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Abstract. We study the limit of fluctuations of the rescaled occupation time process of a branching
particle system in R, where the particles are subject to symmetric a-stable migration (0 < o < 2),
critical binary branching, and general non-lattice lifetime distribution. We focus on two different
regimes: lifetime distributions having finite expectation, and Pareto-type lifetime distributions, i.e.
distributions belonging to the normal domain of attraction of a y-stable law with v € (0,1). In the
latter case we show that, for dimensions ay < d < (1 + ), the fluctuations of the rescaled occu-
pation time converge weakly to a centered Gaussian process whose covariance function is explicitly
calculated, and we call it weighted sub-fractional Brownian motion. Moreover, in the case of lifetimes
with finite mean, we show that for a < d < 2« the fluctuation limit turns out to be the same as in
the case of exponentially distributed lifetimes studied by Bojdecki et al. (2004, 2006a,b). We also
investigate the maximal parameter range allowing existence of the weighted sub-fractional Brow-
nian motion and provide some of its fundamental properties, such as path continuity, long-range
dependence, self-similarity and the lack of Markov property.

1. Introduction

Our aim in this paper is to investigate the occupation time fluctuations of a population in R% which
evolves as follows. During its lifetime S, any given individual independently develops a spherically
symmetric a-stable process with infinitesimal generator the fractional power A, := —(—A)O‘/ 2 of
the Laplacian, 0 < o < 2, and at the end of its life it either disappears, or is replaced at the site
where it died by two newborns, each event occurring with probability 1/2. The population starts
off from a Poisson random field having the Lebesgue measure A as its intensity. Along with the
usual independence assumptions in branching systems, we also assume that the particle lifetimes
have a general non-lattice distribution, and that any individual in the initial population has age 0.
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We focus on two different regimes for the distribution of S: either S has finite mean p > 0 or S has
a distribution function F' such that

1
F0)=0, F(z)<lforallz>0, and 1-— F(¢)

~—_— t— 1.1
where 0 < v < 1 and I' denotes the usual Gamma function.

Let Z(t) be the counting measure in R? whose atoms are the positions of particles alive at time
t, and let Z = {Z(t), t > 0}. Recall that the occupation time of the measure-valued process Z is

again a measure-valued process J = {J(t), t > 0} which is given by

(o, I(1)) = /0 (02 Z(s)) ds, 120,

for all bounded measurable functions ¢ : R? — R, where the notation (y,v) means [ edv.
Following Deuschel and Wang (1994) and Bojdecki et al. (2004), for each T" > 0 we introduce the
rescaled occupation time process Jr(t) := J(T't) defined by

Tt t
(o, Jr(t)) = /0 (. Z(s))ds = T /0 (0, Z(Ts))ds, >0,

and the rescaled occupation time fluctuation process {Jr(t),t > 0} given by

(0. T (0) i= 5~ ({0, Jr@) ~ Blp. n(®) . t20,

where Hp is a normalization factor such that Hr — oo as T — oco. It was shown in Lopez-Mimbela
and Murillo-Salas (2009) that, due to criticality of the branching and invariance of A for the a-stable
semigroup, E(p, Jr(t)) = Tt{p,A). Hence, the rescaled occupation time fluctuation process takes
the form

(0. Tr(0) i= 5 ({0, Irlt) = THp.A)) . ¢ 0 (12)
The Markovian case, i.e. the case of exponentially distributed particle lifetimes, has been thoroughly
investigated by T. Bojdecki, L. G. Gorostiza and A. Talarczyk in a series of seminal works, see
Bojdecki et al. (2007b, 2004, 2006a,b, 2008a). Among other results, they showed that when S
possesses an exponential distribution and @ < d < 2«, the occupation time fluctuation process,
properly rescaled, converges weakly toward a Gaussian process in the space C([0,7],S'(R%)) of
continuous paths w : [0,1] — S'(RY) for any n > 0, where &’(R?) denotes the space of tempered
distributions, i.e. the strong dual of the space S(R?) of rapidly decreasing smooth functions. The
limit process has a simple spatial structure whereas the temporal structure is characterized by that of
sub-fractional Brownian motion (sub-fBm), i.e. a continuous centered Gaussian process {(;, t > 0}
with covariance function

1
Cs,t) i= s + ¢ = 3 [(s rok s —th], s t>0, (1.3)

with h = 3 —d/a (h € (1,2)); see Bojdecki et al. (2006a). According to Bojdecki et al. (2004),
sub-fBm exists for all A € (0,2). For h # 1 this process does not have stationary independent
increments, but possesses the so-called long-range dependence property, and for h = 1 it reduces to
Brownian motion.

It is known (see e.g. Athreya and Ney (1972)) that the process Z fails to be Markovian if S
does not have an exponential distribution. There are relatively few publications on models related
to non-Markovian spatial branching systems. Laws of large numbers for the occupation times of
Z have been investigated in Murillo-Salas (2008) and Lopez-Mimbela and Murillo-Salas (2009).
Diffusion limit-type approximations for branching systems with non-exponential particle lifetimes
were developed in Fleischmann et al. (2003) and Kaj and Sagitov (1998). Existence of a non-trivial
equilibrium distribution for such kind of models was studied in Vatutin and Wakolbinger (1999).
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Assume that F' is a general absolutely continuous function obeying (1.1). In this paper we prove
that for dimensions satisfying oy < d < a(1 + ), the occupation time fluctuation limit exists and
is a centered Gaussian process whose covariance function has a simple spatial structure, but its
temporal structure is dictated, for the case d # «, by a fractional noise with covariance function

-1 rsnt
Q(s,t) := (d — 1) / rt [(s —p)2dle g — )2l (s — 27")2*‘1/0‘} dr, s,t>0,
o 0
(1.4)
whereas for the case d = «, the limit is a centered Gaussian process whose covariance function has
a temporal structure determined by

K(s,t):= /08 L [(s+t —2r)In(s+t—2r)—(s—r)In(s —r) — (t —r)In(t — 7")} dr;

see Theorem 2.1 below. The special but important case of particle lifetimes with finite mean is dealt
with in Theorem 2.2, where we show that for dimensions satisfying a < d < 2« the limit process
is centered Gaussian, with covariance function of the form (1.3). Hence, Theorem 2.2 extends
Theorem 2.2 in Bojdecki et al. (2006a) to the case of non-exponential particle lifetimes with finite
mean. Moreover, in this case the effect of the lifetime distribution becomes apparent only through
its mean.

