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Abstract. We develop a functional Stein-Malliavin method in a non-diffusive Poissonian setting,
thus obtaining a) quantitative central limit theorems for approximation of arbitrary non-degenerate
Gaussian random elements taking values in a separable Hilbert space and b) fourth moment bounds
for approximating sequences with finite chaos expansion. Our results rely on an infinite-dimensional
version of Stein’s method of exchangeable pairs combined with the so-called Gamma calculus. Two
applications are included: Brownian approximation of Poisson processes in Besov-Liouville spaces
and a functional limit theorem for an edge-counting statistic of a random geometric graph.

1. Introduction

The now classical Stein-Malliavin method, a combination of Stein’s method with Malliavin cal-
culus, has been very successful in deriving quantitative central limit theorems for non-linear ap-
proximation. Since its inception by Nourdin and Peccati in 2013 (see Nourdin and Peccati (2009)),
it has formed a vivid community which developed the theory further and applied it to numerous
situations. An excellent exposition of the basic method is available in the monograph Nourdin
and Peccati (2012) , while I. Nourdin keeps a rather exhaustive and continuously updated list of
references on the webpage https://sites.google.com/site/malliavinstein. From a theoretical
point of view, one of the main remaining challenges is an adaptation of the method to the infinite-
dimensional setting, with quantitative approximation of Gaussian processes as main application.
For random elements taking values in a Hilbert space, and in a diffusive context, this has recently
been achieved by Bourguin and Campese (2020). In this work, we provide the natural analogue in
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the non-diffusive context of Poisson spaces. More specifically, let X be a square-integrable measur-
able transformation of a Poisson process and Z be a Gaussian process, both taking values in some
separable Hilbert space K. Informally, our main results (Theorems 3.1 and 3.7 on page 526) provide
bounds on a probabilistic distance between X and Z (metrizing convergence in law) in terms of
the first four strong moments of X or alternatively in terms of so called contractions. From these
bounds, one can directly deduce quantitative and functional central limit theorems for convergence
towards a Gaussian process, as well as an infinite-dimensional version of the Fourth Moment The-
orem, which says that for a sequence of K-valued multiple Poisson-integrals, convergence of the
second and fourth moments implies convergence towards a Gaussian process.

It is noteworthy to observe that while the analogous diffusive statements in Bourguin and
Campese (2020) look similar to our non-diffusive ones, their proofs are rather different, for the
same reason as in the finite-dimensional case: No chain rule is available in the non-diffusive case,
which renders the usual integration by parts argument unfeasible. Instead, one can construct an ap-
propriate exchangeable pair and then apply a Taylor argument in order to control the term resulting
from an application of Stein’s method. Compared to the finite-dimensional setting, several technical
issues arise which require the use of Hilbert-space techniques. A commonality with the diffusive
statements is, however, that our main results subsume all known finite-dimensional Malliavin-Stein
bounds in a Poissonian context as special cases (see Remark 3.2 on page 526 for details).

In order to illustrate our results, we provide two applications: The first one concerns the classical
approximation of a Brownian motion by a normalized Poisson process with growing intensity λ. A
natural class of Hilbert spaces accommodating the sample paths of both processes are the so-called
Besov-Liouville spaces. In Coutin and Decreusefond (2013), the authors showed that convergence
takes place at rate λ−1/2 (as in the classical one-dimensional case). To prove this, they first trans-
ferred both processes isometrically ℓ2(N) and then had to go through rather tedious calculations. In
contrast to this, our bounds yield the same result in just a few lines, and no isometry is necessary. As
a second application we illustrate, using an edge counting statistic of a random graph, how known
one-dimensional central limit theorem can be made functional with very little additional effort.

Besides the already mentioned reference Bourguin and Campese (2020), the work Coutin and
Decreusefond (2013) is also concerned with quantitative functional approximation in a Malliavin-
Stein context. As already mentioned, the authors use a different approach which crucially depends
on isometrically mapping all random elements to ℓ2(N). In applications, the need to explicitly
evaluate such an isometry can be seen as a drawback. Also, our setting seems to be more general
and does not rely on ad-hoc arguments depending on the Gaussian process at hand. Other related
references proving functional central limit theorems using Malliavin-Stein techniques are Kasprzak
(2017, 2020); Döbler and Kasprzak (2021); Döbler et al. (2022).

The rest of this paper is organized as follows. In Section 2 we introduce the necessary preliminar-
ies, followed by the main results in Section 3. The proofs are given in Section 4 which is followed by
the two aforementioned applications in Section 5. An appendix contains several technical lemmas
required for the proofs.

2. Preliminaries

2.1. Probability on Hilbert spaces.
Let K be a real separable Hilbert space, B(K) the Borel σ-algebra of K and (Ω,F , P ) a complete

probability space. A K-valued random variable X is a measurable map from (Ω,F) to (K,B(K)).
Such random variables are characterized by the property that for any continuous linear functional
ϕ ∈ K∗, the function ϕ(X) : Ω → R is a real-valued random variable. As usual, the distribution
or law of X is the push-forward probability measure P ◦ X−1 on (K,B(K)). The set of all K-
valued random variables is a a vector space over the field of real numbers. If the Lebesgue integral
E[∥X∥K ] =

∫
Ω ∥X∥K dP exists and is finite, then the Bochner integral

∫
ΩXdP exists in K and is
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called the expectation of X. Slightly abusing notation, we denote this integral by E[X] as well, and
it can always inferred from the context whether E[·] refers to Lebesgue or Bochner integration with
respect to P . For p ≥ 1, Lp(Ω, P ) denotes the Banach space of all equivalence classes (under almost
sure equality) of K-valued random variables X with finite p-th moment, i.e., such that

∥X∥Lp(Ω,P ) = E
[
∥X∥pK

]1/p
<∞.

Note that for all X ∈ Lp(Ω, P ), the Bochner integral E[X] exists. In the case X ∈ L2(Ω, P ), the
covariance operator S : K → K of X is defined by

Su = E[⟨X,u⟩K X].

S is a positive, self-adjoint trace-class operator that verifies the identity

TrS = E
[
∥X∥2K

]
.

We denote by S1(K) the Banach space of all trace-class operators on K, equipped with norm
∥T∥S1(K) = Tr |T |, where |T | =

√
TT ∗ and T ∗ denotes the adjoint of T . The subspace of Hilbert-

Schmidt operators on K is denoted by HS(K), its inner product and norm by ⟨·, ·⟩HS(K) , ∥·∥HS(K)

respectively. Recall that

∥·∥op ≤ ∥·∥HS(K) ≤ ∥·∥S1(K) ,

where ∥·∥op denotes the operator norm.

2.2. Gaussian measures and Stein’s method.
In this section, we introduce Gaussian measures, the associated abstract Wiener spaces and Stein

characterization of Gaussian measures. The theory will be presented within a general Banach space
setting. Keep in mind that at the end of this section and beyond that, we will assume any target
Gaussian measure under consideration is defined on a Hilbert space such as K above. Standard
references for Gaussian measures and abstract Wiener spaces are the monographs Bogachev (1998);
Kuo (1975), while Stein’s method for Gaussian measures has been developed by Shih (2011) (see
also Barbour (1990), an earlier work for the special case of Brownian motion).

2.2.1. Abstract Wiener spaces. Let H be a real separable Hilbert space equipped with inner product
⟨·, ·⟩H and ∥·∥ be a norm on H weaker than ∥·∥H . Denote B the Banach space obtained via
completion of H with respect to ∥·∥ and i the canonical embedding of H into B. The triple
(i,H,B) defines an abstract Wiener space and has first been introduced by Gross (1967a). We
identify B∗ as a dense subspace of H∗ under the adjoint i∗ of i, so that we have the continuous
embeddings B∗ ⊆ H ⊆ B, where, as usual, H is identified with its dual H∗. All of this can be
summarized via the diagram

B∗ i∗−→ H∗ = H
i−→ B.

The abstract Wiener measure p on B is characterized as the Borel measure on B satisfying∫
B
exp
(
i ⟨x, η⟩B,B∗

)
p(dx) = exp

(
−
∥η∥2H
2

)
,

for any η ∈ B∗.
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2.2.2. Gaussian measures. Let B be a separable Banach space, with B(B) its Borel σ-algebra. A
Gaussian measure µ is a probability measure on (B,B(B)) such that every non-zero linear functional
x ∈ B∗, considered as a (real-valued) random variable on (B,B(B), µ), has a Gaussian distribution
on (R,B(R)). Such a Gaussian measure is called centered and/or non-degenerate, if these properties
hold for the distributions of every non-zero x ∈ B∗.

We can see that every abstract Wiener measure is a Gaussian measure, and conversely, for every
Gaussian measure µ on B, there exists a Hilbert space H such that (i,H,B) forms an abstract
Wiener space. The space H is known as the Cameron Martin space.

2.2.3. Stein characterization of Gaussian measures. Let B be a real separable Banach space with
norm ∥·∥. Let Z be a B-valued random variable which induces a centered Gaussian measure µZ
on B and let (i,H,B) be the associated abstract Wiener space. By {Pt : t ≥ 0} we denote the
Ornstein-Uhlenbeck semi-group of Z. It has the Mehler representation

Ptf(x) =

∫
B
f
(
e−tx+

√
1− e−2ty

)
µZ(dy),

provided such an integral exists. In Shih (2011, Theorem 3.1), Shih proved the following Stein
lemma for abstract Wiener measures.

Theorem 2.1. Let X be a B-valued random variable with distribution µX .
i) If B is finite-dimensional, then µX = µZ if and only if

E
[
⟨X,∇f(X)⟩B,B∗ −∆Gf(X)

]
= 0 (2.1)

for any twice-differentiable function f on B such that E
[∥∥∇2f(Z)

∥∥
S1(H)

]
<∞.

ii) If B is infinite-dimensional, then µX = µZ if and only if (2.1) holds for every twice H-
differentiable function f on B such that ∇f(x) ∈ B∗ for every x ∈ B,
E
[∥∥∇2f(Z)

∥∥
S1(H)

]
<∞ and E

[
∥∇f(Z)∥2B∗

]
<∞.

The notion of H-derivative which is also known as Fréchet derivative along H and appears in
Theorem 2.1 was introduced by Gross (1967b), and we briefly recall it here for the sake of self-
containedness. A function f : U → W from an open set U of B into a Banach space W is said to
be H-differentiable at x ∈ U if the map ϕ(h) = f(x + h), h ∈ H, regarded as a function defined
in a neighborhood of the origin of H is Fréchet-differentiable at 0. The H-derivative of f at x in
the direction h ∈ H is denoted by ⟨∇f(x), h⟩H . The k-th order H-derivatives of f at x can then
be constructed inductively and are denoted by ∇kf(x), provided they exist. If f is scalar-valued,
∇f(x) ∈ H∗ ≃ H and ∇2f(x) is a bounded linear operator from H to H∗ for every x ∈ U . The
notation

〈
∇2f(x)h, k

〉
H

or ∇2f(x)(h, k) will stand for the action of the linear form ∇2f(x)(h, ·) on
k.
If ∇2f(x) is a trace-class operator on H, the Gross Laplacian ∆Gf(x) of f at x is defined as
∆Gf(x) = TrH(∇2f(x)).

2.2.4. Stein’s equation. In view of Theorem 2.1, the associated Stein equation is given by

⟨x,∇g(x)⟩B,B∗ −∆Gg(x) = h(x)− E[h(Z)]

for x ∈ B, where h belongs to a suitable class of test functions. Recall from earlier that we assume
K to be a separable Hilbert space. From this point forward, we will let B = K and assume our
test functions belong to C3

b (K), the class of real-valued functions on K that have bounded Fréchet
derivatives up to order three. This space is equipped with the norm

∥h∥C3
b (K) = sup

j=1,2,3
sup
x∈K

∥∥Djh(x)
∥∥
K⊗j .
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Using standard semigroup techniques, the first two authors of this work showed in Bourguin and
Campese (2020) that there is a solution gh(x) for every test function h(x) and that gh ∈ C3

b (K)
when h ∈ C3

b (K). Specifically, Bourguin and Campese (2020, Lemma 2.4) provides the estimates

sup
x∈K

∥∥Djgh(x)
∥∥
K⊗j ≤

1

j
∥h∥

Cj
b (K)

(2.2)

and

∥gh∥C3
b (K) ≤ ∥h∥C3

b (K) .

Thus, using the probability distance

d3(X1, X2) = sup
h∈C3

b (K)
∥h∥

C3
b
(K)

≤1

|E[h(X1)− h(X2)]| ,

Stein’s equation implies that

d3(X,Z) = sup
h∈C3

b (K)
∥h∥

C3
b
(K)

≤1

|E[∆Ggh(X)− ⟨X,Dgh(X)⟩K ]| .

Remark 2.2. To obtain fourth moment estimate on separable Hilbert spaces, we choose to work with
a rather strong notion of probability distance that is d3(·, ·). In fact, proofs of our main results (see
Section 4) only require bounds on second and third derivatives of gh. Then per (2.2), the results in
Section 3 still hold true if d3(·, ·) is replaced by the probability distance

d̃(X1, X2) = sup
h∈A

|E[h(X1)− h(X2)]|

such that A = {h : K → R and supx∈K
∥∥D2h(x)

∥∥
K⊗2 ∨ supx∈K

∥∥D3h(x)
∥∥
K⊗3 ≤ 1}. Alternatively,

one can refer to Shih (2011, Theorem 4.9v) which states that if h is a Lipschitz function on K
then supx∈K

∥∥D2gh(x)
∥∥
HS(K)

≤ ∥h∥Lip . Based on this fact, one can replace d3(·, ·) in the results in
Section 3 with

d̄(X1, X2) = sup
h∈B

|E[h(X1)− h(X2)]|

such that B = {h : K → R and supx∈K ∥Dh(x)∥K ∨ supx∈K
∥∥D3h(x)

∥∥
K⊗3 ≤ 1}.

