓ(t)] =: p(t), (6.10)

where the first term in the exponent on the right-hand side comes from a linear Brownian displace-
ment and the second term from surviving the killing over [m(t),m(t) + ℓ(t)]. Then, by the Markov
property and the independence of particles present at time m(t), we have

Pω(Cc
t | Am(t)) ≤ (1− p(t))I(t) = e−p(t)I(t), (6.11)

where we have used that 1 + x ≤ ex. Note that in order to keep the probability of the unwanted
event Cc

t small, we aimed at a high enough p(t)I(t) throughout the argument. Finally, by (6.10)
and (6.11), we reach the following conclusion. On a set of full P-measure, for all large t,

Pω(Cc
t | Am(t)) ≤ exp

[
−e−2ℓ(t) log ℓ(t)+δm(t)

]
. (6.12)

Since δ > 0 and due to the assumptions (ii) and (iii), the right-hand side of (6.12) is superexponen-
tially small in t.

Part 3: BBM in the large clearing
This part of the proof is similar to the corresponding part as for the mild obstacle case, because

over the remaining time interval [m(t)+ℓ(t), t] the BBM grows freely inside the clearing B(x0, R(t)+
1), and hence is insensitive to the nature of the traps. For t > 0, define the events

Dt :=

{
∃x0 = x0(ω) ∈ Rd with Zt (B(x0, R(t) + 1)) ≥ exp

[
t

(
β − c(d, ν) + ε

(log t)2/d

)]}
.

We argue as follows. Let Ω0 be the set of environments for which 0 < Pω(S) < 1. We know from
Proposition 3.2 that P(Ω0) = 1. For each ω ∈ Ω0, set c(ω) = 1/Pω(S), and estimate

Pω(Dc
t | S) =

1

Pω(S)
[Pω(Dc

t ∩ S ∩ Ct) + Pω(Dc
t ∩ S ∩ Cc

t )]

≤ c(ω) [Pω(Dc
t ∩ St ∩ Ct) + Pω(Dc

t ∩ S ∩ Cc
t )]

≤ c(ω) [Pω(Dc
t | Ct) + Pω(Cc

t | S)] , (6.13)
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where we have used that S ⊆ St in the first inequality. The second term on the right-hand side of
(6.13) can be estimated as follows for ω ∈ Ω0:

Pω(Cc
t | S) = 1

Pω(S)

[
Pω
(
Cc
t ∩ S ∩Am(t)

)
+ Pω

(
Cc
t ∩ S ∩Ac

m(t)

)]
≤ c(ω)

[
Pω
(
Cc
t | Am(t)

)
+ Pω

(
Ac

m(t) | S
)]

.

It then follows from (6.7) and (6.12) that on a set of full P-measure,

lim
t→∞

Pω(Cc
t | S) = 0. (6.14)

Next, we turn our attention to Pω(Dc
t | Ct) in (6.13) and show that on a set of full P-measure,

lim
t→∞

Pω(Dc
t | Ct) = 0. (6.15)

Conditional on the event Ct, let v be the name of the particle that is closest to x0 at time m(t)+ℓ(t)
and y0 denote its position at time m(t) + ℓ(t). Note that |y0 − x0| ≤ 1 on the event Ct. We will
show via Proposition C that sufficiently many particles are produced inside B(y0, R(t)) over the
remaining interval [m(t)+ ℓ(t), t]. Let Ẑ be the sub-BBM initiated by particle v at time m(t)+ ℓ(t)

starting from position y0. Define R̂ : R+ → R+ such that R̂(t− (m(t)+ ℓ(t))) = R(t) for all large t.
(Respecting the conditions (i)-(v), we may and do choose m(t) and ℓ(t) such that t− (m(t) + ℓ(t))
is increasing on t ≥ t0 for some t0 > 0. Therefore, t1− (m(t1)+ ℓ(t1)) = t2− (m(t2)+ ℓ(t2)) implies
that t1 = t2 for t1 ∧ t2 ≥ t0.) Next, let s := t− (m(t) + ℓ(t)), B̂s := B(y0, R(t)) and

ps := Py0(σB̂s
≥ s) = P0

(
σ
B(0,R̂(s))

≥ s
)
.