To obtain these results we follow the method of proof used in Bojdecki et al. (2006a), i.e. the
space-time random field weak convergence approach developed in Bojdecki et al. (1986), combined
with the Feynman-Kac formula. However the adaptation to our case of such method is far from
being straightforward. Besides the lack of Markov property of Z, in our more general scenario the
use of a Feynman-Kac formula is much more involved than in Bojdecki et al. (2006a) due to the fact
that the renewal function associated to F' is in general nonlinear, in contrast to the linear renewal
function of exponential lifetimes.

Notice that the function (1.4) is a special case of the function @, given by

sAt
Qap(s,t) == %b r? [(s )+ t—=r) = (t+s—2r)°dr, s,t>0, abeR, (15)
—0Jo

and that, for a = 0, (1.5) is the covariance function of the sub-fractional Brownian motion for
|b| < 1. Several other interesting cases arise as special instances of (1.5); see Remark 2.6 bellow.
This motivated our second goal in this paper, which is to determine suitable values of the parameters
a,b € R for which @), is a covariance function. It turns out that, if the parameters a, b are restricted
to the domains @ > —1 and b € [0,2] with b # 1,ora > —1 and =1 < b < 0 witha+b+1 > 0, the
function @, is positive definite; see Theorem 2.5 below. A centered real-valued Gaussian process
with covariance function (1.5) will be called weighted sub-fractional Brownian motion, in analogy
to the weighted fractional Brownian motion introduced in Bojdecki et al. (2007b). We recall that
a weighted fractional Brownian motion is a centered Gaussian process n := {n(t), ¢ > 0} with
covariance function of the form

Hap(s,t) == /Owra [(s—r)b+ (t—r)b] dr, s,t>0, (1.6)

fora>—1, -1 <b<1and |b] <1+ a;see Bojdecki et al. (2007b, Thm. 2.1). In Theorem 2.10 we
show that any weighted sub-fractional Brownian motion {¢(¢), ¢ > 0} possesses long memory (also
called long-range dependence), in the sense that

E [(g(t +T)— ¢(s+T))(s(v) —g(r)| ~ T2 (t—s)(? —r**?) as T — .

(a+1)(a+2)
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It is worth to mention that the weighted fractional Brownian motion 7 also exhibits the long-range
dependence property. In this case,

b
E [(77(75 +T) = n(s+T))(n(v) =n(r)| ~ Tb*lﬁ(t =)0 =) as T = oo
a
see Bojdecki et al. (2007b).
The rest of the paper is organized as follows. In Section 2 we state the main results in this paper.
In Section 3 we prove a recursive relation for the Laplace functional of the branching particle system

which we will need in the sequel, and that it might be of interest on its own right. Section 4 is
devoted to the proof of our main results.

2. Main results

Recall that we restrict ourselves to a particle system Z whose branching mechanism is critical
binary, as described in the previous section. In what follows, the symbol = denotes weak conver-
gence.

2.1. Fluctuation limit theorems.

Theorem 2.1. Let F be an absolutely continuous lifetime distribution function satisfying (1.1). Let
ay <d < a(l+7) and Hp = T3H=4/)/2 Then Jr = T in C([0,Y],S"(R?)) as T — oo for any
T > 0, where {J(t), t > 0} is a centered Gaussian process whose covariance function is given in
the following way:

(i) For d # «,

Ve M) (W A)
D(y+1)(2m)*(2 - 3)

Cov((p, T (s)), (¥, T (1)) =

/ e"y"dy] Q(s,t), s,t>0,
Rd

where p, 1 € S(RY) and

(07

Q(s,t) = <d _ 1> B /SM 1 [(s — )27 (= )2 (45— 2r)2 Y g (2.1)
0
(ii) For d = a,
Cov({(p, T (s)), (¥, T (1)) =

where p, 1 € S(RY) and

[ Y, A) (¥, A)

Ao NN [ e g ) Ke(ar), e
Fr DR e 0] K0t 020

K(s,t) ::/OS Pt [(s+t—2r)ln(s—|—t—2r) —(s=r)In(s—7r) — (t—r)In(t —r)| dr.

Theorem 2.2. Let F be an absolutely continuous lifetime distribution function with finite mean
pw>0. Let a < d < 2 and Hp = TG-H)2 Then Jr = J in C([0,Y],8(RY)) as T — oo for
any T > 0, where {J(t), t > 0} i a centered Gaussian process with covariance function

{p, A) (¥, T'(2 — h)

Collen TN 0 TOD = g cimyaraomtn -0 912 %

where h =3 — d/a, ¢, € S(RY) and C(s,t) is given by (1.3).

Remark 2.3. The case of “large” dimensions, i.e. d > 2« for lifetimes with finite mean, and d >
~v(1+«) for heavy-tailed lifetimes, are part of an ongoing research project. Presently we can mention
that, in the case of finite mean, we get the same Theorem 2.2 of Bojdecki et al. (2006b). On the
other hand, for the case of d > «(1 + ) we get a very different behavior, compared to the finite
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mean case. In particular, for d = a(1 4 ) we have that the covariance function of the fluctuations
limit has a temporal structure of the form

CiQ~(s,t) + Ci(s A1),

where C7 and Cy are positive constants and Q(s,t) = (s A t)7, for v € (0,1). Whereas, for
d > a(1 4 ) we only have the Brownian part, as in the case of finite mean.

Remark 2.4. It is not too difficult to see that our arguments to prove Theorem 2.1 can be adapted
to the setting of the high density hmlt in Bojdecki et al. (2008b); see Section 4 below. In particular,

with H% = FTT2+2 a where Fp —> oo and limp_,o F7f7 ITV_E = 0, we can prove a result parallel
to Theorem 2.2 in Bojdecki et al. (2008b), for = 1. Thus, under the assumption d < a7y we will
have the same limit as in Theorem 2.1 (i). That is, the temporary structure of the occupation time

fluctuations has as its limit a weighted fractional Brownian motion with parameters a =+ — 1 and
b=2-4¢(1,2).
« )

2.2. Weighted sub-fractional Brownian motion. In this section we give conditions on the parameters
a and b, under which the function Qg given in (1.5) is a covariance function. Moreover, when
Qqp is a covariance we provide several properties of the associated centered Gaussian process. In
addition, we introduce the notion of weighted sub-fractional Brownian motion.