A more interesting question here is whether one can obtain the results in Section 3 with Wasser-
stein distance, that is

dWass(X1, X2) = sup
∥h∥Lip(K)≤1

|E[h(X1)− h(X2)]| .

During the revision of this paper, it was pointed out to us that the recent reference Fang and Koike
(2022) contains a four moment estimate in dWass for Rd-valued Poisson functionals. We expect that
the technique in the aforementioned reference can be adapted to the infinite-dimensional setting to
produce bounds in the Wasserstein distance.

2.3. Dirichlet structure.
This section contains an overview of Dirichlet structures, which is the framework we will be

working within alongside Stein’s method. We start by recalling the definition and properties of a
Dirichlet structure on L2(Ω;R) (full details can be found in the monographs Bakry et al. (2014);
Bouleau and Hirsch (1991)) before focusing on an extension to L2(Ω;K). Given a probability space
(Ω,F , P ), a Dirichlet structure (D, E) on L2(Ω;R) with the associated carré du champ operator Γ
consists of a Dirichlet domain D, which is a dense subset of L2(Ω;R) and a carré du champ operator
Γ : D× D → L1(Ω,R) characterized by the following properties.

- Γ is bilinear, symmetric (Γ(F,G) = Γ(G,F )) and positive (Γ(F, F ) ≥ 0).
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- the induced positive linear form F → E(F, F ), where E(F,G) = 1
2E[Γ(F,G)], is closed in

L2(Ω;R), i.e., D is complete when equipped with the norm

∥·∥2D = ∥·∥2L2(Ω;R) + E(·).

Remark 2.3. We do not assume that Γ satisfies the so-called diffusion property – see Bakry et al.
(2014, Definition 3.1.3) – as opposed to what is being done in Bourguin and Campese (2020).

Here and in the following, E[·] denotes the expectation on (Ω,F) with respect to P . The linear form
E is known as a Dirichlet form and for brevity we write E(F ) for E(F, F ). Every Dirichlet form gives
rise to a strongly continuous semigroup {Pt}t≥0 on L2(Ω;R) and an associated symmetric Markov
generator −L, defined on a dense subset dom(−L) ⊆ D. We will assume that ker(−L) only consists
of constants. There are two important relations between Γ and L, the first being the integration by
part formula

E[Γ(F,G)] = −E[FLG] = −E[GLF ],

which is valid for F,G ∈ D. The second relation is

Γ(F,G) =
1

2
(L(FG)−GLF − FLG),

which holds for all F,G ∈ dom(L) such that FG ∈ dom(L). If −L is diagonalizable with spectrum
N0 (the set of natural numbers plus 0) and Fq is an eigenfunction corresponding to the eigenvalue
q, then −LFq = qFq. The pseudo-inverse L−1 is defined by −L−1Fq = 1

qFq when q ̸= 0 and
0 otherwise. The definition of −L and −L−1 for a general F =

∑
q∈N0

Fq follows naturally via
linearity. Alternatively, L can be defined as the generator of the heat semigroup {Pt}t≥0 (on
dom(L)) which satisfies

∂tPt = LPt = PtL.

Next we present what is meant by a Dirichlet structure on L2(Ω;K). Let us adopt the notations
D̃, Γ̃, L̃, P̃t for the Dirichlet domain, Dirichlet form, carré du champ operator, generator and semi-
group associated with elements in L2(Ω;R). Meanwhile, D,Γ, L, Pt are reserved for the counterpart
objects associated with elements in L2(Ω;K). Given a separable Hilbert space K, one has that
L2(Ω;K) is isomorphic to L2(Ω;R) ⊗ K. The Dirichlet structure on L2(Ω;R) can therefore be
extended to L2(Ω;K) via a tensorization procedure. Let N0 be the spectrum of −L̃ and {ki}i∈N an
orthonormal basis of K. A will be the set of all functions X taking the form

X =
∑
q,i∈I

Fq,i ⊗ ki

such that I ⊆ N2 is a finite set and Fq,i ∈ ker
(
−L̃+ qI

)
. Assuming another element Y =∑

p,j∈J Gp,j ⊗ kj in A, we can define L,Γ, Pt, E for t ≥ 0 via

LX = L
∑
q,i∈I

Fq,i ⊗ ki =
∑
q,i∈I

(
L̃Fq,i

)
⊗ ki

PtX = Pt

∑
q,i∈I

Fq,i ⊗ ki =
∑
q,i∈I

(
P̃tFq,i

)
⊗ ki

Γ(X,Y ) =
1

2

∑
q,i∈I

∑
p,j∈J

Γ̃(Fq,i, Gp,j)⊗ (ki ⊗ kj + kj ⊗ ki)

and

E(X,Y ) = E[Tr Γ(X,Y )].
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In the last line, we identify Γ(X,Y ) as an element of L2(Ω;R)⊗K ⊗K ≃ L2(Ω,L(K,K)) via the
action

Γ(X,Y )u =
1

2

∑
q,i∈I

∑
p,j∈J

Γ̃(Fq,i, Gp,j)⊗
(
⟨ki, u⟩K ⊗ kj + ⟨kj , u⟩K ⊗ ki

)
.

Remark 2.4. The definitions above are independent of the choice of basis of K. We include here
a brief explanation for the operator L for the sake of completeness. First, the definition of L is
equivalent to

LX =
∑
i∈N

(
L̃ ⟨X, ki⟩K

)
ki.

Let {ej}j∈N be another orthonormal basis of K and define

L0X =
∑
j∈N

(
L̃ ⟨X, ej⟩K

)
ej .

Then by using ej =
∑

n∈N ⟨ej , kn⟩K kn such that
∑

n∈N ⟨ej , kn⟩2K = 1, and also the identity ⟨u, v⟩K =∑
i∈N ⟨u, ki⟩K ⟨v, ki⟩K , one can deduce that L0X = LX.

Since A is clearly dense in L2(Ω;K), the operators above can be extended to appropriate domains
in L2(Ω;K). This has been verified in Bourguin and Campese (2020, Proposition 2.5 and Theorem
2.6) (excluding the diffusion identity), which we restate below for the reader’s convenience.

Proposition 2.5 (Proposition 2.5 in Bourguin and Campese (2020)). The operators L L−1, E and
Γ can be extended to dom(L), dom(L−1) and dom(Γ) = dom(E) = D× D, respectively, given by

dom(L) =
{
X ∈ L2(Ω;K) :

∑
q∈N0

q2J̃q

(
∥X∥2K

)
<∞

}
,

dom(L−1) = L2(Ω;K) and

D =
{
X ∈ L2(Ω;K) :

∑
q∈N0

qJ̃q

(
∥X∥2K

)
<∞

}
,

where J̃q(·) denotes the projection onto ker
(
L̃+ qI

)
⊆ L2(Ω;R). In particular, one has

A ⊆ dom(L) ⊆ D ⊆ dom(L−1) = L2(Ω;K),

and all inclusions are dense.

Theorem 2.6 (Theorem 2.6 in Bourguin and Campese (2020)). For a Dirichlet structure (D,Γ) on
L2(Ω;K), the following is true.

(i) Γ is bilinear, almost surely positive, symmetric and self-adjoint with respect to ⟨·, ·⟩K .
(ii) The Dirichlet domain D equipped with the norm

∥X∥2D = ∥X∥L2(Ω;K) + ∥Γ(X,X)∥L1(Ω;S1)

is complete, so that Γ is closed.
(iii) The generator −L acting on L2(Ω;K) is positive, symmetric, densely defined and has the

same spectrum as −L̃.
(iv) There is a compact pseudo-inverse L−1 of L such that

LL−1X = X − E[X]

for all X ∈ L2(Ω;K), where the expression on the right is a Bochner integral.
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(v) The integration by parts formula

E[Tr Γ(X,Y )] = −E[⟨LX, Y ⟩K ] = −E[⟨X,LY ⟩K ]

is satisfied for all X,Y ∈ dom(−L).
(vi) The generators Γ, L, L̃ are related via

TrΓ(X,Y ) =
1

2

(
L̃ ⟨X,Y ⟩K − ⟨LX, Y ⟩K − ⟨X,LY ⟩K

)
(2.3)

for all X,Y ∈ dom(−L).
(vii) The identity

⟨Γ(X,Y )u, v⟩K =
1

2

(
Γ̃(⟨X,u⟩K , ⟨Y, v⟩K) + Γ̃(⟨Y, u⟩K , ⟨X, v⟩K)

)
,

is valid for all X,Y ∈ D and u, v ∈ K.

2.4. Analysis on Poisson space.
So far we have been working with a general probability space. In this section we will get more

specific and describe the Poisson space on which most of our objects of interest are defined. We
direct the reader to the references Last and Penrose (2018); Nualart and Nualart (2018) for an
extensive treatment of this topic. Let (Z,L , µ) be a measure space such that µ is σ-finite. A
Poisson random measure η on (Z,L ) with control measure µ is a family of distributions defined on
some probability space (Ω,F , P ) that satisfies

- η(B) is a Poisson distribution on Ω with mean µ(B),
- for every m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ Z, the random variables
η(B1), . . . , η(Bm) are independent.

If such a Poisson random measure exists, the associated probability space (Ω,F , P ) is called a
Poisson space. Next, let η̂ be the compensated Poisson random measure, that is η̂(B) = η(B)−µ(B),
whenever µ(B) is finite. Denote L2

s(µ
q) the set of all symmetric functions in L2(µq). For f ∈ L2

s(µ
q),

Iηq (f) denotes a multiple (Wiener-Itô) integral of order q. Unless we are simultaneously dealing with
two different Poisson random measures, Iq(·) will be understood as an integral with respect to η̂.
Multiple integrals have the following isometry property: for any integers q, p ≥ 1,

E[Iq(f)Ip(g)] = 1{q=p}q!⟨f̃ , g̃⟩L2(µq),

where f̃ denotes the symmetrization of f , and we recall that Iq(f) = Iq(f̃). The contraction of
two kernels f ∈ L2

s(µ
q) and g ∈ L2

s(µ
p), denoted by f ⋆lr g for 0 ≤ l ≤ r ≤ q ∧ p, is obtained by

identifying r variables and then integrating l of those:

f ⋆lr g(y1, . . . , yr−l, yr−l+1, . . . , yq−l, z1, . . . , zp−r)

=

∫
Zl

f(x1, . . . , xl, y1, . . . , yr−l, yr−l+1, . . . , yq−l)g(x1, . . . , xl, y1, . . . , yr−l, z1, . . . , zp−r)

dµ(x1, . . . , xl)

provided the integral exists in L2(µq+p−r−l). Contractions are central objects for analysis on Poisson
space as they appear in the product formula for multiple integrals. There are two ways of stating
this product formula on Poisson space: Last (2016, Proposition 6.1) and Döbler and Peccati (2018,
Lemma 2.4), each having different assumptions. We will state both below.

Lemma 2.7 (Proposition 6.1 in Last (2016)). Let f ∈ L2
s(µ

q), g ∈ L2
s(µ

p) and assume that f ⋆lr g ∈
L2(µq+p−r−l). Then,

Iq(f)Ip(g) =

q∧p∑
r=0

r!

(
q

r

)(
p

r

) r∑
l=0

(
r

l

)
Iq+p−r−l(f ⋆

l
r g). (2.4)
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Lemma 2.8 (Lemma 2.4 in Döbler and Peccati (2018)). Let f ∈ L2
s(µ

q), g ∈ L2
s(µ

p) and assume
that F = Iq(f), G = Ip(g) ∈ L4(P ). Then

FG =

q∧p−1∑
k=1

J̃k(FG) + Iq+p(f⊗̃g).

The collection of all multiple integrals of order q form the so-called Poisson chaos of order q in
L2(Ω;R), which is denoted by Hq. We have the orthogonal decomposition

L2(Ω,F , P ) =
∞⊕
q=1

Hq.

Similarly as what we did for Dirichlet structures, we define Hq(K) (K-valued Poisson chaos of order
q) as the closure of Hq ⊗K in L2(Ω,K). Then,

L2(Ω;K) =

∞⊕
q=1

Hq(K).

Consequently, every X ∈ L2(Ω,K) can be decomposed as

X =
∑
q∈N0

Fq =
∑
i∈N,
q∈N0

⟨Fq, ki⟩K ki =
∑
i∈N,
q∈N0

Fq,iki,

where Fq ∈ Hq(K), Fq,i ∈ Hq with Fq,i = Iq(fq,i) for some fq,i ∈ L2
s(µ

q).

2.5. An exchangeable pair on Poisson space. Another tool that we employ alongside Stein’s method
is an exchangeable pair on the Poisson space. Construction of this crucial exchangeable pair is done
in Döbler et al. (2018) (see also Zheng (2019); Nourdin and Zheng (2019) for analogous construction
on Rademacher and Gaussian spaces).

Per Last and Penrose (2018, Corollary 3.7), the Poisson random measure η on (Z,L , µ) equals
in distribution to the proper Poisson point process

η =
κ∑

n=1

δXn ,

such that Xn and κ are random elements in respectively Z and N ∪ {0,∞}.
Let Q be the standard exponential distribution. Assume that {Yn}n∈N is an i.i.d. family with

distribution Q and is independent of (κ,Xn). Based on Last and Penrose (2018, Theorem 5.6), the
marked point process ξ =

∑κ
n=1 δ(Xn,Yn) is a Poisson point process with control µ × Q. Then the

e−t-thinning of η is defined as

ηe−t = ξ(A× [t,∞)]),

which is obtained by removing point Xn of η with probability 1−e−t such that the thinning decisions
are independent among different points.