By the Markov property of Z applied at time m(t)+ ℓ(t), Ẑ is a BBM started with a single particle
at y0. Observe that B̂s is a clearing since B̂s ⊆ B(x0, R(t) + 1). Then, Theorem C upon setting
γs = exp[−

√
β/2R̂(s)] implies that

Pω
(
|Ẑs| < e−

√
β/2 R̂(s)pse

βs
∣∣ Ct

)
≤ Py0

(∣∣ZB̂s
s

∣∣ < e−
√

β/2 R̂(s)pse
βs
)

= exp
[
−
√

β/2 R̂(s)(1 + o(1))
]
. (6.16)

By (6.9) and a standard result on Brownian confinement in balls (see for instance Proposition B in
Öz (2023)), and since R̂(s) = R(t) and c(d, ν) = λd/R

2
0,

ps = exp

[
− λds

R̂2(s)
(1 + o(1))

]
= exp

[
−c(d, ν)(t− (m(t) + ℓ(t)))

(log ℓ(t))2/d
(1 + o(1))

]
. (6.17)

It follows from the assumptions (ii), (iii) and (v) that

t− (m(t) + ℓ(t))

(log ℓ(t))2/d
≍ t

(log t)2/d
,

by which we can continue (6.17) with

ps = exp

[
− c(d, ν)t

(log t)2/d
(1 + o(1))

]
. (6.18)

On the other hand, using that s = t− (m(t) + ℓ(t)), we have for any ε > 0,

exp

[
t

(
β − c(d, ν) + ε

(log t)2/d

)]
= exp

[
βs+ β(m(t) + ℓ(t))− (c(d, ν) + ε)t

(log t)2/d

]
≤ e−

√
β/2 R̂(s)pse

βs
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for all large t, where we have used (6.18), assumption (v), and that R̂(s) = R(t) = o(t(log t)−2/d)

in passing to the inequality. Then, it follows from (6.16) and the definitions of Dt and Ẑ that for
all large t,

Pω(Dc
t | Ct) ≤ Pω

(
|Ẑs| < e−

√
β/2 R̂(s)pse

βs
∣∣ Ct

)
≤ exp

[
−
√

β/2 R̂(s)(1 + o(1))
]
.

This proves, (6.15) holds on a set of full P-measure, which, together with (6.13) and (6.14), imply
that

Pω

(
Nt < exp

[
t

(
β − c(d, ν) + ε

(log t)2/d

)] ∣∣∣∣ S) ≤ Pω(Dc
t | S) → 0, t → ∞.

This completes the proof of the lower bound of Theorem 2.1. We emphasize that over [m(t)+ℓ(t), t],
the sub-BBM starting from y0 at time m(t) + ℓ(t) and deactivated at ∂B(y0, R(t)) doesn’t feel the
effect of traps; so for this part of the proof it doesn’t matter whether traps have a killing mechanism
or not.

7. Further problems

We conclude by discussing several further problems related to our model.

Problem 1: The case d = 1.

We emphasize that the LLN for the case d = 1 remains open in the soft obstacle setting. Here,
we briefly explain why the current method fails when d = 1.

We start by considering Lemma 5.1. Observe that the key estimate in the proof of Lemma 5.1
is (5.17), where the right-hand side gives the cost of a hitting strategy to a moderate clearing, and
involves a tubular estimate and an estimate on survival from killing over the interval [0, h(t)]. Note
that in d = 1, we do not need a full tubular estimate, but we still need a single Brownian motion
to travel a distance of ∼ ρ(t) over a time interval of length h(t). Even if we ignore the ‘tubular
estimate’ contribution in (5.17), we still have the factor exp[−h(t) log ρ(t)], which is solely due to
the survival from soft killing. Then, to show that [Pω(E1,t)]

t/h(t) tends to zero as t → ∞, at the
very least we need [

1− cde
−h(t) log ρ(t)

]t/h(t)
≤ exp

[
−cde

−h(t) log ρ(t) t

h(t)

]
→ 0,

which is true only if
te−h(t) log ρ(t) → ∞. (7.1)

An elementary inspection shows that the choices h(t) = k1 log t and ρ(t) = k2 log t will not satisfy
(7.1) no matter how small k1 and k2 are, and therefore for (7.1) to hold one needs to choose
h(t) = o(log t) = ρ(t) as t → ∞.