Theorem 2.5. For a,b > —1 with b # 1, the function

Qap(w, z) := %—b /02 ’ s® [(z — )P+ (w—5)"—(w+2z—-25°ds, w,z>0, (2.2)

is positive definite in the following cases:
(i) a>—-1and0<b<2.
(i) a>—-1and -1 <b<0witha+b+1>0.

Remark 2.6. Let us mention several known instances of Qqp given in (2.2):
(a) Theorem 2.1 (i) yields that the function

(w, z |—>/ z—s)b—i—(w—s)b—(w—i—z—Qs)b ds, w,z>0, (2.3)

witha=~v—1and b =2 —d/ «, appears as the temporal structure of the covariance function
of the rescaled occupation time fluctuation limit for a branching particle system in R? with
a-stable motions and lifetimes having a Pareto tail distribution (1.1).

(b) In Bojdecki et al. (2008a) Bojdecki et al. investigated the limit fluctuations of a rescaled
occupation time process of a branching particle system with particles moving according to
d-dimensional a-stable motion, starting with an inhomogeneous Poisson population with
intensity measure dz/(1 + |z|7), where v > 0. In this case, for v < d < « (hence d = 1)
and normalization T~ (4+7)/2% the limit of the occupation time fluctuations is a Gaussian
process whose temporal structure is determined by the covariance function

Cop(w, z) == /OZMU s¢ [(z —5)+ (w— s)b} ds, w,z>0, (2.4)

for a = —y/a and b = 1 — d/a; see Bojdecki et al. (2008a, Thm. 2.2). Latter on, the
same authors proved that the maximal range of values of parameters a,b that makes (2.4)
a covariance function is @ > —1, —1 < b < 1 and |b] < 1 + a. The authors named
the centered Gaussian process with covariance function (2.4), weighted fractional Brownian
motion with parameters a and b, see Bojdecki et al. (2007b). Notice that both, (2.3) and
(2.4), are weighted covariance kernels, corresponding respectively to weighted sub-fractional
Brownian motion, and weighted fractional Brownian motion.
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(¢) From (2.2) it follows that

1 b+1 br1 L b+1 b+1
- + S + + |lw— > (. )
G+ D =0) (w z 5 ((w 2) lw — z| ) , w,z>0 (2.5)

Thus, modulus a constant factor, (2.5) coincides with the covariance function (1.4) in Bo-
jdecki et al. (2007b), therefore (2.5) is a covariance function for —1 < b < 3. In particular,
for |b] < 1 it is the covariance function of the sub-fractional Brownian motion.

Qop(w,z) =

The next result exhibits a range of parameters a and b for which the function Qg (-, -) is not a
covariance function.
Lemma 2.7. The function Qq(-,-) is not a covariance function in the following cases:
(i) a>—-1and -1 <b< 0, witha+b+1<0;
(i) a>—1 and b > a + 3.

Remark 2.8. We were unable to determine whether (2.2) is positive definite for ¢ > —1 and 2 <
b < a+ 3. This case remains as a challenge for future work.

Definition 2.9. A centered, real-valued Gaussian process ¢ = {(;, t > 0} with covariance function
(2.2), whose parameters a and b satisfy the conditions given in Theorem 2.5, will be called weighted
sub-fractional Brownian motion with parameters a and b.

Theorem 2.10. Let ¢ be the weighted sub-fractional Brownian motion with parameters a and b.
(i) C is a self-similar process of index (a +b+1)/2, i.e. for any ¢ > 0,
(¢(et)) 0 4 (C(l—i-b—&-a)/QC(t))

(ii) (a) Assume that —1 <a <0,b€ (0,1)U(1,2] and 0 <a+b+1<2. For any M > 0, there
exists a constant k > 0 such that

E[(¢(t) — ¢(5))*] < k|t — s, 0<s,t<M, with0<|t—s| <1. (2.6)

>0

In particular, due to Kolmogorov’s continuity theorem, ( possesses a continuous version
whose paths are a.s. locally-Hélder continuous with index 6, for any 0 < § < b/2.
(b) Assume that —1 < b <0 and b+ a > 0. There exists a constant k > 0 such that

E[(C(t) — ¢(5))%] < k|t —s"Tt, 0< st < o0 (2.7)

In particular, ¢ possesses a continuous version whose paths are a.s. locally-Hdélder continuous
with index §, for any 0 < 6 < (b+1)/2.
(11i) For 0 <r <wv <s <t there holds

Q(r, v, 5,) := E[(C(t) = ¢())(C(v) = C(r))]
= Qap(t,v) = Qup(t,m) — Qup(s,v) + Qap(s,7)
= %—b [/Tvu“ ((t—u)b— (s—u)b) du—i—/oru“ ((t—i—r—Qu)b— (s—i—r—?u)b) du

- /0 u® ((t+v—2u)b— (s+v—2u)b) du] .

(iv) (Long-range dependence) For b € (0,1)U (1,2) or for =1 <b <0 witha+b+1 >0 and
0<r<ov<s<it,

Tlim T27°Q(r,v,s + Tt +T) = (t — s)(v¥T2 — pot2), (2.8)
—00

(a+1)(a+2)

(v) € is not a Markov process.
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Theorem 2.11. Let {((t), t > 0} be the weighted subfractional Brownian motion with parameters
a and b.

(i) Let b € (1,2]. The finite dimensional distributions of the processes
[T~ ¢+ 1) - (1), =0}

converge, as T — 00, to those of the process {2°72bB(a + 1,b— 1)(t), t > 0}, where {£(t),
t > 0} is a weighted fractional Brownian motion with covariance function Hy1(s,t) given in
(1.6), and B(x,y) is the Beta function.