Now let f be a measurable function N → R such that E[f(η)] < ∞. η̂t is another Poisson point
process with control

(
1− e−t

)
µ(·) and is independent from (η, ηe−t). Based on Last and Penrose

(2018, Chapter 20), the semi-group {Pt}t≥0 associated with η admits the representation

Ptf(η) = E [f(ηe−t + η̂t) | η]

for t ≥ 0. This representation is also known as Mehler’s formula on the Poisson space.
The paper Döbler et al. (2018) contains the following important result regarding the process

ηt = ηe−t + η̂t.
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Lemma 2.9 (Lemma 3.1 in Döbler et al. (2018)). For each t ≥ 0,
(
η, ηt

)
is an exchangeable pair

of Poisson random measures.

In fact, the construction of the specific exchangeable pair above is just one example of how one
can in general construct exchangeable pairs using reversible Markov chain (see for example Ross
(2009)). Moreover, based on the above result, for any kernel g ∈ L2

s(µ
p), the pair

(
Iηp (g), I

ηt
p (g)

)
is

exchangeable, and further relations between Iηp (g) and Iη
t

p (g) are stated in Lemma 5.4.

3. Statement of main results

In what follows, let K be a separable Hilbert space with orthonormal basis {ki}i∈N, and let X
denote a K-valued centered random variable in L2 (Ω;K) with finite chaos decomposition

X =
∑

1≤q≤N

Fq, (3.1)

where each Fq belongs to the q-th K-valued Poisson chaos. Furthermore, assume that X has
covariance operator S, which in turn decomposes as

S =
∑

1≤q≤N

Sq,

where, for each 1 ≤ q ≤ N , Sq is the covariance operator of Fq. Finally, we will denote by fq,i ∈ H⊗q

the kernel of Fq,i = ⟨Fq, ki⟩K = Iq (fq,i).
Our first main result provides a quantitative bound on the distance between the law of X and a

centered K-valued Gaussian random variable Z in terms of the first four moments of X.

Theorem 3.1. Assume X is a K-valued random variable as described above such that for every
1 ≤ q ≤ N , Fq has finite fourth moment, i.e., E

[
∥Fq∥4K

]
< ∞. Then, letting Z be a centered

Gaussian random variable on K with covariance operator S′, the following estimate holds

d3(X,Z) ≤
1

2

∥∥S − S′∥∥
HS

+

(
2N − 1

4
+
N

2

√
(4N − 3) max

1≤p≤N
E
[
∥Fp∥2K

]) ∑
1≤q≤N

√
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

+
2N − 1

4

∑
1≤p ̸=q≤N

√
E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
.

Remark 3.2. Theorem 3.1 is an infinite-dimensional version of the fourth moment theorems on the
Poisson space obtained in Döbler et al. (2018, Theorem 1.2, Theorem 1.7) and Döbler and Peccati
(2018, Theorem 1.3). In particular, the aforementioned results are special cases of Theorem 3.1
obtained by setting K = Rd for a positive integer d.

Remark 3.3. Theorem 3.1 can be viewed as a Poissonian counterpart of Bourguin and Campese
(2020, Theorem 3.10) in the context of a non-diffusive chaos structure. The fact that we are working
with a non-diffusive structure (where no chain rule is available for the Gamma calculus introduced
in Section 2) forces us to use different techniques in order to obtain the above quantitative bounds
than the ones used in Bourguin and Campese (2020), making these results comparable in nature,
but very different in their methodologies of proof.

Remark 3.4. We explain here why we assume in Theorem 3.1 (and consequently in all other theoret-
ical results of this paper, which follow from this theorem) that for every 1 ≤ q ≤ N , E

[
∥Fq∥4K

]
<∞.

In the proof of Theorem 3.1 in Section 4, we will apply at several locations an important estimate
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that is Lemma 5.5. This lemma is originally established in Döbler and Peccati (2018); Döbler et al.
(2018) and is obtained via the product formula (2.4), which requires that Fq,i = ⟨Fq, ki⟩K has finite

fourth moment. This requirement is satisfied in the event E
[
∥Fq∥4K

]
<∞, since

E
[
∥Fq∥4K

]
= E

∥∥∥∥∥∑
i∈N

Fq,iki

∥∥∥∥∥
4

K

 =
∑
i,j∈N

E
[
F 2
q,iF

2
q,j

]
≥
∑
i∈N

E
[
F 4
q,i

]
.

Remark 3.5. Let us mention some helpful criteria for the purpose of verifying finite fourth moment
of F = Iq(f) for some f ∈ L2

s(µ
q) ⊗ K. Based on Döbler and Peccati (2018, Remark 1.2b), a

sufficient condition is that ∥f∥K is bounded and the support of ∥f∥K is contained in a rectangle of
the type C×C . . .×C such that µ(C) <∞, where we recall µ is the control of our Poisson random
measure. This detail can be easily verified via the product formula (2.4). Poisson multiple integrals
with this type of kernels include most U-statistics that are relevant to geometric applications (see
Lachièze-Rey and Peccati (2013a,b); Reitzner and Schulte (2013) and the references therein).

Another way to verify that F has finite fourth moment is via restricted hypercontractivity on the
Poisson space recently discovered in Nourdin et al. (2020). Specifically, under technical assumptions
in their Theorem 1.4, one can bound the fourth moment of F by its variance.

Whenever X belongs to a single chaos, we can reformulate Theorem 3.1 in a more compact form:

Corollary 3.6 (Quantitative Fourth Moment Theorem). Let the notation and setup of Theorem
3.1 prevail. When X belongs to a single chaos, i.e., X ∈ Hq(K) for some q ≥ 1, one has

d3(X,Z) ≤
1

2

∥∥S − S′∥∥
HS

+

(
2q − 1

4
+
q

2

√
(4q − 3)E

[
∥X∥2K

])√
∥X∥4K − E

[
∥X∥2K

]2
− 2 ∥S∥2HS.

As d3 metrizes convergence in law, the above corollary in particular shows that within a single
non-diffusive chaos, convergence of the second and fourth strong moments implies convergence
towards a (Hilbert-valued) Gaussian.

A particularly useful formulation of the above moment bounds for applications uses contraction
operators acting on the kernels of the multiple integrals appearing in the chaos decomposition
representation of X given in (3.1). Contractions, which are the analytic quantities defined in Section
2, allow for much simpler computation compared to dealing directly with the first four moments.
Some examples of previous works that use contraction norms to obtain quantitative limit theorem
for Poisson random variables include Lachièze-Rey and Peccati (2013a,b); Reitzner and Schulte
(2013).

Our second main result is the following contraction bound.

Theorem 3.7. Let the notation and setup of Theorem 3.1 prevail. Moreover, let H = L2(Z, µ)
where Z is the σ-finite measure space described in Subsection 2.4. Then it holds that

d3(X,Z) ≤
1

2

∥∥S − S′∥∥
HS

+

(
2N − 1

4
+
N

2

√
(4N − 3) max

1≤p≤N
E
[
∥Fp∥2K

])
β1 +

2N − 1

4
β2.
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where

β1 =
∑

1≤q≤N

(
q−1∑
r=1

bq,q(r) ∥fq ⋆rr fq∥
2
H⊗(2q−2r)⊗K⊗2

+
∑

(r,s,l,m)∈I

cq,q,l,m(r, s)
∥∥∥fq⋆̃lrfq∥∥∥

H⊗(2q−r−l)⊗K⊗2
∥fq⋆̃ms fq∥H⊗(2q−m−s)⊗K⊗2

)1/2

and

β2 =
∑

1≤p ̸=q≤N

(
ap,q(p ∧ q)

∥∥fq ⋆q∧pq∧p fp
∥∥2
H⊗|q−p|⊗K⊗2 +

q∧p−1∑
r=1

bp,q(r) ∥fq ⋆rr fp∥
2
H⊗(q+p−2r)⊗K⊗2

+
∑

(r,s,l,m)∈I

cp,q,l,m(r, s)
∥∥∥fq⋆̃lrfp∥∥∥

H⊗(q+p−r−l)⊗K⊗2
∥fq⋆̃ms fp∥H⊗(q+p−m−s)⊗K⊗2

)1/2

.

Here, the combinatorial coefficients are given by

ap,q(r) = p!q!

(
q

r

)(
p

r

)
+ r!2

(
q

r

)2(p
r

)2

|p− q|!

bp,q(r) = p!q!

(
q

r

)(
p

r

)
cp,q,l,m(r, s) = r!s!

(
q

r

)(
q

s

)(
p

r

)(
p

s

)(
r

l

)(
s

m

)
(p+ q − r − l)!

,

and the index set I is defined by

I = {(r, s, l,m) ∈ N4 : 0 ≤ r, s ≤ q ∧ p, 0 ≤ l ≤ r, 0 ≤ m ≤ s,

r + l = s+m, (r, s, l,m) /∈ {(0, 0, 0, 0), (q ∧ p, q ∧ p, q ∧ p, q ∧ p)}}.

Example 3.8. If X is a sum of elements of the first two chaoses, i.e., X = I1(f1) + I2(f2), The-
orem 3.7 requires the contraction norms

∥∥f1 ⋆11 f2∥∥H⊗K⊗2 ,
∥∥f2 ⋆11 f2∥∥H⊗2⊗K⊗2 ,

∥∥f1 ⋆01 f2∥∥H⊗2⊗K⊗2 ,∥∥f1 ⋆01 f2∥∥H⊗2⊗K⊗2 ,
∥∥f2 ⋆02 f2∥∥H⊗2⊗K⊗2 ,

∥∥f2 ⋆12 f2∥∥H⊗K⊗2 and
∥∥f1 ⋆01 f1∥∥H⊗K⊗2 to converge to 0 to

get convergence towards a Gaussian law.

Example 3.9. Let µ be a σ-finite measure on some measure space. By setting K = R,H = L2(µ)
and X = Ip(f) for some p ≥ 2 in Theorem 3.7, we get a result comparable to Peccati et al. (2010,
Theorem 5.1) and Peccati and Taqqu (2008, Theorem 2). For instance, whenever X = I2(f),
Theorem 3.7 and Peccati et al. (2010, Example 5.2) both state that normal convergence happens
if
∥∥f ⋆11 f∥∥L2(µ2)

, ∥f∥L4(µ2) and
∥∥f ⋆12 f∥∥L2(µ)

converge to 0, keeping in mind that ∥f∥2L4(µ2) =∥∥f ⋆02 f∥∥L2(µ2)
, and

∥∥f ⋆01 f∥∥L2(µ3)
=
∥∥f ⋆12 f∥∥L2(µ)

.
Another example is Peccati et al. (2010, Example 5.3), which states that X = I3(g) converges to

a Gaussian distribution if ∥g∥2L4(µ3),
∥∥g ⋆11 g∥∥L2(µ4)

,
∥∥g ⋆12 g∥∥L2(µ3)

,
∥∥g ⋆13 g∥∥L2(µ2)

and
∥∥g ⋆23 g∥∥L2(µ)

all converge to 0, which is the same condition suggested in Theorem 3.7.
Further, we would like to mention Eichelsbacher and Thäle (2014); Lachièze-Rey and Peccati

(2013a,b) which also offer contraction bounds for normal approximation on the Poisson space.

4. Proof of main results

We begin with the proof of Theorem 3.1 which uses the method of exchangeable pairs developed
in Section 2.
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4.1. Proof of Theorem 3.1. Let G be a Gaussian random variable on K with the same covariance
operator as X, i.e., G has covariance operator S. Similarly to Bourguin and Campese (2020,
Corrolary 3.3), it holds that

d3(G,Z) ≤
1

2

∥∥S − S′∥∥
HS
.

Therefore, it suffices to derive the desired moment bound for d3(X,G) which yields the first item
in Theorem 3.1 as

d3(X,Z) ≤ d3(X,G) + d3(G,Z).

In Subsection 2.5, we constructed an exchangeable pair of the form (Fq, F
t
q ) based on an element of

a fixed K-valued chaos Fq, where q denotes the order of the Poisson chaos. Recall that X has the
chaos decomposition (3.1). It follows that, for any t ≥ 0, if we define Xt as

Xt =

N∑
q=1

F t
q ,

then the pair

(X,Xt) =

 N∑
q=1

Fq,
N∑
q=1

F t
q


is also exchangeable. Since ⟨x− y,Dg(x) +Dg(y)⟩K is an anti-symmetric expression, the exchange-
ability implies

lim
t→0

1

2t
E

〈 N∑
q=1

1

q

(
F t
q − Fq

)
, Dg(Xt) +Dg(X)

〉
K

 = 0.

Furthermore, applying Taylor’s theorem yields

0 = lim
t→0

1

2t
E

〈 N∑
q=1

1

q

(
F t
q − Fq

)
, Dg(Xt) +Dg(X)

〉
K


= lim

t→0
E

 1

2t

〈
N∑
q=1

1

q

(
F t
q − Fq

)
, Dg(Xt)−Dg(X)

〉
K

+
1

t

〈
N∑
q=1

1

q

(
F t
q − Fq

)
, Dg(X)

〉
K


= lim

t→0
E

 1

2t

〈
N∑
q=1

1

q

(
F t
q − Fq

)
, D2g(X)(Xt −X) + r

〉
K

+
1

t

〈
N∑
q=1

1

q

(
F t
q − Fq

)
, Dg(X)

〉
K

.
Here r denotes the remainder term for which ∥r∥K ≤ 1

2

∥∥D3g(ξ)(Xt −X)2
∥∥
K

, and ξ is in the open
ball centered at X with radius ∥Xt −X∥K .