We now turn our attention to the preparation of the a.s.-environment, which is based on securing
a clearing of radius ∼ r(t) within each ball of radius ∼ ρ(t), where the union of the balls covers the
box [−kt, kt]d (see Proposition 4.2). For this argument to hold, we need such an r(t)-clearing inside
each of

∼ t/ρ(t)

many balls. As we set ℓ = ρ(t)/2, let us take a close look at Lemma 4.1. Observe that Lemma 4.1
becomes stronger and more difficult to prove as each of Rℓ and f(ℓ) are chosen larger. We now
argue that the current proof of Lemma 4.1 breaks down in d = 1 in view of ℓ = ρ(t)/2 under the
requirement that ρ(t) = o(log t). Let us simply set Rℓ = R for some constant R > 0 to make the
proof easier. Even in this case, the estimate (4.4) when d = 1 yields

logαℓ ≥ log ℓ− log(2R)−R/R0.
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Even if we ignore the middle term, this leads to

e−αℓ ≤ exp
[
−e(log ℓ−R/R0)

]
≤ exp

[
−ℓe−R/R0

]
=
(
e−ℓ
)e−R/R0

.

Then, for the Borel-Cantelli argument based on (4.5) to hold, we can have f(ℓ) growing at most
exponentially in ℓ (see (4.2) and (4.5)). On the other hand, it is easy to see that when ρ(t) = o(log t),
setting ℓ = ρ(t)/2 followed by f(ℓ) ∼ td/ρ(t)d requires f(ℓ) to be superexponentially large in ℓ.

We may summarize our findings as follows. The current method fails when d = 1, because when
d = 1 the estimate [Pω(E1,t)]

t/h(t) in Lemma 5.1 is incompatible with the Borel-Cantelli argument in
the proof of Lemma 4.1, which is used to prepare the a.s.-environment for the soft obstacle problem.
When d = 1, there is no pair of choices for the time scale h(t) and the space scale ρ(t) under which
both Lemma 4.1 and Lemma 5.1 hold upon setting ℓ = ρ(t)/2.

Problem 2: SLLN.

It would be desirable to improve the LLN in Theorem 2.1 to the corresponding SLLN if possible.
To achieve this, one must control the probabilities of the ‘unwanted’ events in the proof of the lower
bound so that a Borel-Cantelli argument could be carried out to obtain the lower bound of the
desired SLLN. Recall that Lemma 5.1 was the key component in the proof of the lower bound of
Theorem 2.1. Therefore, a first and important step would be to improve Lemma 5.1 to give a lower
bound on the rate of decay to zero of Pω

(
R(t) ∩ Φ̂ω

t = ∅
∣∣ St

)
as t → ∞.

Problem 3: Dominant region.

The current work, as well as Engländer (2008) and Öz (2023), study the total mass of the BBM
among random obstacles, but don’t make any claims on the geometric distribution of particles for
large times although the proofs suggest that for large times ‘most’ of the particles are to be found
in ‘large’ clearings which exist in a.e.-environment.