(ii) Let b € (—1,1) with a +b+ 1 > 0. The finite dimensional distributions of the processes

{ng(g‘(t +7) —((T)), t> 0} converge, as T — oo, to those of {mX{t}, t> 0},

where {X (t), t > 0} is a fractional Brownian motion with Hurst parameter (b+1)/2.

3. Laplace functional

In this section we will compute the Laplace functional of the occupation time process of Z in
a general setting, i.e., we only assume that the branching law is characterized by its probability
generating function h(s) = > 2, pks®, |s| < 1, and the particle lifetimes by a general distribution
function F' with support in [0,00). The symmetric a-stable motion in R¢ will be denoted by & =
{&, t >0} and by T = {T;, t > 0} its semigroup.

By definition Z;(A) is the number of individuals living in A € B(R?) at time ¢ > 0, where B(R?)
denotes the system of Borel set in R%. Let {S, k& > 1} be a sequence of i.i.d. random variables
with common distribution function F, and let

Ny = Z Liw,<ty and U(t) = ZF*"(t), t >0,
k=1 n=1

be the respective renewal process and renewal function, where the random sequence {Wy, k > 0}
is defined recursively by

Wo=0, Wiy1=Wi+ Sky1, k=0
Define g(s) := h(1 —s) — (1 — s), |s| < 1. Notice that in the case of critical binary branching
h(s) = s+ 3(1—s)? and g(s) = 35>
Now, for any nonnegative ¥ € S(R%*!), we define the function

vy (z,rt) :=E; |1 —e” fg(W("S+T)’ZS>dS] ., zeRY rt>0, (3.1)

where [E, denotes the expectation operator in a population starting with one particle of age 0,
located at the position z € R%,

Proposition 3.1. The function vy (x,r,t) satisfies the integral equation

t
vo (7 t) = By |1 — e Jo WEar+s) ds} _ / E, [e_ J§ wEsrrs) ds g (Uq,(gu, rtut — u))} dU (u).
0
(3.2)

Proof: Formula (3.2) obviously holds for ¢ = 0. Let ¢ > 0. By conditioning on the first branching
time we get,

1-— ’U\I/(xarat)

= E, [e‘ Jo W(ﬁs,r+s)dsl{sl>t}} +E,; [e‘ Jo (s rts)ds ), (1 — vy (551, r+51,t— 51)) 1{519&}} ;
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or equivalently,

Vg (:L" T, t) :ECC <]_ —e fot \I’(és,T‘i’S)dS) 1{Sl>t} —|— <]. —e fosl \If(gs,'f‘+8)ds> 1{51§t}

s
o 1 \Il(gs,T“i’S)ng(,U\I}(é'Sl’T + 59, — 51))1{51§t}] (3.3)

s
\E, effo 1 \P(Es,r+s)dqul(§SI’T + 81, t— 51)1{51§t}] .

Next, we consider the event [S; < t] and write £&¥ = {£7, s > 0} for a symmetric a-stable motion
starting in € R?. Proceeding as above with 7, t and z replaced respectively by r 4+ 51, t — S; and
s, , and designating E551 () the expected value starting with a particle at position £g,, given the

o—algebra o((£5)o<s<s, U S1), we obtain

v\p(ﬁgl,r + S1,t — Sl)l{Slgt}

~ 5w (fsisl ,r+51+u) du
Eeg | [1—¢ Liw <t<wa)

&l
—[>2 qf(gusl ,r+51+u) du

+E£Sl 1—e 1{W2§t}
s q,(éé 7451 +u> du €8
TEes, | —e glow (&g s T+ 51+ 52, =51 =5 ) Lw,<n
£
-2 ‘If(ﬁu ! ,T+S1+u) du £
'HEEsl € ’ Vy 55?,7’+S1+52,t—51—52 1{W2§t} .

Hence, by the strong Markov property of {&s, s > 0},

S z
E, {e, o Wty (63 r 4 Syt — S1)1gs,<n)

5145 -
= E, [—e* TRt dug (g (€8 g, 7+ S1+ Sayt — St — 52))1{W2§t}}

1E, _(6 B rrwdn _ o~ fy v Errwdu— g \p@g”“’rwﬁwdu) ”WKKWQ}}
+E, _(6 Jo (g rruydu _ -~ ST rru)du— [ W@?ﬁu””wﬁu)du) 1{W2<t}]
- S - _ S €T
+E; [e 70 Lo (Es r+u)du— [32 ‘I/(fsl+u’T+Sl+u)duU\I/(§§1+527T + 51+ 527 t— 51— SQ)l{W2<t}:|
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S1+S T
— E, |:—67f0 1+5S2 \IJ(fu,TJru)dug(v\Ij(gglJrswr+ Sy + S9,t— S — 82))1{W2§t}

- S x
+E1‘ (87 b LW (&5 rtu)du —e ‘fo (Gt du) 1{W1§t<WQ}:|

) S 145
B, [ (e fo" M _ o= Jo T W) 1y ]

r S1+S ©
HE, e o Iy (68 o v+ S+ Sa,t — 51 — S2)1{W2St}]
5145 T or4u)du T
_ E, [*6_ ST (e r+u)d g(U\I/(§S1+Sz’T + 51+ S, t — 51 — SZ))l{ngt}}
+E,; (1 —e v &m‘-ﬁ-u)du) 1{W1§t<W2}}

B, (1 S g 7’+U)du) 1{%9}}

+E, :(e_ fosl V(s r4+u)du _ 1) 1{W1§t}}

- 5145 -
+E, [e- [S1+5e \Il(éu,rJru)dUU‘lj(é‘g,lJrSZ,T + 514 S, t— 51 — 52)1{W2§t}] . (34)

Plugging (3.4) into (3.3) we get

S x
U\I/(l“, T, t) — Ex — efo 1 \I/(guﬂ"+u)du)g(’1)\p(€gvl,7" + Sl,t — Sl))l{ngt}]
S x
_|_ Ex (1 — 67 fO ! \I}(guzTJru)du) ]‘{ngt}

+ Ex (1—6 fO §u,r+u) u)l{W1>t}]

5148 .
I 5152 \I/(ﬁu,r+u)dug(vq;(§§l+52,7“ + 851+ S, t— 51 — SQ))l{WQSt}]