Now set

R(t) = E

 1

2t

〈
N∑
q=1

1

q

(
F t
q − Fq

)
, r

〉
K

.
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Note that E[∆Gg(X)] =
∑

1≤q≤N E
[
TrK

(
D2g(X)Sq

)]
. Combined with part (a) and (c) of Lemma

5.7 and keeping in mind Fq =
∑

i∈N Fq,iki, this leads to

0 =
∑

1≤q≤N

E
[
TrK

(
D2g(X)Γ

(
Fq,−L−1Fq

))]
+

∑
1≤p̸=q≤N

∑
i,j∈N

E
[〈
ki, D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]
− E[⟨X,Dg(X)⟩K ] + lim

t→0
R(t)

= E[∆Gg(X)]− E[⟨X,Dg(X)⟩K ] +
∑

1≤q≤N

E
[
TrK

(
D2g(X)

(
Γ
(
Fq,−L−1Fq

)
− Sq

))]
+

∑
1≤p̸=q≤N

∑
i,j∈N

E
[〈
ki, D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]
+ lim

t→0
R(t).

The above equation and the Stein equation introduced in Section 2 imply

d3(X,G) = sup
h∈C3

b (K)

E[|∆Gg(X)− ⟨X,Dg(X)⟩K |]

≤ sup
h∈C3

b (K)

 ∑
1≤q≤N

∣∣E[TrK(D2g(X)
(
Γ
(
Fq,−L−1Fq

)
− Sq

))]∣∣
+

∑
1≤p ̸=q≤N

∣∣∣∣∣∣
∑
i,j∈N

E
[〈
ki, D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]∣∣∣∣∣∣+
∣∣∣lim
t→0

R(t)
∣∣∣
 . (4.1)

For the first term on the right side of (4.1), it holds that

∑
1≤q≤N

∣∣E[TrK(D2g(X)
(
Γ
(
Fq,−L−1Fq

)
− Sq

))]∣∣
≤

∑
1≤q≤N

∥∥D2g(X)
∥∥
L2(Ω;HS(K))

∥∥∥∥1qΓ(Fq, Fq)− Sq

∥∥∥∥
L2(Ω;HS(K))

≤
∑

1≤q≤N

1

2q

√∑
i,j∈N

Var(Γ(Fq,i, Fq,j))

≤
∑

1≤q≤N

2q − 1

4q

√∑
i,j∈N

E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2

=
∑

1≤q≤N

2q − 1

4q

√
E
[
∥Fq∥4K

]
− E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS.

In particular, we have used the fact that
∥∥D2g(x)

∥∥
K⊗2 =

∥∥D2g(x)
∥∥
HS(K)

and Bourguin and
Campese (2020, Lemma 2.4) to get the third line above. The fourth line is a consequence of
Lemma 5.5. Finally, the identity ⟨Sf, g⟩K = E[⟨X, f⟩K ⟨X, g⟩K ] allows us to get the term ∥Sq∥HS
in the last line.
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Now we study the second term on the right side of (4.1). Application of Bourguin and Campese
(2020, Lemma 2.4) and Lemma 5.5 gives

∑
1≤p ̸=q≤N

∣∣∣∣∣∣
∑
i,j∈N

E
[〈
ki, D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]∣∣∣∣∣∣
≤

∑
1≤p̸=q≤N

E

√∑
i,j∈N

⟨ki, D2g(X)kj⟩K

√∑
i,j∈N

Γ̃
(
−L̃−1Fp,i, Fq,j

)2
≤

∑
1≤p̸=q≤N

√∑
i,j∈N

E
[
⟨ki, D2g(X)kj⟩2K

]√√√√∑
i,j∈N

E
[
Γ̃
(
−L̃−1Fp,i, Fq,j

)2]

≤
∑

1≤p̸=q≤N

p+ q − 1

2p

∥∥D2g(X)
∥∥
L2(Ω;HS(K))

√∑
i,j∈N

E
[
F 2
p,iF

2
q,j

]
− E

[
F 2
p,i

]
E
[
F 2
q,j

]
≤

∑
1≤p̸=q≤N

p+ q − 1

4p

√
E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
.

As the last step, we apply Lemma 5.8 to the remainder term in (4.1).∣∣∣lim
t→0

R(t)
∣∣∣ ≤ lim

t→0

1

4t

∥∥D3g
∥∥
op

E

∥∥∥∥∥∥
N∑
q=1

1

q

(
F t
q − Fq

)∥∥∥∥∥∥
K

∥∥Xt −X
∥∥2
K


≤ N

2

√
max

1≤p≤N
E
[
∥Fp∥2K

] ∑
1≤q≤N

√
4q − 3

√
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS.

We can hence deduce from (4.1) the inequality

d3(X,G) ≤
∑

1≤q≤N

2q − 1

4q

√
E
[
∥Fq∥4K

]
− E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

+
∑

1≤p ̸=q≤N

p+ q − 1

4p

√
E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
+
N

2

√
max

1≤p≤N
E
[
∥Fp∥2K

] ∑
1≤q≤N

√
4q − 3

√
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS. (4.2)

This combined with
2q − 1

4q
∨ p+ q − 1

4p
≤ 2N − 1

4
for 1 ≤ p, q ≤ N,

4q − 3 ≤ 4N − 3 for 1 ≤ q ≤ N,

yields

d3(X,G)

≤
(
2N − 1

4
+
N

2

√
(4N − 3) max

1≤p≤N
E
[
∥Fp∥2K

]) ∑
1≤q≤N

√
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

+
2N − 1

4

∑
1≤p̸=q≤N

√
E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
.
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□
We now turn to the proof of Theorem 3.7, which makes use of the second estimate in Theorem

3.1.

4.2. Proof of Theorem 3.7. The strategy here consists of making use of the product formula (2.4)
for Poisson multiple integrals in order to represent the quantities

E
[
∥Fq∥4K

]
− E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

and

E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
, p ̸= q

which appear in the second estimate of Theorem 3.1 in term of contraction norms. We begin by
noting that

E
[
∥Fq∥4K

]
− E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS =

∑
i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)

and for p ̸= q,

E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
=
∑
i,j∈N

(
E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

])
.

An application of the product formula (2.4) for Poisson multiple integrals yields

Fq,iFp,j =

q∧p∑
r=0

r!

(
q

r

)(
p

r

) r∑
l=0

(
r

l

)
Iq+p−r−l

(
fq,i⋆̃

l
rfp,j

)
.

Now by the orthogonality of Poisson chaos of different orders, one has

E
[
F 2
q,iF

2
p,j

]
=

q∧p∑
r,s=0

∑
0≤l≤r
0≤m≤s

r+l=s+m

cp,q,l,m(r, s)
〈
fq,i⋆̃

l
rfp,j , fq,i⋆̃

m
s fp,j

〉
H⊗(q+p−r−l)

, (4.3)

where the coefficient cp,q,l,m(r, s) is given by

cp,q,l,m(r, s) = r!s!

(
q

r

)(
q

s

)(
p

r

)(
p

s

)(
r

l

)(
s

m

)
(p+ q − r − l)!.

Let us define the index set I as

I =
{
(r, s, l,m) ∈ N4 : 0 ≤ r, s ≤ q ∧ p, 0 ≤ l ≤ r, 0 ≤ m ≤ s,

r + l = s+m, (r, s, l,m) /∈ {(0, 0, 0, 0), (q ∧ p, q ∧ p, q ∧ p, q ∧ p)}
}
.

Then, using Lemma 5.9, equation (4.3) can be rewritten as

E
[
F 2
q,iF

2
p,j

]
=q!p! ∥fq,i∥2H⊗q ∥fp,j∥2H⊗q + 2q!2 ⟨fq,i, fq,j⟩2H⊗q 1{q=p}

+ ap,q(p ∧ q)
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p| 1{q ̸=p} +

q∧p−1∑
r=1

bp,q(r) ∥fq,i ⋆rr fp,j∥
2
H⊗(q+p−2r)

+
∑

(r,s,l,m)∈I

cp,q,l,m(r, s)
〈
fq,i⋆̃

l
rfp,j , fq,i⋆̃

m
s fp,j

〉
H⊗(q+p−r−l)

,
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where the combinatorial coefficients ap,q(r) and bp,q(r) are given by
ap,q(r) = p!q!

(
q

r

)(
p

r

)
+ r!2

(
q

r

)2(p
r

)2

|p− q|!

bp,q(r) = p!q!

(
q

r

)(
p

r

) .

It follows that∑
i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)
=
∑
i,j∈N

q−1∑
r=1

bq,q(r) ∥fq,i ⋆rr fq,j∥
2
H⊗(2q−2r)

+
∑
i,j∈N

(r,s,l,m)∈I

cq,q,l,m(r, s)
〈
fq,i⋆̃

l
rfq,j , fq,i⋆̃

m
s fq,j

〉
H⊗(2q−r−l)

;

and for p ̸= q∑
i,j∈N

(
E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

])
=
∑
i,j∈N

ap,q(p ∧ q)
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p|

+
∑
i,j∈N

q∧p−1∑
r=1

bp,q(r) ∥fq,i ⋆rr fp,j∥
2
H⊗(q+p−2r)

+
∑
i,j∈N

(r,s,l,m)∈I

cp,q,l,m(r, s)
〈
fq,i⋆̃

l
rfp,j , fq,i⋆̃

m
s fp,j

〉
H⊗(q+p−r−l)

.

Finally observe that∥∥∥fq⋆lrfp∥∥∥2
H⊗(q+p−r−l)⊗K⊗2

=
∑
i,j∈N

∥∥∥⟨fq, ki⟩K ⋆lr ⟨fp, kj⟩K
∥∥∥2
H⊗(q+p−r−l)

=
∑
i,j∈N

∥∥∥fq,i⋆lrfp,j∥∥∥2
H⊗(q+p−r−l)

,

Therefore, we can sum over i, j ∈ N and apply Cauchy Schwarz’s inequality to get

E
[
∥Fq∥4K

]
− E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS ≤

q−1∑
r=1

bq,q(r) ∥fq ⋆rr fq∥
2
H⊗(2q−2r)⊗K⊗2

+
∑

(r,s,l,m)∈I

cq,q,l,m(r, s)
∥∥∥fq⋆̃lrfq∥∥∥

H⊗(2q−r−l)⊗K⊗2
∥fq⋆̃ms fq∥H⊗(2q−m−s)⊗K⊗2 ;

and

E
[
∥Fp∥2K ∥Fq∥2K

]
− E

[
∥Fp∥2K

]
E
[
∥Fq∥2K

]
≤ ap,q(p ∧ q)

∥∥fq ⋆q∧pq∧p fp
∥∥2
H⊗|q−p|⊗K⊗2 +

q∧p−1∑
r=1

bp,q(r) ∥fq ⋆rr fp∥
2
H⊗(q+p−2r)⊗K⊗2

+
∑

(r,s,l,m)∈I

cp,q,l,m(r, s)
∥∥∥fq⋆̃lrfp∥∥∥

H⊗(q+p−r−l)⊗K⊗2
∥fq⋆̃ms fp∥H⊗(q+p−m−s)⊗K⊗2 .

This combined with the moment estimate in Theorem 3.1 concludes our proof of contraction
bound. □

5. Applications

5.1. Brownian approximation of a Poisson process in Besov-Liouville spaces.
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5.1.1. A brief overview of Besov-Liouville spaces. For an extensive account on the current topic, we
invite readers to view Samko et al. (1993). For f ∈ Lp([0, 1], ds) and β > 0, we define the left and
right fractional integrals respectively as(

Iβ
0+
f
)
(s) =

1

Γ(β)

∫ s

0
(s− r)β−1f(r)dr

and (
Iβ
1−f

)
(s) =

1

Γ(β)

∫ 1

s
(r − s)β−1f(r)dr.

This allows us to define the Besov-Liouville spaces

I+
β,p =

{
Iβ
0+
f̂ , f̂ ∈ Lp([0, 1])

}
,

which are Banach spaces when equipped with the norm ∥f∥I+
β,p

=
∥∥∥f̂∥∥∥

Lp([0,1])
. The Besov-Liouville

spaces I−
β,p are defined accordingly with the right fractional integrals. When βp < 1, the spaces I+

β,p

and I−
β,p are canonically isomorphic and therefore will both be denoted by Iβ,p.

Remark 5.1. As pointed out in Coutin and Decreusefond (2013), Iβ,2 for β < 1/2 is an appropriate
class of Besov-Liouville spaces for the functional approximation of a Poisson process by a Brownian
motion since they are Hilbert spaces containing both the sample paths of the Poisson process and
the Brownian motion.