Hence, a further problem concerns the geometric distribution of particles at large times. One
natural question is, conditional on ultimate survival of the BBM, is there a dominant region B =
B(ω, t) in Rd such that an overwhelming proportion of particles are found inside B for all large t.
Recall that we write Zt(B) to denote the mass of Z that fall inside B at time t. More precisely,
given an environment ω does there exist a region B(ω, t) ⊂ Rd such that

Zt(B(ω, t)c)

Nt
→ 0, t → ∞

in some sense of convergence with respect to the law P̂ω( ·) = Pω( · | S) for a.e. ω? If yes, this would
mean that on a set of full P-measure the mass accumulates in some ω-dependent special subset of
Rd for large times. This special subset, for instance, could be of a similar form as Φω

t in (5.2) with
a suitable radius function r(t). We note that a similar problem in the setting of mild obstacles was
listed as a further problem in Engländer (2008).

Problem 4: Lower large-deviations.

In the course of the proof of the lower bound of Theorem 2.1, we show that the rare event of
atypically small mass for the BBM has probability decaying to zero as t → ∞, but we do not find
the rate of decay to zero of this probability. It is natural to look for this rate of decay and hence
to obtain a precise lower-tail asymptotics for the mass of the BBM. That is, can we obtain an
asymptotic result as t → ∞ in the form

Pω

(
Nt < exp

[
t

(
β − c(d, ν) + ε

(log t)2/d

)])
= e−g(t)(1+o(1))
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that is valid in a.e.-environment, where the function g = gε : R+ → R+ with limt→∞ g(t) = ∞ is
precisely identified?

Problem 5: Hard obstacles.

Let Π be a Poisson point process in Rd with constant intensity ν > 0 as before, and consider the
Poissonian trap field

K = K(ω) =
⋃

xi∈ supp(Π)

B̄(xi, a)

as in (1.3), where the trap radius a > 0 is fixed. The hard killing rule for BBM is that each particle
branches at the normal rate β when outside K, and is immediately killed upon hitting K. This
model may also be viewed as a BBM with individual killing at the boundary of the random set K.
One can show, similar to the case of soft obstacles, that on a set of full P-measure the entire BBM is
killed with positive Pω-probability, and for meaningful results concerning the total mass one works
under the law P̂ω( · ) = Pω( · | S).

It is observed from Engländer (2008, Theorem 1) and Öz (2023, Theorem 1), and then from the
current work that the LLN for the total mass of BBM among random obstacles is quite robust to
the details of the mass-reducing mechanism coming from the trap field, whether traps simply reduce
the branching rate, or completely suppress the branching, or even apply soft killing to the particles.
Therefore, it is reasonable to expect a similar LLN to hold even in the hard obstacle setting.

It is known from the theory of site percolation that there exists a0 > 0 such that when the
trap radius a satisfies a ≤ a0, a unique infinite trap-free component exists in a.e.-environment (see
Aizenman et al. (1987) and Sznitman (1993)). Here, a trap-free component refers to a connected
region in Rd in which there is no atom of ω. Let us denote by C this unique ω-dependent infinite
trap-free component, and call A ⊆ Rd accessible if A ⊆ C. Then, denoting the origin by 0, the
conditions under which we may expect a LLN to hold (see Sznitman (1993)) are as follows:

P− a.s. on the set {0 ∈ C} and when a ≤ a0.

Note that in all cases of random Poissonian traps, the upper bound of the LLN is obtained by a
first moment argument, and is unaffected by the nature of the traps since the first moment formula
for the mass of BBM remains the same to the leading order due to the robustness of the single-
particle Brownian survival asymptotics among the traps (see Sznitman (1993)). In contrast, it is
clear that the proof of the lower bound of the LLN becomes more difficult as the severity of the
trapping mechanism increases in the following order: mild traps with a lower but positive rate of
branching, mild traps with zero branching, traps with soft killing, and finally hard traps.

In case of hard traps, the main extra challenge is due to the fact that although the concentration
of moderate clearings close enough to the origin (within [−kt, kt]d for suitable k > 0) is still high
enough and there is at least one large clearing close enough to the origin just as in the case of soft
obstacles, there is no guarantee that these clearings will be accessible to the BBM as they could
be outside the unique infinite trap-free component. Therefore, all a.s.-clearings established in the
proofs should further be qualified as accessible clearings.
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