+ Ex (1 — € fO guaT“l‘u) u) 1{W1§t<W2}]
S148 =
+ E, (1 e f 1+52 \p(gu,r+u)du> 1{W2§t}]

S T
+ Ex (6_ fO ! lII(&u’rJ,-u)d’u, — 1) ]‘{ngt}

S1+S
+ E,|e — [Ptz g 5u77.+u)duv\1/(£§1+527’r+ Sy + S9,t— S — 82)1{W2§t}
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— Ex (1 —e fo 5u,r+u)du> (1{W1>t} + 1{W1§t<W2}>]

S x
+ By | —elo VI gy (68 1+ Syt — Sl))l{Wlét}]

5145 -
n Ex B effo 1 2\P(£M7T+U)dug(v‘y(€§l+527r + Sl + Sg,t . Sl o 52))1{W2§t}]

51+S .
+ E, (1 e s 1+52 \p(gu,wru)du) 1{W2§t}]

S1+52

+ Eg|le /o (éu’TJru)duv\p(fglJrSQ,T’ + 571+ So,t — 51 — SQ)].{W2§t}]

r 2
= E, (1 — e Iy ‘lf(ﬁs,r+s)ds) Z <1{Wi_1gt<Wi}>

=1

2
Wi
— D e o G s g (g (g, 7+ Wit — Wz’))l{Wi<t}]

=1
W T
(1 —e fO 2 \P(éuvr+u)du> 1{W2§t}]

% x
e Jo P W ELrtwduy (g8 e 4 Wyt — W2)1{W2§t}] :

+ E;

+ E,;

By an iterative procedure and using that

B

Wn Wn,

e Jo "W (Es,rts) dSU\IJ (gwn, r+ Wy, t— Wn)l{WnSt} + <1 —e Jo " (& rts) ds) 1{ant}]
<2P(W, < t) —0

as n — oo for all t > 0, we get

Uy (‘Tv r, t)

- E, [(1 _ o o (Erts) ds) i Liw,  <t<wi}

i=1

—_ Z e fo V(&srts)ds g(vg (&w,,r+ Wi, t — Wi))l{Wi<t}]

= E, [(1—@ Jow §5y”‘s)ds> —/ e Jo' W(Esrts)ds (v\y(fu,r—l—u,t—u))dN(u)],
0
which is equivalent to
vg(x,rt) = E, {1 — e Jo W(Esrts)ds —/ e Jo W&t ds g, (€ + u t — u))dU(u)] ,
0

where U(u) = E4[Ny], u > 0. O
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Remark 3.2. In the case of critical binary branching and exponential lifetimes with rate V' > 0, i.e.,
g(s) = 1s% and dU(u) = V du, equation (3.2) reduces to

t ¢ t—u
vy (z,1,t) =By [1 — e Jo V(& ts) ds] - V/ [ = Jo " U(Esrts) ds (;(w(fu,r +t—u, u)ﬁ)} du,
0

hence, from the Feynman-Kac formula we get

0 0 V
—vg(z,7t) = (Aot = )velz,rt) + Uz, r)(1 —vg(z,rt) — = (ve(z, 7))
ot or 2

vy(z,r,0) = 0,
which is equation (3.20) in Bojdecki et al. (2006a).

For any r € R we set

Fz,rt) = E, [ Jo (et r+u) d“} . zeRY t>0. (3.5)

It follows from the Feynman-Kac formula that f solves in mild sense the partial differential equation

St = (Bat o) Sl = W) o)

with initial value f(z,r,0) =1, i.e.
t
flz,rt) = 1-— / To [Y(,r+u)f(,r+u,t —u)(z)du. (3.6)
0

We finish this section with the following result, which will be useful to prove convergence of the
finite-dimensional distributions in Theorem 2.1 and Theorem 2.2.

Lemma 3.3. If U is absolutely continuous with density function U, then the function vy (z,r,t) in
(5.2) can be written as

Uy (ZL‘, r, t)

= /T[\I’( T+u)f(-,r+u,tu)](1:)du/0 Tug(vg (-, 4+ u,t — u))(x) dU (u)

//t : [6r 4 2)E (e vt dsgug (€, 1+ u+ 2,6 — 2 —w) ) | (2) U(u + 2) dude.

Proof: Let us define, for some fixed s € Ry |

k(z,r,0) :=E;|e

o v dng (v (7,7 + 0, 8))] : (3.7)

Notice that k(z,r,0) also depends on the fixed parameter s but we omit such dependency. Using
again the Feynman-Kac formula we have

0 0
8—0k(az, r,o) = <Aa + 87’) k(z,r,0) = V(z,r)k(z,7,0),

k(z,r,o) = Tog(vy(-,r + 0,))(x) — /OU Toew [Y(,r + 0 —w)k(-,r + 0 —w,w)] (z)dw.  (3.8)

Due to (3.5) and (3.7), equation (3.2) can be expressed as

vg(z,rt) =1— f(z,rt) —/0 k(xz,r,t —v)U(t —v)dv. (3.9)
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From (3.6) and (3.8) we obtain
U\I/(xa r t)

= [T b0t -l @i [ Tglester - 0@ Ul - ) dy
0 0
—|—/ t—v—w [P+t —v—wk(,r+t—v—w,w)| (z)dwl(t —v)dv (3.10)
0 JO

with

k(x,r +t—v—w,w) =E, [e’ Jo V€Lt momwku dug o, (65 g gy — 4w, v)} , xeRL
(3.11)
Using (3.11) and making the change of variables z = ¢t — v — w, the double integral in (3.10)
transforms into

t t—v t—v—z .
/ / T. [\IJ(, r+ z)E. (67 Jo WEwrtztuydug,n (& r4t—o, v))} (x)dzU(t — v) dv.
0 JO

Then, firstly applying Tonelli’s Theorem and then making the change of variables u =t — z — v, in
the double integral in (3.10) we get

t t—v t—v—z .
/ / 7. {‘11(, r+ z)E. <e_ Jo W rtztu) dug o, (& r+t—v, v)))} (x)dzU(t —v)dv

hoe i t—z t—v—z .