Similarly to the left and right fractional integrals, one can define left and right fractional deriva-
tives as (

Dβ
0+
f
)
(s) =

1

Γ(1− β)

d

ds

∫ s

0
(s− r)−βf(r)dr(

Dβ
1−f

)
(s) =

1

Γ(1− β)

d

ds

∫ 1

s
(r − s)−βf(r)dr

As the name suggests, Dβ
0+

is the inverse of Iβ
0+

(see Samko et al. (1993, Theorem 2.4)). Two
examples for the action of this operator that will be useful later are(

Dβ
0+

Id
)
(r) =

r−β+1

(−β + 1)Γ(−β + 1)
and

(
Dβ

0+
1[a,∞)

)
(r) =

(r − a)−β
+

Γ(−β + 1)
, (5.1)

where Id denotes the identity function. Let us also mention a few important facts about fractional
integrals and derivatives. Given 0 < β < 1 and 1 < p < 1/β, Iβ

0+
is a bounded operator from

Lp([0, 1]) to Lq([0, 1]) with q = p(1 − βp)−1. Moreover, for β > 0 and p ≥ 1, Iβ
0+

is bounded
from Lp([0, 1]) into itself (see for instance Samko et al. (1993, Equation (2.72))). Next, fractional
derivatives are the inverses of fractional integrals, in the sense that(

Dβ
0+
Iβ
0+
f
)
(s) = f(s)

for f ∈ L1([0, 1]). Furthermore, fractional integrals enjoy the semigroup property (see Samko et al.
(1993, Theorem 2.5)), that is (

Iα0+I
β
0+
f
)
(s) =

(
Iα+β
0+

f
)
(s)

as long as β > 0, α+ β > 0 and f ∈ L1([0, 1]).
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5.1.2. A functional central limit theorem. We consider a Poisson process Nλ(t) with intensity λ. It is
well known (see for instance Nualart and Nualart (2018, Example 9.1.3)) that it can be represented
as

Nλ(t) =
∑
n∈N

1[Tn,∞)(t), (5.2)

where Tn =
∑n

i=1 αi and {αi : i ∈ N} are independent exponentially distributed random variables
with parameter λ, i.e., αi ∼ Exp(λ) for all i ∈ N. This implies that Tn is Gamma distributed with
shape n and rate λ, i.e., Tn ∼ Gamma(n, λ). As pointed out in Coutin and Decreusefond (2013),
Nλ(t) maps into Iβ,2 for β < 1/2.

For any t ∈ [0, 1], define

Xλ(t) =
Nλ(t)− λt√

λ

and let Z be a Brownian motion on Iβ,2, that is a Iβ,2-valued Gaussian random variable with
covariance operator

S′ = Iβ
0+
I1−β
0+

I1−β
1− Dβ

0+
, (5.3)

where the expression of the covariance operator was derived in Coutin and Decreusefond (2013).
We are now ready to state the main result of this application, namely the Brownian approximation
of a Poisson process in Iβ,2.

Theorem 5.2. On a Besov-Liouville space Iβ,2 with β < 1/2, the distributions of Xλ and Z are
asymptotically close as λ→ ∞. Their closeness can be quantified by

d3(Xλ, Z) ≲
1√
λ
.

Proof : Xλ(t) can be represented as a Poisson multiple integral of order one. Let H = L2(R+, λdx)
be the underlying Hilbert space to the compensated Poisson process Nλ(t) − λt. Furthermore, let
f(t) = 1√

λ
1[0,t] ∈ H. We can hence write

Xλ(t) = I1(f(t)).

Theorem 3.7 then provides us with the estimate

d3(Xλ, Z) ≲
∥∥f ⋆01 f∥∥2H⊗K⊗2 +

∥∥Sλ − S′∥∥
HS(K)

, (5.4)

where Sλ denotes the covariance operator of Xλ and where K = Iβ,2. We begin by computing the
contraction norm appearing above. We have

(f ⋆01 f)(x) =
1

λ
1[0,t](x)1[0,s](x) = 1[x,∞)(t)1[x,∞)(s),

so that ∥∥f ⋆01 f∥∥2H⊗K⊗2 =
1

λ2

∫ 1

0

∫ 1

0

∫ 1

0

((
Dβ

0+
1[x,∞)

)
(t)
(
Dβ

0+
1[x,∞)

)
(s)
)2
λdxdsdt

=
1

λΓ(−β + 1)4

∫ 1

0

∫ 1

0
(t− x)−2β

+ (s− x)−2β
+ dsdt ≲

1

λ
,

where the last inequality simply comes from the fact that
∫ 1
0

∫ 1
0 (t− x)−2β

+ (s− x)−2β
+ dsdt is finite.
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Regarding the remaining term, namely ∥Sλ − S′∥HS(K), we apply Lemma 5.10 and Lemma 5.12.
This yields∥∥Sλ − S′∥∥2

HS(K)

=
∥∥∥E[(Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
− E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
]∥∥∥2

L2([0,1]⊗2)
= 0,

which concludes the proof. □

5.2. Edge counting in random graphs. In Lachièze-Rey and Peccati (2013a), the authors studied
Gaussian fluctuations of real-valued U -statistics related to graphs generated by Poisson point pro-
cesses. We will apply Theorem 3.7 to obtain a functional version of their results in all three regimes
mentioned in Lachièze-Rey and Peccati (2013a, Example 4.13). Recall from Subsection 2.5 the
definition of a proper Poisson point process

ηλ =

Po(λ)∑
i=1

δYi ,

where Po(λ) is a Poisson distribution on R, while {Yi}i∈N is an i.i.d. sequence of Rd-valued random
variables distributed as ℓ and independent from Po(λ). Let W be a symmetric and bounded set in
Rd. For simplicity and illustration purposes, let us assume ℓ is the uniform measure on W . The
control measure of ηλ is therefore

µλ(·) = λℓ(·).
Let G be a graph generated by ηλ, so that G has the vertex set {Y1, . . . , YPo(λ)}. The set W will

serve as our original window in which we monitor the edges of G, and let Hλ ⊆ R2d be a symmetric
set which will serve as our original edge set. For 0 ≤ t ≤ 1, define

Wt = t
1
2dW

Hλ,t = t
1
2dHλ

Ŵt = {x− y : x, y ∈Wt}
Hλ,t = {x− y : x, y ∈ Hλ,t}

.

We will assume that any edge, written in pairs (x, y), belongs to Hλ,t if and only if x − y ∈ Hλ,t.
For example, this property holds for a disk graph with base edge set Hλ = B(0, rλ), an open ball of
radius rλ at the origin. We note that compared to the setup in Lachièze-Rey and Peccati (2013a),
our window and edge set are not static but evolve with time.

We are interested in a Poissonized U -statistics of the form

Fλ(t) =
∑

(x,y)∈η2λ
x ̸=y

1Hλ,t∩W 2
t
(x, y) =

Po(λ)∑
1=i1<i2

1Hλ,t∩W 2
t
(Yi1 , Yi2)

which counts edges of G that belong to the set Hλ,t and lie inside the window Wt at time t. It is
clear from the hypothesis that {Fλ(t)}t∈[0,1] as a process belongs to K = L2([0, 1]). As proved in
Reitzner and Schulte (2013), our U -statistic has a finite chaos expansion given by

Fλ(t) = E[Fλ(t)] + I1(f1(t)) + I2(f2(t)),

where the (functional) kernels f1(t) and f2(t) are given by f1(t) = 2

∫
Rd

1Hλ,t∩W 2
t
(x, y)λdy

f2(t) = 1Hλ,t∩W 2
t
(x, y)

.
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Let F̄λ(t) denote the centered and normalized version of Fλ(t) given by

F̄λ(t) =
Fλ(t)− E[Fλ(t)]

σ
= I1 (g1(t)) + I2 (g2(t)) ,

where σ2 = Var(Fλ(1)), g1(t) =
f1(t)
σ and g2(t) =

f2(t)
σ . For convenience, we will also write ℓt for

ℓ(Wt) and ψλ,t for ℓ
(
Hλ,t ∩ Ŵt

)
. Using the scaling properties of the Lebesgue measure, we can

write

ℓt =
√
tℓ1 and ψλ,t =

√
tψλ,1.

We can actually compute σ2 explicitly, using the orthogonality of Wiener chaos of different orders
and the isometry property of Poisson multiple integrals. This yields

σ2 = ∥f1(1)∥2L2(µλ)
+ ∥f2(1)∥2L2(µ2

λ)

=4λ3
∫
Rd

(∫
Rd

1W1(x)1Hλ,1∩Ŵ1
(y − x)d(y − x)

)2

dx+

∫
R2d

1Hλ,1∩W 2
1
(x, y)λ2dxdy

=4ℓ1λ
3ψ2

λ,1 + ℓ1λ
2ψλ,1.

Based on the above expression for σ2, we can consider three different regimes (similarly to what
was done in Lachièze-Rey and Peccati (2013a)), namely

- Regime 1: λψλ,1 → ∞ as λ→ ∞;
- Regime 2: λψλ,1 → 1 for c > 0 as λ→ ∞;
- Regime 3: λψλ,1 → 0 and λ

√
ψλ,1 → ∞ as λ→ ∞.

Within Regime 1, σ2 is dominated by ∥f1(1)∥2L2(µλ)
for large values of λ, which implies

σ2 ≍ 4ℓ1λ
3ψ2

λ,1,

whereas in Regime 2, we get

σ2 ≍ 4ℓ1λ
3ψ2

λ,1 ≍ ℓ1λ
2ψλ,1,

and finally in Regime 3, it holds that

σ2 ≍ ℓ1λ
2ψλ,1.

We are now ready to present the application of our results to edge counting in random graphs.

Theorem 5.3. As λ → ∞, F̄λ(t) converges in K = L2([0, 1]) to a K-valued Gaussian random
variable Z with covariance function ϕ(s, t) = E[Z(s)Z(t)]. More specifically,

- In Regime 1, ϕ(t, s) =
√
ts(t ∧ s) and

d3
(
F̄λ, Z

)
≲ λ−

1
2 +

1

λψλ,1
;

- In Regime 2, ϕ(t, s) = 4
√

ts(t∧s)+t∧s
5 and

d3
(
F̄λ, Z

)
≲ λ−

1
2 + |λψλ,1 − 1| ;

- In Regime 3, ϕ(t, s) = t ∧ s which implies that Z is a Brownian motion, and

d3
(
F̄λ, Z

)
≲ λ−1ψ

−1/2
λ,1 + λψλ,1.

Proof : In order to make use of Theorem 3.7, we will need to evaluate contraction norms, but also
the Hilbert-Schmidt norm of the difference between the covariance operators, i.e., ∥S − S′∥HS. Let
us start with this term before we turn to the contraction norms themselves. As before, Sλ and
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S′ denotes the covariance operator of F̄λ and Z respectively. Based on Hsing and Eubank (2015,
Theorem 7.4.3) and how Hilbert-Schmidt norms are defined for integral operators, we can use∥∥Sλ − S′∥∥

HS(K)
=
∥∥E[F̄λ(t)F̄λ(s)

]
− E[Z(t)Z(s)]

∥∥
L2([0,1]⊗2)

≤
∥∥E[F̄λ(t)F̄λ(s)

]
− E[Z(t)Z(s)]

∥∥
∞ .

Our task is hence to compute E
[
F̄λ(t)F̄λ(s)

]
. We have

⟨f1(t), f1(s)⟩L2(µλ)
= 4λ3ψλ,tψλ,sℓt∧s =

√
ts(t ∧ s)4ℓ1λ3ψ2

λ,1

and
⟨f2(t), f2(s)⟩L2(µ⊗2

λ ) = λ2ψλ,t∧sℓt∧s = (t ∧ s)ℓ1λ2ψλ,1,

so that

E
[
F̄λ(t)F̄λ(s)

]
=
⟨f1(t), f1(s)⟩L2(µλ)

+ ⟨f2(t), f2(s)⟩L2(µ2
λ)

σ2

=

√
ts(t ∧ s)4λψλ,1 + t ∧ s

4λψλ,1 + 1
.

At this step, we need to differentiate our analysis depending on what regime we are in.

Regime 1: We assume here that λψλ,1 → ∞. The limiting covariance operator S′ then has
covariance function ϕ(t, s) =

√
ts(t ∧ s). We can use the fact that for a≪ A, b≪ B,∣∣∣∣A+ a

B + b
− A

B

∣∣∣∣ ≲ ∣∣∣ aB ∣∣∣+
∣∣∣∣ bB
∣∣∣∣

in order to deduce that∥∥Sλ − S′∥∥
HS(K)

≤ sup
1≤s,t≤M

∣∣E[F̄λ(t)F̄λ(s)
]
− ϕ(t, s)

∣∣ ≲ 1

λψλ,1
. (5.5)

Regime 2: Here, λψλ,1 → 1, so that the limiting covariance function is given by ϕ(t, s) =
4
√

ts(t∧s)+t∧s
5 . Moreover,∥∥Sλ − S′∥∥

HS(K)
≤ sup

1≤s,t≤M

∣∣E[F̄λ(t)F̄λ(s)
]
− ϕ(t, s)

∣∣
= sup

1≤s,t≤M

∣∣∣∣∣4
√
ts(t ∧ s)λψλ,1 + t ∧ s

4λψλ,1 + 1
−

4
√
ts(t ∧ s) + t ∧ s

5

∣∣∣∣∣ ≲ |λψλ,1 − 1| . (5.6)

Regime 3: The fact that λψλ,1 → 0 implies in this case that the limiting covariance function is
given by ϕ(t, s) = t ∧ s, and we hence have∥∥Sλ − S′∥∥

HS(K)
≲
λ3ψ2

λ,1

λ2ψλ,1
≍ λψλ,1. (5.7)

We now turn to the second part of the bound appearing in Theorem 3.7, namely the contraction
norms. We need to evaluate the norms of g1(t) ⋆01 g1(t), g1(t) ⋆01 g2(t), g1(t) ⋆11 g2(t), g2(t) ⋆01 g2(t),
g2(t) ⋆

0
2 g2(t) and g2(t) ⋆

1
1 g2(t). The calculations we need to perform are very similar to the ones

appearing in the proof of Lachièze-Rey and Peccati (2013a, Theorem 4.7), hence we will not provide
full details and proceed straight to the result. Let us still include two examples of these calculations
(the cases of the contractions g1(t) ⋆01 g1(t) and g2(t) ⋆

1
1 g2(t)) for the reader’s convenience and for

the sake of staying self-contained. Recall that Wt, Hλ,t are symmetric sets, Wt (respectively Hλ,t)
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is contained in Wt′ (respectively Hλ,t′) for t ≤ t′, and that ψλ,t =
√
tψλ,1, while ℓt =

√
tℓ1 <∞. We

can then write∥∥f1(t) ⋆01 f1(s)∥∥2L2(µλ)⊗K⊗2

=

∥∥∥∥∥
∫
Rd

(
4

∫
Z2

1Hλ,t∩W⊗2
t

(x, y)1Hλ,s∩W⊗2
s

(x, u)λdyλdu

)2

λdx

∥∥∥∥∥
K⊗2

≤ 16λ5

∥∥∥∥∥
∫
Rd

(∫
R2d

1Hλ,s∨t∩W⊗2
s∨t

(x, y)1Hλ,s∨t∩W⊗2
s∨t

(x, u)dydu

)2

dx

∥∥∥∥∥
K⊗2

≍ λ5

∥∥∥∥∥
∫
Rd

(∫
R2d

1Ws∨t(x)1Hλ,s∨t∩Ŵs∨t
(y − x)1

Hλ,s∨t∩Ŵs∨t
(u− x)d(y − x)d(u− x)

)2

dx

∥∥∥∥∥
K⊗2

≍ λ5
∥∥ℓs∨tψ4

λ,s∨t
∥∥
K⊗2 ≍ λ5ψ4

λ,1

and∥∥f2(t) ⋆11 f2(s)∥∥2L2(µ⊗2
λ )⊗K⊗2

≤

∥∥∥∥∥
∫
R2d

(∫
Rd

1Hλ,s∨t∩W⊗2
s∨t

(x, y)1Hλ,s∨t∩W⊗2
s∨t

(x, u)λdx

)2

λ2dydu

∥∥∥∥∥
K⊗2

= λ4
∥∥∥∥∫

R4d

1Hλ,s∨t∩W⊗2
s∨t

(x, y)1Hλ,s∨t∩W⊗2
s∨t

(x, u)1Hλ,s∨t∩W⊗2
s∨t

(v, y)1Hλ,s∨t∩W⊗2
s∨t

(v, u)dxdydudv

∥∥∥∥
K⊗2

≤ λ4
∥∥∥∥∫

R4d

1Ws∨t(x)1Hλ,s∨t∩Ŵs∨t
(y − x)1

Hλ,s∨t∩Ŵs∨t
(u− x)1Ws∨t(x)1Hλ,s∨t∩Ŵs∨t

(y − v)

dxd(y − x)d(u− v)d(v − y)

∥∥∥∥
K⊗2

≍ λ4
∥∥ℓs∨tψ3

λ,s∨t
∥∥
K⊗2 ≍ λ4ψ3

λ,1.

For the remaining contractions, performing similar calculations yields
∥∥f1(t) ⋆01 f2(t)∥∥2L2(µ⊗2

λ )⊗K⊗2

≲ λ4ψ3
λ,1,

∥∥f2(t) ⋆01 f2(t)∥∥2L2(µ⊗3
λ )⊗K⊗2 ≲ λ3ψ2

λ,1,
∥∥f2(t) ⋆02 f2(t)∥∥2L2(µ⊗2

λ )⊗K⊗2 ≲ λ2ψλ,1, and finally∥∥f1(t) ⋆11 f2(t)∥∥2L2(µλ)⊗K⊗2 ≲ λ5ψ4
λ,1. We split the remainder of the proof into three cases corre-

sponding to the three possible regimes.

Regime 1: Here, λψλ,1 → ∞ as λ→ ∞, and since σ2 ≍ λ3ψ2
λ,1, we have

∥∥g1(t) ⋆01 g1(t)∥∥2L2(µλ)⊗K⊗2

≲ λ−1,
∥∥g1(t) ⋆01 g2(t)∥∥2L2(µ2

λ)⊗K⊗2 ≲ λ−2ψ−1
λ,1,

∥∥g2(t) ⋆01 g2(t)∥∥2L2(µ3
λ)⊗K⊗2 ≲ λ−3ψ−2

λ,1,∥∥g2(t) ⋆02 g2(t)∥∥2L2(µ2
λ)⊗K⊗2 ≲ λ−4ψ−3

λ,1,
∥∥g2(t) ⋆11 g2(t)∥∥2L2(µ2

λ)⊗K⊗2 ≲ λ−2ψ−1
λ,1 and lastly∥∥g1(t) ⋆11 g2(t)∥∥2L2(µλ)⊗K⊗2 ≲ λ−1. Note that all the above estimates are asymptotically bounded

from above by λ−1, and using (5.5), the estimate in Theorem 3.7 yields

d3
(
F̄λ, Z

)
≲ λ−

1
2 +

1

λψλ,1
.

Regime 2: As in this case, we have λψλ,1 → 1 as λ→ ∞, we get σ2 ≍ λ3ψ2
λ,1 ≍ λ2ψλ,1. Therefore,

we can reuse the computations from Regime 1 combined with (5.6) to get

d3
(
F̄λ, Z

)
≲ λ−

1
2 + |λψλ,1 − 1| .
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Regime 3: In this regime, λψλ,1 → 0 and λ
√
ψλ,1 → ∞ as λ → ∞, so that σ2 ≍ λ2ψλ,1. This

allows us to deduce that
∥∥g1(t) ⋆01 g1(t)∥∥2L2(µλ)⊗K⊗2 ≲ λψ2

λ,1,
∥∥g1(t) ⋆01 g2(t)∥∥2L2(µ2

λ)⊗K⊗2 ≲ ψλ,1,∥∥g2(t) ⋆01 g2(t)∥∥2L2(µ3
λ)⊗K⊗2 ≲ λ−1,

∥∥g2(t) ⋆02 g2(t)∥∥2L2(µ2
λ)⊗K⊗2 ≲ λ−2ψ−1

λ,1,
∥∥g2(t) ⋆11 g2(t)∥∥2L2(µ2

λ)⊗K⊗2

≲ ψλ,1 and
∥∥g1(t) ⋆11 g2(t)∥∥2L2(µλ)⊗K⊗2 ≲ λψ2

λ,1. Since λ−2 ≪ ψλ,1 ≪ λ−1, all terms listed are
asymptotically bounded by λ−2ψ−1

λ,1. Combining this fact with (5.7) yields

d3
(
F̄λ, Z

)
≲ λ−1ψ

−1/2
λ,1 + λψλ,1,

which concludes the proof. □

Appendix

This section gathers ancillary lemmas used in the proofs of our main results as well as in the
different applications presented in this paper.

5.3. Lemmas related to the proofs of Theorems 3.1 and 3.7. Our first two lemma contain important
results from Döbler et al. (2018) which we restate here for reader’s convenience.

Lemma 5.4. Let p, q ≥ 1 be integers, and let Fq = Iηq (fq), Gp = Iηp (gp) and F t
q = Iη

t

q (fq), G
t
p =

Iη
t

p (gp) be real-valued Poisson multiple integrals as constructed in Section 2. Assume further that
E
[
F 4
q

]
,E
[
G4

p

]
<∞. Then, the following limits hold almost surely.

(a) limt→0
1
tE
[
F t
q − Fq|η

]
= −qF

(b) limt→0
1
tE
[
(F t

q − Fq)(G
t
p −Gp)|η

]
= 2Γ̃(Fq, Gp)

(c) limt→0
1
tE
[
F t
q (G

t
p −Gp)|η

]
= 2Γ̃(Fq, Gp)− pFqGp

(d) limt→0
1
tE
[
(F t

q − Fq)
4
]
= −4qE

[
F 4
q

]
+ 12E

[
F 2
q Γ̃(Fq, Fq)

]
.

Proof : The proof of part (a), (b) and (d) are in Döbler et al. (2018, Proposition 3.2). Part (c) is a
consequence of (a) and (b). □

The following is an estimate from Döbler et al. (2018, Lemma 2.2), which improves upon a similar
result in Döbler and Peccati (2018, Lemma 3.1).

Lemma 5.5. Let p, q ≥ 1 be integers, and let Fq = Iηq (fq) and F t
q = Iη

t

q (fq) be real-valued Poisson
multiple integrals as constructed in Section 2. Assume further that E

[
F 4
q

]
,E
[
G4

p

]
< ∞. Then, we

have

E
[
Γ̃(Fq, Gp)

2
]
≤
(
p+ q − 1

2

)2(
E
[
F 2
qG

2
p

]
− E

[
F 2
q

]
E
[
G2

p

]
− 2E[FqGp]

2
)
.

Our next lemma states a more general version of Lemma 5.4, part (d).

Lemma 5.6. Let (X,Xt) be an exchangeable pair such that X =
∑
q∈N

Iηq (xq) and Xt =
∑
q∈N

Iη
t

q (xq).

Let the pairs (Y, Y t),(U,U t) and (V, V t) be defined in the same way. Assume further that E
[
X4
]
,

E
[
Y 4
]
, E
[
U4
]

and E
[
V 4
]

are finite. Then, one has

lim
t→∞

1

t
E
[
(Xt −X)(Yt − Y )(U t − U)(V t − V )

]
=4E

[
Γ̃(X,Y )UV + Γ̃(X,V )Y U

+Γ̃(X,U)Y V + L̃XY UV
]
.
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Proof : This limit is a consequence of exchangeability and Lemma 5.4. Indeed, denoting

Mt =
1

t
E
[
(Xt −X)(Yt − Y )(U t − U)(V t − V )

]
,

we can write

lim
t→∞

Mt =2 lim
t→∞

1

t
E
[
XY UV −XtY UV −XY tUV −XY U tV −XY UV t

]
+ 2 lim

t→∞

1

t
E
[
XtY tUV +XtY U tV +XtY UV t

]
=2 lim

t→∞

1

t
E
[
−
(
Xt −X

)
Y UV −X

(
Y t − Y

)
UV −XY

(
U t − U

)
V −XY U

(
V t − V

)]
+ 2 lim

t→∞

1

t
E
[(
XtY t −XY

)
UV +

(
XtU t −XU

)
Y V +

(
XtV t −XV

)
Y U

]
=2E

[
− L̃XY UV −XL̃Y UV −XY L̃UV −XY UL̃V + L̃(XY )UV + L̃(XU)Y V

+ L̃(XV )Y U
]

=4E
[
Γ̃(X,Y )UV + Γ̃(X,V )Y U + Γ̃(X,U)Y V + L̃XY UV

]
.

□

The upcoming lemma is a version of Lemma 5.4 in the setting of Hilbert-valued random variables.

Lemma 5.7. Let X =
∑

1≤q≤N Fq, where Fq ∈ Hq(K) with covariance operator Sq and E
[
∥Fq∥4K

]
<

∞. It holds that
(a) limt→0

1
tE
[〈
F t
q − Fq, Dg(X)

〉
K

]
= −qE

[
⟨Fq, Dg(X)⟩K

]
.

(b) limt→0
1
tE
[∥∥F t

q − Fq

∥∥2
K

]
= 2qE

[
∥Fq∥2K

]
.

(c) limt→0
1
2tE
[〈

1
q

(
F t
q − Fq

)
, D2g(X)(F t

p − Fp)
〉
K

]
= 1

q

∑
i,j∈N E

[
Γ̃(Fq,i, Fp,j)

〈
ki, D

2g(X)kj
〉
K

]
.

(d) limt→0
1
tE
[∥∥F t

q − Fq

∥∥4
K

]
= 4

∑
i,j∈N E

[
F 2
q,i

(
Γ̃(Fq,j , Fq,j)− qE[Fq,j ]

)]
+ 8

∑
i,j∈N E

[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j ]

)]
− 4q

∑
i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)
.

In particular, when q = p then part (c) becomes

lim
t→0

1

2t
E
[〈

1

q

(
F t
q − Fq

)
, D2g(X)(F t

q − Fq)

〉
K

]
= TrK

(
D2g(X)Γ

(
Fq,−L−1Fq

))
.

Proof : Part (a) follows from

lim
t→0

1

t
E
[〈
F t
q − Fq, Dg(X)

〉
K

]
= lim

t→0

1

t

∑
i∈N

E
[〈(

F t
q,i − Fq,i

)
ki, Dg(X)

〉
K

]
=
∑
i∈N

E
[
lim
t→0

1

t
E
[
F t
q,i − Fq,i|η

]
⟨ki, Dg(X)⟩K

]
= −q

∑
i∈N

E[Fq,i⟨ki, Dg(X)⟩K ]

= −qE
[
⟨Fq, Dg(X)⟩K

]
.

We need to justify the exchange of expected value and limit in the second line above. This will
be done via the dominated convergence theorem, noting that other parts of this proof which are



542 Solesne Bourguin, Simon Campese and Thanh Dang

presented below will also require similar arguments. It is sufficient to consider only 0 ≤ t ≤ 1. The
function g(t) = e−qt is Lipschitz continuous on [0, 1]. Moreover, E

[
F t
q,i|η

]
= PtFq,i = e−qtFq,i per

Section 2.5 and supx ∥Dg(x)∥K <∞ per Bourguin and Campese (2020, Lemma 2.4). Hence,

∣∣∣∣1tE[F t
q,i − Fq,i|η

]
⟨ki, Dg(X)⟩K

∣∣∣∣ = ∣∣∣∣e−qt − 1

t
Fq,i ⟨ki, Dg(X)⟩K

∣∣∣∣ ≤ C |Fq,i|

for some positive constant C. Then we can apply the dominated convergence theorem.
Part (b) is a result of

E
[
lim
t→0

1

t
E
[∥∥F t

q − Fq

∥∥2
K
|η
]]

=E

[∑
i∈N

lim
t→0

1

t
E
[(
F t
q,i − Fq,i

)2|η]]
=2
∑
i∈N

E
[
Γ̃(Fq,i, Fq,i)

]
=2qE

[
∥Fq∥2K

]
.