- / / T | (r 4 2B (e 7TV by (6t 0,0))) | (@)U - v) dudz
0 J0

t pt—z

= / / 7. {\If(, r+ 2)E. <e_ fou@(gé’r+z+s)d5g(vq,(§@, r+u+z,t—z— u)))} ()U(u+ 2z) dudz.

0 J0

Finally, plugging the last identity into (3.10) we conclude the proof. O

4. Proofs of main results

As we mentioned in the first section, our proof of Theorem 2.1 and Theorem 2.2 will relay on
the space-time random field method developed in Bojdecki et al. (1986) and applied in Bojdecki
et al. (2006a) to treat the Markovian case. Briefly described, the space-time random field method
consists in the following. Let T > 0. For every stochastic process X = {X(¢), ¢t > 0} with paths in
the Skorokhod space D([0, Y], S'(R%)) of cadlag functions w : [0, Y] = &'(R%) let X be the random
element of &'(R¥*1) defined by

T
<<i>,5<>:/0 (®(, ), X(s)) ds, & € S(RH).

If X is a.s. continuous at Y, then the law of X determines that of X. Moreover, if a family
{X7, T >1} of S'(R%)-valued processes with paths in C([0, Y], S’(R%)) is tight, and X7 converges
in distribution in S’(R%*1) as T — oo, then X7 = X in C([0,Y],S’(R%)) as T' — oo for some
S'(R%)-valued process X. Without loss of generality, in the sequel we will assume Y = 1.

4.1. Proof of theorems 2.1 and 2.2.
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4.1.1. Tightness. We start by proving that the sequence {Jr, T > Mygq,} is tight, for some
constant M, 4~ > 0. Recall that for 0 < s <t and 9, p € S(R?),

Cov({p, Z(s)), (1, Z(1)) = (Tist, A) / / Tooep) (@) (Ti ) (@) dwdU(r); (4.1

see Lopez-Mimbela and Murillo-Salas (2009). Let ¢ be the Fourier transform ¢(z) = [pa €Yo (y)dy,
z € R? where x - y denotes the inner product in RY. Using (4.1), Plancherel’s formula and the
identity Tip(z) = e 1" $(x), we deduce that

00v<<so,z<s>><w,z<t>>>=(2}r)d / <>u><>[ (t=5)al” /Ose—“*s—?”'y“dU(r) dy.  (42)

Due to (4.2), for any ¢ € S(R%),

2 t t
E[w,JT(t»—w,JT(s»F:Z,:% [ [ costiw zran .z duds = 1411 (03)

Td/&*'y t v ~ 2 T e
—9- = =T(v—u)|y|
1 2(27r)d /S/S/Rdw)(yﬂe dy du dv
Td/a—y t v R ) u N
—(Tv+Tu—2r)|y|
2(27r)d /S/S /Rdh/J(yﬂ /0 e dU (r) dy du dv

N / / IO / e T G (1) dy du d
. Té/a— . r u av.
@ Jo Jo Jua TN y

We first deal with the term I. For any s,t € [0, 1] with s <,

1 t 1 t—s
TO=)WI* gy, dy = / 1— e T w=s)y gy = / 1— e ToWI™) gy
[ T J, = Ty gy )

t—s T‘ N 6d B T5—1 1 . )6+1
,  TWlorde = e e s
T <

where the inequality above follows from the relation 1 — e~ 29, valid for z > 0 and 0 < § < 1.
Since by assumption oy < d < a(1 + ), choosing 6 =1+ v — d/a we get d € (0,1] and

2 b(y)|? ,
I< @) /]Rd “Z’Si)iv dy x (t—s)*, with h=24~v—d/a, (4.4)

and the last integral is finite because d > a7y and 1 € S(RY).

where

and

11

<
Tly|*

Remark 4.1. Notice that assumption (1.1) implies the equivalence U(T) ~ T7/T'(1 + ) as T — oo

(see e.g. Bingham et al. (1987, (8.6.3)) or Anderson (1985, Thm. 2.2.2)), which in turn entails
U(Tr)
U(T)

—7r7 as T — oo foranyre]|0,1].

Moreover, fol dgg)s) =landforall0<a<b<1,

wwﬁzwn%ﬂﬁwﬁm_wszwws%Tﬁw

o UT) U(T)
hence the measure Uz defined on ([0,1], B([0,1])) by
X (Y dU(Ts)
or(o.u) = [ (4.5
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weakly converges to the measure on ([0, 1], B([0, 1])) having density function vs*~ 1 1)(s).
Before working the second term II, we prepare with a lemma.

Lemma 4.2. Let s,t € [0,1] with s <t. There exist constants C > 0 and My 4 > 0 such that for
all T > Ma,d,w

t v u t v u
/ / / (v 4 u — 2r)~4 d@ dudv < C/ / / (v 4 u — 2r) ¥ dr du dv.
s Js 0 U(T) s Js 0

Proof: We give the proof for the case d # « only; the case d = a can be worked in a similar way.
We have

[ flese- bt [ [ o
/ﬁ/m/ v+u—2rﬂumddUi))
// (21-4 (v—r)"advd UT))+/0 /st [21_2(7}_7)1_§:5(514—3—27“)1_2

(Tﬂ
U(T)

B t . U(Tr)
/0 ft,s( )d U(T) )

- dvd

with

G (D
ft,S(T) = (2 _ g)(l _ g) 1{5§T§t}
9l-4 <(s - 7‘)2_g + (t— 7,)2—5 - %_1(t +s— 27’)2_5

(2-90-9)

+

lio<r<sy-

Due to the term (¢ + s — 27")27%, the function f;, is supported in the interval [0,2]. Since the

function x — 224 is bounded and uniformly continuous over the interval [0, 2], for any € > 0 there
exists § > 0 such that given z,y € [0, 2],

d d
2?7a —y?"a| <e whenever |z —y| <.

Now, given § > 0 there exist k € N and zg,x1, ..., € Ry such that zp =0 < 21 < -+ < x = 2
and |z; — x;_1] < g for i =1,2,...,k. We set g 5(r) := Zle ft,s(xi—l)l[xi,l,xi)(?”)- Hence, for any
r € [0,2],

2a -
Fealr) = a0s(0)] < 7

¢ ?—*(2e+2*—1
1 s<r<t} t+ 1 0<r<s < M, ,d€s
D1 -G == T @ - d]) s = e
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for some positive constant M, 4 depending only on a and d. Moreover, we choose M, 4 so that

|ft.s(r)] < Mg.q for r € [0,2]. Therefore,
t dU(TT) B t . ,,n/—l . t . dU(T’I’) t . dU(TT)
/0 ft,s("") U(T) /0 ft,s( )’7 d < /0 ft,s( ) U(T) /0 gt’s( ) U(T)

t

t
gt,s(r)wﬂ_ldr—/ ft,s(r)vﬂ_ldr
0 0

t dU(Tr) t
— y—1
U(T sz —U(Txi
< eM, d T ) ) ($’Y - CL’ ) l{x <t} + GMa at? (46)

On the other hand, since UU((TTT)) — 77 uniformly on [0,1], there exists M, 4~ > 0 such that for
T > Ma,d,'y:

UTx;)) —U(Tx;—

( )U(T)( ) — (] — 2l )| lm<ty < M 7 foralli=1,2,... k.

Plugging this inequality into (4.6) yields the result. O O

To bound from above in a useful way the second term I we proceed as follows. Given s,t € [0, 1]
with s < ¢, since ¢ is bounded we have

d/a— a
I < T / / / / e~ T2l qU (Tr) dy du dv
R4
2Td/a'y (v4+u—2r)" d/
_ —lyl* T
T [ [ [ [ e aa

= Gy fue [ [ [ e umzena [ e

where condition (1.1) implies that U(T") ~ T7/I'(1 + ) as T' — oco. Therefore, from Lemma 4.2
and taking T' > M, 4~ bigger if necessary, we deduce that

I < C(,a,y /// (v+u—2r) ~d/2 =1 g du dv (4.7)

for some constant C'(¢, a,y) > 0. For u < v, we have

u 2u d
/ (v+u—2r)" ¥l gr = 27/ (w+v—7r)"ar?tdr
0 0
2u

= 27 (utv)a / A a (4.8)
0

To deal with the last integral we work separately the two cases ay < d < @ and a < d < (1 + 7).
Case ay < d < «. For the integral that appears in (4.8),

2u

u+v 1
/ ’ (1—7“)_i7”_1dr</ (1—7")_57”_1 dr =B(l —d/a,v) =C < o0,
0 0

where B(p, q) denotes the beta function. It follows that

/// vt u— d/o‘r'y Ydrdudv < 270// v+u)! —d/eqa, du

= 2_70/ (21))1+7_d/a — (v s)1H7Y| gy,




608 J.A. Lopez-Mimbela, A. Murillo-Salas and J.H. Ramirez-Gonzélez

Since condition ary < d < « implies 0 < 1+ v — d/a < 1, using Holder continuity we get
¢ t
C
/S [(%)Hv_d/a — (v + s)lﬂ—d/a} dv < Cy / (v— )= gy = m(t — 5)2tyd/e
We conclude that for sufficiently large T,
II < C(,d,a,v)(t—s)" with h =2+~ —d/a. (4.9)
Case o < d < a(l + ). Notice that

1

2 d
R L e 2u 1
N §/0 (1—=7r)"ar dr, if o < 2

/u+v (1— 7‘)_%7‘7_1 dr
0

1 2u

_ /2 | utv S | e 2 1
—/0 (1—r) ar? dr+/ (I—=r)"ar?dr, if 75 > 3.

2

-

1
Now, since v € (0,1) we have that [ (1 — r)_gﬂfl dr < oo. For the case szTuu > 1 we notice that
P71 <201 for all r € {%, %] . Thus, if & < d we obtain

2u 2u

ure wt —(-1) _ )\ e
/ : (1_7")_g7“7_1 dr < 2_(7_1)/ ' (1—r)_§ dr < 2 <U u> .
1 1 d/a—1\v+u

In fact, in the case we are dealing with, we have that v —d/a < 1 — d/a < 0. Therefore,

2u

i 9—(v-1) _ .\ 1—d/a
/ ’ (1 —r)_gr7_1 dr < <v u> .
1 djao—1\v+u

2u 2u

wts 1\t rute 1\ -
/+ (l—r)fgr'yfldr < <> /+ (1—r)1dr§—<> In (U u)
1 2 1 2 v+ u
1\t o — w7
< Cl=
<c3) (=)

for some constant C' > 0, where the last equality follows from the boundedness of the function

z +— —(Inz)/27~1 on the interval [0, 3]. Therefore, from (4.7), (4.8) and the last estimates we get
that for T" large enough, and for some positive constant C,

t rv C
< — )1 < —— _(t—s) .
IT < C/s /S (v—u) dudv < h(h—l)(t s)", (4.10)

where h =2+ v —d/a. O
We are now ready to state and prove the following

If d = «a,

Proposition 4.3. Let ay < d < a(1+7) and H2 = T*7=/% There exists a constant My g~ > 0
such that the sequence of processes {Jr, T > My a~} is tight, where Jr is defined in (1.2).

Proof: From (4.3), (4.4), (4.9) and (4.10) it follows that, for T" large enough,

E | (¢, Tr(t)) — <¢,\7T(s))}2 < Clt—sl?, s,t>0, (4.11)

where p = 24+ v —d/a > 1 because 1 + v — d/a > 0 due to the assumption d < (1l + 7).
From Billingsley (1968, Theorem 13.5) we get that for each 1 € S(RY) the sequence of processes
{(, TIr(t)), T > My q~} is tight for some M, 4, sufficiently large. Using Mitoma’s theorem Mitoma
(1983, Theorem 3.1) we get the tightness of {Jr, T'> My} O
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4.1.2. Space-time method: convergence to a Gaussian process. From (1.2) we deduce that the space-
time random field associated to {Jr, T > 1} is given by