For part (c), we can write

lim
t→0

1

2t
E
[〈

1

q

(
F t
q − Fq

)
, D2g(X)(F t

p − Fp)

〉
K

]

= lim
t→0

1

2t
E

〈∑
i∈N

1

q

(
F t
q,i − Fq,i

)
ki, D

2g(X)
∑
j∈N

(
F t
p,j − Fp,j

)
kj

〉
K


=

1

q

∑
i,j∈N

E
[
lim
t→0

1

2t
E
[(
F t
q,i − Fq,i

)(
F t
p,j − Fp,j

)
|η
] 〈
ki, D

2g(X)kj
〉
K

]
=

1

q

∑
i,j∈N

E
[
Γ̃(Fq,i, Fp,j)

〈
ki, D

2g(X)kj
〉
K

]
.

Using the above expression in the case q = p, along with the fact that

Γ(Fq, Fq)kj = Γ

(∑
i∈N

Fq,iki,
∑
m∈N

Fq,mkm

)
kj =

∑
i,m∈N

Γ(Fq,iki, Fq,mkm)kj

=
∑

i,m∈N

1

2
Γ̃(Fq,i, Fq,m)(ki ⊗ km + km ⊗ ki)kj

=
∑
i∈N

Γ̃(Fq,i, Fq,j)ki

yields

lim
t→0

1

2t
E
[〈

1

q

(
F t
q − Fq

)
, D2g(X)(F t

q − Fq)

〉
K

]
= TrK

(
D2g(X)Γ

(
Fq,−L−1Fq

))
.
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For part (d), the exchangeability of
(
Fq, F

t
q

)
and Lemma 5.6 imply

lim
t→0

1

t
E
[∥∥F t

q − Fq

∥∥4
K

]
= lim

t→0

1

t
E

∥∥∥∥∥∑
i∈N

(
F t
q,i − Fq,i

)
ki

∥∥∥∥∥
4

K


= lim

t→0

1

t
E

∑
i,j∈N

(
F t
q,i − Fq,i

)2(
F t
q,j − Fq,j

)2
=4

∑
i,j∈N

E
[
F 2
q,i

(
Γ̃(Fq,j , Fq,j)− qE

[
F 2
q,j

])]
+ 8

∑
i,j∈N

E
[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j ]

)]
− 4q

∑
i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)
.

□

Via Lemma 5.7, we will establish a fourth moment bound that will help with the remainder term
in the proof of Theorem 3.1.

Lemma 5.8. Let X =
∑

1≤q≤N Fq, where Fq ∈ Hq(K) with covariance operator Sq and E
[
∥Fq∥4K

]
<

∞. It holds that

lim
t→0

1

t
E

∥∥∥∥∥∥
N∑
q=1

1

q

(
F t
q − Fq

)∥∥∥∥∥∥
K

∥∥Xt −X
∥∥2
K


≤ 2N

√
max

1≤p≤N
E
[
∥Fp∥2K

] ∑
1≤q≤N

√
4q − 3

√
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS.

Proof : We have

E

∥∥∥∥∥∥
N∑
q=1

1

q

(
F t
q − Fq

)∥∥∥∥∥∥
K

∥∥Xt −X
∥∥2
K

 ≤ E

 ∑
1≤q≤N

1

q

∥∥F t
q − Fq

∥∥
K

 N∑
p=1

∥∥F t
p − Fp

∥∥
K

2
≤ N

∑
1≤p,q≤N

1

q
E
[∥∥F t

q − Fq

∥∥
K

∥∥F t
p − Fp

∥∥2
K

]
≤ N

∑
1≤p,q≤N

1

q

√
E
[∥∥F t

q − Fq

∥∥2
K

]√
E
[∥∥F t

p − Fp

∥∥4
K

]
.

The first line is due to chaos decomposition of X,Xt and triangle inequality of ∥·∥K . The second

line is a consequence of
(∑N

p=1 yp

)2
≤ N

∑N
i=1 y

2
p. The last line is due to Hölder’s inequality.
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Next, part (b) of Lemma 5.7 implies that

lim
t→0

1

t
E

∥∥∥∥∥∥
N∑
q=1

1

q

(
F t
q − Fq

)∥∥∥∥∥∥
K

∥∥Xt −X
∥∥2
K


= N

∑
1≤p,q≤N

1

q

√
lim
t→0

1

t
E
[∥∥F t

q − Fq

∥∥2
K

]√
lim
t→0

1

t
E
[∥∥F t

p − Fp

∥∥4
K

]
≤ N

√
2 max
1≤q≤N

E
[
∥Fq∥2K

] ∑
1≤q≤N

√
lim
t→0

1

t
E
[∥∥F t

q − Fq

∥∥4
K

]
. (5.8)

Let us study the remaining limit on the right hand side. Lemma 5.7 says

lim
t→0

1

t
E
[∥∥F t

q − Fq

∥∥4
K

]
=4

∑
i,j∈N

E
[
F 2
q,i

(
Γ̃(Fq,j , Fq,j)− qE

[
F 2
q,j

])]
+ 8

∑
i,j∈N

E
[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j ]

)]
− 4q

∑
i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)
. (5.9)

We will treat each term of (5.9) separately. For the first term of (5.9), our proof will use an argument
similar to the proof of Döbler et al. (2018, Lemma 2.2) or Döbler and Peccati (2018, Lemma 3.1).
First, observe that if k is a fixed positive integer and Jk denotes the projection into the k-th Poisson
chaos, then

E
[
Jk

(
∥Fp∥2K

)2]
=
∑
i,j∈N

E
[
Jk
(
F 2
q,i

)
Jk
(
F 2
q,j

)]
.

In particular, the expansion in Döbler et al. (2018, Lemma 5.1) yields

E
[
J2q

(
∥Fq∥⊗2

K

)2]
=
∑
i,j∈N

(2q)!
〈
fq,i⊗̃fq,i, fq,j⊗̃fq,j

〉
H⊗2q

=
∑
i,j∈N

(
2E[Fq,iFq,j ]

2 +

q−1∑
r=1

q!2
(
q

r

)2

⟨fq,i⋆rrfq,j , fq,j⋆rrfq,i⟩H⊗2q−2r

)
.

Thus, the first term of (5.9) can be bounded via∑
i,j∈N

E
[
F 2
q,i

(
Γ̃(Fq,j , Fq,j)− qE

[
F 2
q,j

])]
≤1

2

∑
i,j∈N

2q−1∑
k=1

(2p− k)E
[
Jk
(
F 2
q,i

)
Jk
(
F 2
q,j

)]
=
1

2

2q−1∑
k=1

(2p− k)E
[
Jk

(
∥Fq∥2K

)2]

≤2q − 1

2

2q−1∑
k=1

E
[
Jk

(
∥Fq∥2K

)2]
=
2q − 1

2

(
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

)
− 2q − 1

2

∑
i,j∈N

q−1∑
r=1

q!2
(
q

r

)2

⟨fq,i⋆rrfq,j , fq,j⋆rrfq,i⟩H⊗2q−2r .
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The second term of (5.9) will receive a similar treatment. Based on Döbler et al. (2018, Lemma
5.1), we have

E[J2q(Fq,iFq,j)] =
∑
i,j∈N

(2q)!
∥∥fq,i⊗̃fq,j∥∥2H⊗2q

=
∑
i,j∈N

(
E[Fq,iFq,j ]

2 + E
[
F 2
q,i

]
E
[
F 2
q,j

]
+

q∑
r=1

q!2
(
q

r

)2

∥fq,i⋆rrfq,j∥
2
H⊗2q−2r

)
.

Hence,

∑
i,j∈N

E
[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j ]

)]
=
1

2

∑
i,j∈N

2q−1∑
k=1

(2q − k)E
[
Jk(Fq,iFq,j)

2
]

≤2q − 1

2

∑
i,j∈N

2q−1∑
k=1

E
[
Jk(Fq,iFq,j)

2
]

=
2q − 1

2

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)

− 2q − 1

2

∑
i,j∈N

q−1∑
r=1

q!2
(
q

r

)2

∥fq,i⋆rrfq,j∥
2
H⊗2q−2r

≤2q − 1

2

(
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

)
− 2q − 1

4

∑
i,j∈N

q−1∑
r=1

q!2
(
q

r

)2

∥fq,i⋆rrfq,j∥
2
H⊗2q−2r .

In addition, based on that fact that∑
i,j∈N

(
2 ∥fq,i⋆rrfq,j∥

2
H⊗2q−2r + 2 ⟨fq,i⋆rrfq,j , fq,j⋆rrfq,i⟩H⊗2q−2r

)
=
∑
i,j∈N

(
∥fq,i⋆rrfq,j∥

2
H⊗2q−2r + 2 ⟨fq,i⋆rrfq,j , fq,j⋆rrfq,i⟩H⊗2q−2r + ∥fq,j⋆rrfq,i∥

2
H⊗2q−2r

)
=
∑
i,j∈N

(
∥fq,i⋆rrfq,j + fq,j⋆

r
rfq,i∥

2
H⊗2q−2r

)
≥ 0,

we deduce from (5.9) that

lim
t→0

1

t
E
[∥∥F t

q − Fq

∥∥4
K

]
≤ (8q − 6)

(
∥Fq∥4K − E

[
∥Fq∥2K

]2
− 2 ∥Sq∥2HS

)
.

Combining this with (5.8), we arrive at the fourth moment bound in the statement of this lemma. □

The result below is an adaptation to our setting of a classical combinatorial identity appearing
in Peccati and Taqqu (2011, Proof of Proposition 11.2.2).
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Lemma 5.9. The quantity
∥∥∥fq,i⋆̃00fp,j∥∥∥2

H⊗q+p
appearing in Equation (4.3) can be written in terms

of norms of non-symmetrized contractions as

(q + p)!
∥∥∥fq,i⋆̃00fp,j∥∥∥2

H⊗q+p
=q!p! ∥fq,i∥2H⊗q ∥fp,j∥2H⊗p + q!2 ⟨fq,i, fq,j⟩2H⊗q 1{q=p}

+ q!p!

(
q

q ∧ p

)(
p

q ∧ p

)∥∥fq,i ⋆q∧pq∧p fp,j
∥∥2
H⊗|q−p| 1{q ̸=p}

+

q∧p−1∑
r=1

q!p!

(
q

r

)(
p

r

)
∥fq,i ⋆rr fp,j∥

2
H⊗q+p−2r .

Proof : The procedure in Peccati and Taqqu (2011, Proof of Proposition 11.2.2) will be slightly
modified to fit our situation. Let Sq+p be the sets of all permutations of (q + p) elements and
assume π, ρ ∈ Sq+p. When the intersection set {π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(q + p)} contains
r element, this will be denoted by π r∼ ρ. Since H = L2(Z, µ), we have that∥∥∥fq,i⋆̃00fp,j∥∥∥2

H⊗q+p
=
∥∥fq,i⊗̃fp,j∥∥2H⊗q+p

=
1

(q + p)!2

∑
π,ρ∈Sq+p

∫
Zq+p

fq,i
(
zπ(1), . . . , zπ(q)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

)
fq,i
(
zρ(1), . . . , zρ(q)

)
fp,j
(
zρ(q+1), . . . , zρ(q+p)

)
µ(dz1 . . . dzq+p)

=
1

(q + p)!2

∑
π∈Sq+p

q∧p−1∑
r=1

∑
π

r∼ρ

A1,r +
∑
π

0∼ρ

A2 +
∑
π
q∧p∼ ρ

A3

. (5.10)

For the second sum in (5.10), π 0∼ ρ is equivalent to

{
{π(1), . . . , π(q)} ∩ {ρ(1), . . . , ρ(q)} = {π(1), . . . , π(q)}
{π(q + 1), . . . , π(q + p)} ∩ {ρ(q + 1), . . . , ρ(q + p)} = {π(q + 1), . . . , π(q + p)}

,

which implies that

A2 =

∫
Zq∧p

(∫
Zq∧p

fq,i
(
zπ(1), . . . , zπ(q)

)
fq,i
(
zπ(1), . . . , zπ(q)

))
(
fp,j
(
zπ(q+1), . . . , zπ(q+p)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

))
µ(dz1 . . . dzq+p) = ∥fq,i∥2H⊗q ∥fp,j∥2H⊗p .

Furthermore, observe that for a fixed element π ∈ Sq+p, there are q! ways to permute {1, . . . , q}
and p! ways to permute {q + 1, . . . , q + p}. Since fq,i and fp,j are symmetric functions, we have∑

π
0∼ρ

A2 = q!p! ∥fq,i∥2H⊗q ∥fp,j∥2H⊗p .

For the third sum in (5.10), there are two cases to consider. If q = p then π q∼ ρ means{
{π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(2q)} = {π(1), . . . , π(q)}
{π(q + 1), . . . , π(2q)} ∩ {ρ(1), . . . , ρ(q)} = {π(q + 1), . . . , π(2q)}

,
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which implies that

A3 =

∫
Zq

(∫
Zq

fq,i
(
zπ(1), . . . , zπ(q)

)
fq,j
(
zπ(1), . . . , zπ(q)

))
fq,i
(
zπ(q+1), . . . , zπ(2q)

)
fq,j
(
zπ(q+1), . . . , zπ(2q)

)
µ(dz1 . . . dz2q)

= ⟨fq,i, fq,j⟩2H⊗q 1{q=p},

and there are q!2 copies like the one above. On the other hand for q ̸= p,

A3 =

∫
Z|q−p|

(∫
Zq∧p

fq,i
(
zπ(1), . . . , zπ(q)

)
fp,j
(
zρ(q+1), . . . , zρ(q+p)

))
(∫

Zq∧p

fq,i
(
zρ(1), . . . , zρ(q)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

))
µ(dz1 . . . dzq+p)

=

∫
Z|q−p|

(
fq,i ⋆

q∧p
q∧p fp,j

)2
µ(dz1 . . . dz|q−p|)

=
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p| .

Given a fixed π such that π q∧p∼ ρ and q ̸= p, there is a total of
(

q
q∧p
)(

p
q∧p
)

ways of choosing q ∧ p
elements in {π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(q + p)} and q ∧ p elements in {π(q + 1), . . . , π(q +
p)} ∩ {ρ(1), . . . , ρ(q)}. In addition, there are q!p! ways to organize {ρ(1), . . . , ρ(q)} and {ρ(q +
1), . . . , ρ(q + p)}. Therefore, combining the case q = p and q ̸= p gives us

∑
π
q∧p∼ ρ

A3 = q!2 ⟨fq,i, fq,j⟩2H⊗q 1{q=p} + q!p!

(
q

q ∧ p

)(
p

q ∧ p

)∥∥fq,i ⋆q∧pq∧p fp,j
∥∥2
H⊗|q−p| 1{q ̸=p}.

We now turn to the first sum on the right side of (5.10), that is when π r∼ ρ for 1 ≤ r ≤ q ∧ p− 1.
We can write

A1,r =

∫
Zq+p−2r

(∫
Zr

fq,i
(
zπ(1), . . . , zπ(q)

)
fp,j
(
zρ(q+1), . . . , zρ(q+p)

))
(∫

Zr

fq,i
(
zρ(1), . . . , zρ(q)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

))
µ(dz1 . . . dzq+p)

=

∫
Zq+p−2r

(fq,i ⋆
r
r fp,j(z1, . . . , zq+p−2r))

2µ(dz1 . . . dzq+p−2r)

= ∥fq,i ⋆rr fp,j∥
2
H⊗q+p−2r .

There are
(
q
r

)(
p
r

)
ways to choose r elements in {π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(q + p)} and r

elements in {π(q+1), . . . , π(q+ p)}∩{ρ(1), . . . , ρ(q)}. Furthermore, there are q!p! ways to organize
{ρ(1), . . . , ρ(q)} and {ρ(q + 1), . . . , ρ(q + p)}. This yields

q∧p−1∑
r=1

∑
π

r∼ρ

A1,r =

q∧p−1∑
r=1

q!p!

(
q

r

)(
p

r

)
∥fq,i ⋆rr fp,j∥

2
H⊗q+p−2r .
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Thus, we can expand (5.10) as∥∥∥fq,i⋆̃00fp,j∥∥∥2
H⊗q+p

=
(q + p)!

(q + p)!2

(
q!p! ∥fq,i∥2H⊗q ∥fp,j∥2H⊗p + q!2 ⟨fq,i, fq,j⟩2H⊗q 1{q=p}

+ q!p!

(
q

q ∧ p

)(
p

q ∧ p

)∥∥fq,i ⋆q∧pq∧p fp,j
∥∥2
H⊗|q−p| 1{q ̸=p}

+

q∧p−1∑
r=1

q!p!

(
q

r

)(
p

r

)
∥fq,i ⋆rr fp,j∥

2
H⊗q+p−2r

)
,

which is the desired statement. □

5.4. Lemmas related to the proof of Theorem 5.2. Our first lemma expresses the Hilbert-Schmidt
norm in a Besov-Liouville space as an norm in L2

(
[0, 1]⊗2

)
.

Lemma 5.10. Let K = Iβ,2 and S be the covariance operator of a random variable X ∈ L2(Ω)⊗K.
Let f ∈ K, then (

Dβ
0+
Sf
)
(s) =

∫ 1

0
E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
](
Dβ

0+
f
)
(r)dr (5.11)

is in L2([0, 1]). This leads to

∥S∥HS(K) =
∥∥∥E[(Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]∥∥∥

L2([0,1]2)
. (5.12)

Proof : Let f, g ∈ K. Applying Fubini’s theorem to ⟨Sf, g⟩K = E[⟨f,X⟩K ⟨g,X⟩K ] and rearranging
terms yields∫ 1

0

(
Dβ

0+
Sf
)
(s)
(
Dβ

0+
g
)
(s)ds

=

∫ 1

0

(∫ 1

0
E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
](
Dβ

0+
f
)
(r)dr

)(
Dβ

0+
g
)
(s)ds,

which is equivalent to∫ 1

0

((
Dβ

0+
Sf
)
(s)−

∫ 1

0
E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
](
Dβ

0+
f
)
(r)dr

)(
Dβ

0+
g
)
(s)ds = 0. (5.13)

Let {gn}n∈N be an orthonormal basis of Iβ,2. Due to the isometry between Iβ,2 and L2([0, 1]), the

set
{
Dβ

0+
gn

}
n∈N

is an orthonormal basis of L2([0, 1]). Then, Equation (5.13) implies (5.11).

To prove (5.12), let {en}n∈N be an orthonormal basis of L2([0, 1]). Then, {em ⊗ en}m,n∈N is an
orthonormal basis of L2([0, 1]⊗2). Also,

{
Iβ
0+
en

}
n∈N

is a basis of K. Now observe that, using (5.11),
we can write〈

Iβ
0+
em, SI

β
0+
en

〉
K

=

∫ 1

0
em(s)

(
Dβ

0+
SIβ

0+
en

)
(s)ds

=

∫ 1

0
em(s)

(∫ 1

0
E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]
en(r)dr

)
ds

=

∫ 1

0

∫ 1

0
E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]
em(s)en(r)drds,

which leads to

∥S∥2HS(K) =
∑

m,n∈N

〈
Iβ
0+
em, SI

β
0+
en

〉2
K

=
∥∥∥E[(Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]∥∥∥2

L2([0,1]⊗2)
,
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where the first equality comes from the identity ∥T∥2HS(K) =
∑

m,n∈N ⟨km, Tkn⟩2K for an operator
T ∈ HS(K) and an orthonormal basis {kn}n∈N of K. □

Remark 5.11. Let ζ be a L2([0, 1])-valued random variable with covariance operator T . Then the
second statement in Lemma 5.10 is comparable to the identity

∥T∥HS(L2([0,1])) = ∥E[ζ(r)ζ(s)]∥L2([0,1]⊗2)

whenever T ∈ HS
(
L2 ([0, 1])

)
.

The following lemma is helpful to compute the Hilbert-Schmidt norms of the Poisson process and
Brownian motion appearing in Subsection 5.1.

Lemma 5.12. Let the setting of Subsection 5.1 prevail, where Xλ and Z denoting a Poisson process
and a Brownian motion in Iβ,2, respectively. Then, one has

E
[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
]
= E

[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]

=
1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βdx.

Proof : According to Coutin and Decreusefond (2013, Section 3.1), the covariance operator of our
Brownian motion is S′ = Iβ

0+
I1−β
0+

I1−β
1− Dβ

0+
. Substituting this into Equation (5.11), we get(

Dβ
0+
Iβ
0+
I1−β
0+

I1−β
1− Dβ

0+
f
)
(s) =

∫ 1

0
E
[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
](
Dβ

0+
f
)
(r)dr. (5.14)

For the left-hand side, note that f ∈ Iβ,2 implies thatDβ
0+
f ∈ L2 ⊆ L1, so that I1−β

0+
I1−β
1− Dβ

0+
f ∈ L1.

Thus, Dβ
0+
Iβ
0+

= I by Samko et al. (1993, Theorem 2.4). Continuing with the left-hand side, we
first write out I1−β

0+
using its definition and then perform an integration by part, which yields(

I1−β
0+

I1−β
1− Dβ

0+
f
)
(s) =

1

Γ(1− β)

∫ 1

0
1[0,s](r)(s− r)−β

(
I1−β
1− Dβ

0+
f
)
(r)dr

=
1

Γ(1− β)

∫ 1

0
I1−β
0+

(
1[0,s](·)(s− ·)−β

)
(r)
(
Dβ

0+
f
)
(r)dr

In particular, the integration by part is valid since Samko et al. (1993, Equation (2.20)) is satisfied
for p = q = 2 and 0 < β < 1/2. Equation (5.14) then becomes∫ 1

0

(
1

Γ(1− β)
I1−β
0+

(
1[0,s](·)(s− ·)−β

)
(r)− E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
])(

Dβ
0+
f
)
(r)dr = 0.

Now, using a basis argument like the one in the proof of Lemma 5.10 yields

E
[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
]
=

1

Γ(1− β)
I1−β
0+

(
1[0,s](·)(s− ·)−β

)
(r)

=
1

Γ(1− β)2

∫ r

0
(r − x)−β(s− x)−β1[0,s](x)dx

=
1

Γ(1− β)2

∫ r∧s

0
(r − x)−β(s− x)−βdx.

Next, we will compute E
[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
. Recall the representation of Xλ given at

(5.2). In order to use this representation, we need the joint density of (Tn, Tm). By definition, Tm∧n
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and Tm∨n − Tm∧n are independent and distributed as Γ(m ∧ n, λ) and Γ(|m− n| , λ), respectively.
Their joint density is hence given by

fTm∧n,Tm∨n−Tm∧n(x, y) =
λm∨n

Γ(n ∨m)Γ(|m− n|)
xn∧m−1y|m−n|−1e−λ(x+y).

Since Tm∨n = Tm∧n + (Tm∨n − Tm∧n), we can write, using a simple change of variable,

fTm∧n,Tm∨n(x, y) =
λm∨n

Γ(n ∧m)Γ(|m− n|)
xn∧m−1(y − x)|m−n|−1e−λy1{x<y}. (5.15)

We are now ready to compute E
[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
. We have

E
[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]

=
1

λΓ(−β + 1)2

( ∑
n,m∈N

E
[
(r − Tn)

−β
+ (s− Tm)−β

+

]
− λs−β+1

−β + 1

∑
n∈N

E
[
(r − Tn)

−β
+

]

− λr−β+1

−β + 1

∑
n∈N

E
[
(s− Tm)−β

+

]
+

λ2

(−β + 1)2
s−β+1r−β+1

)

=
1

λΓ(−β + 1)2

(∑
n∈N

E
[
(r − Tn)

−β
+ (s− Tn)

−β
+

]
+
∑
n∈N

∑
m̸=n

E
[
(r − Tn)

−β
+ (s− Tm)−β

+

]
− λ

−β + 1
s−β+1

∑
n∈N

E
[
(r − Tn)

−β
+

]
− λ

−β + 1
r−β+1

∑
n∈N

E
[
(s− Tm)−β

+

]
+

λ2

(−β + 1)2
s−β+1r−β+1

)
. (5.16)

The first sum on the right side (consisting of all diagonal terms when m = n) simplifies as

1

λΓ(−β + 1)2

∑
n∈N

E
[
(t− Tn)

−β
+ (s− Tn)

−β
+

]
=

1

λΓ(−β + 1)2

∑
n∈N

∫ ∞

0
(r − x)−β

+ (s− x)−β
+

λn

Γ(n)
xn−1e−λxdx

=
1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βe−λx

(∑
n∈N

(λx)n−1

(n− 1)!

)
dx

=
1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βdx.
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Next, we consider the second sum on the right side of (5.16). The joint density of (Tn, Tm) given in
(5.15) enables us to write∑

n∈N

∑
m̸=n

E
[
(r − Tn)

−β
+ (s− Tm)−β

+

]
=
∑
n∈N

∞∑
m=n+1

E
[
(r − Tn)

−β
+ (s− Tm)−β

+

]
+
∑
m∈N

∞∑
m+1

E
[
(r − Tn)

−β
+ (s− Tm)−β

+

]
= λ2

∫ r∧s

0

∫ s

0
(r − x)−β(s− y)−βe−λy

∑
n∈N

∞∑
m=n+1

(λx)n−1(λy − λx)m−n−1

Γ(n)Γ(m− n)
dydx

+ λ2
∫ r∧s

0

∫ r

0
(s− x)−β(r − y)−βe−λy

∑
m∈N

∞∑
n=m+1

(λx)m−1(λy − λx)n−m−1

Γ(m)Γ(n−m)
dydx

By letting k = m− n, it is easy to see that∑
n∈N

∞∑
m=n+1

(λx)n−1(λy − λx)m−n−1

Γ(n)Γ(m− n)
= eλy,

and hence ∑
n∈N

∑
m̸=n

E
[
(r − Tn)

−β
+ (s− Tm)−β

+

]
= λ2

∫ r∧s

0

∫ s

0
(r − x)−β(s− y)−βdydx+ λ2

∫ r∧s

0

∫ r

0
(s− x)−β(r − y)−βdydx

=
λ2

−β + 1

∫ r∧s

0
(r − x)−β(s− x)−β(s+ t− 2x)dx

=
λ2

(−β + 1)2
(s− x)−β+1(r − x)−β+1

∣∣∣r∧s
0

=
λ2

(−β + 1)2

(
s−β+1r−β+1 − (s− r ∧ s)−β+1(r − r ∧ s)−β+1

)
=

λ2

(−β + 1)2
s−β+1r−β+1.

For the remaining sums in (5.16), observe that∑
m∈N

E
[
(s− Tm)−β

+

]
=

λ

−β + 1
s−β+1.

Substituting the previous calculations into (5.16) yields

E
[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
=

1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βdx.

□
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