(®, Jr) := }:IFT </01<\IJ(-,S),Z(TS)>ds — </01 (-, s) ds,A>> . ®e SR,

with ¥(x,s) = fsl ®(x,t) dt. Since the initial population is a Poisson random field with intensity
the Lebesgue measure A,

o T -
E [6_@’%)} = €xp {/ / Ur(z,s)dsdx +/ E, (e_ Jo (¥rCo9),2(s)ds _ 1) dw}
R4 R4
= exp{/ / Ur(z,s) dsdx—/ vy, (2,0,7T) dx} (4.12)
R4 R

where vy, (2,0,7) is given in (3.1) and Urp(z,s) = —HIT\II(:B %) = —Hl é ®(x,t)dt with Hp =
T
T@2+y—d/a)/2

Proposition 4.4. Let ® be of the form ®(z,t) = ¢1(z)p2(t), where ¢ € S(RY) 4 and ¢o € S(R)..
If ay <d < a(l +7), then

lim E [e_@’jﬂ} (4.13)

T—o00

- exp{m (/Rd eI dz> /01 /0 /Ou(uﬂ—2r)—d/aw—1drx(u)x(v) dudv},

where x(- f ¢o(s

Proof: The proof will be divided into four steps. Using Lemma 3.3, ((3.6)) and recalling that
g(s) = 22, we have

/]Rd/o ‘IJT(fU,S)dsda:—/Rdv\pT(x,O,T)dg;
— /Rd/T\IIT(x’S)dex_/Rd/OTE(\IIT('7U)f(.’u’T_u))(x)dde

/Rd / 9w (5 u, T —w)) (2) dU (u) dz
L

T—z
/ 7; \IIT(-, 2)E. (e_ Jo ¥retdsgyy (¢ u+2,T — 2~ u)))} (@)U (u + )

~dudzdx
T T T

= //\IIT(x,s)dsdx—/ / \I/T(x,u)f(x,u,T—u)dxdu—i—/ / g(ve, (z,u, T —u)

R Jo 0 JRd 0 JRrd
-dx dU (u)

T pT—z “ )
[T [ (e e g g, (6wt 2, T - 2 - )] @+ 2
rd Jo Jo

~dudzdx,

where to get the second equality we have used that the Lebesgue measure is invariant for the a-stable
semigroup. Thus, we write

T
/ / Vr(z,s)dsdr — / vy, (2,0, T)de = [1(T) + I(T) + Is(T) + 14(T),
R? J0 R4
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:/Rd /OT Uz, 5) dsdx—/OT/Rd U (2, )bz, u, T — ) da du, (4.14)
:/OT/Rd [g(v\pT(aj,T—s,s))—; </Oan;T(.,T+u—s)(x)du>2
/ /R (/ (T +u—s)(z )du>2L{(T—s)dmds, (4.16)

/Rd/ /T r \I/T r)E. (ef Jo Ve &orts)ds g0 (€ w4, T — 1 — u)))} ()

where

U(T — s)dxds,(4.15)

U(u+r) dudrdm (4.17)
We are going to show that
lim I;(T) =0, ic€{1,2,4}, (4.18)
T—o0
and
lim I3(T) = Ao 01)° / e 1% dz / / / w4 v —2r) " dr y(u) x(v) du do;
T—o0 T(1+7v)(2m)d \ Jga ’
(4.19)
here and below we set (¢ ft ¢2(s) ds and x7(t) == x(%).

Step 1. Proof of (4.19) Performlng suitable changes of variables, (4.16) can be re-written as

2I3(T) = /T/Rd </T7;SqJT(-,u)(x)du>2u(s)dxds
= / /R// W)(2) Ty O (-, v) (2) dudoU(s) dz ds

= H%/o /S /8 /Rd%—sﬁﬁl(')(ﬂ?)ﬁ—s%(-)(af)da:XT(u)XT(v)dudvu(s)ds.(4.20)

From Plancherel’s formula we have

Jo-s1

1 J—
L e O@Ten(e)is = g [ Toa@mis

Moreover, ’7/2(;71(33) = e‘”‘”'a(ﬁl( ). Thus, from (4.20) we get

T pT
20y(T) = %ZHQ/ [ e B e v 0) e o) s

— / / / / 7(u+v 2s)|x|™
27'(' dH2 R4

After the change of variables s = T'r we obtain

T yae (utv—2Tr) ]
(T — —(u4v—2T7)|x
0 = G, Jo o
T3 1 1 1
— / / / / e—(u+v—27")T|x|D‘
(QW)dH% 0o Jr Jr JRd

(z)dx.

o1 (x )‘ 7(u)x7 () dz dudv| U(s)ds.

b1 () ‘2 x7r(uw)xr () de dudoUd(Tr) dr

<Z;1 (x) ‘2 x(u)x(v)dx dudoUd(Tr)dr,
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where to get the last identity we again changed variables. Performing further the change of variables
2= ((u+v —2r)T)*z, the last expression is equivalent to

I3(T) = Zj;l/;/ / / /R‘i e 7 ’¢1 (u+v—2r)T)" V“)‘

X (4 v —2r) Y\ (u)x (v) dz du do U (Tr) dr-.

Since H% = T?t7=d/a e obtain

N o R e

x (u+v = 2r) " (u)x(v) dz dudvd [UC(T];T)} .

Hence, changing the order of integration, by the weak convergence of (4.5) and uniform convergence
of the integrand we get

lim I(T) = %gfml - </R e—zl”‘dz) /01 /0 /Ou(u+u—27~)—d/w—1drx(u)x(v) dudv.
O

Step 2. Proof of (4.18) for i = 1. Using equation (3.6) we have that

T T—u
Il(T):/Rd/ Uy (x,u) ; Ts (Ur(u+s)f(ut s, T —u—3))(x)dsdude. (4.21)

Notice that f < 1 because by assumption ¥ is nonnegative (see (3.5)). Therefore, letting ¢ > 0 be
an upper bound for ¢,
‘ / e ds dx.

L(T) < a2 /Rd/ / ¢1(x ()dsdudx_

Then, clearly, for any ¢ € [0, 1] we have

’ o—sl2l® 1 15 1
ds <T A | <T —. (4.22)

0 [] ]
If d>aweuse (4.22) with d = 1. If ya <d < a we set § = % — 3 to obtain that I1(T") converges
to 0. U

Step 3. Proof of (4.18) for i = 4. By performing the change of variables v =T —r —u in (4.17)
we obtain

—I(T /Rd/ /T r \I/T r)E. (e* ST W (€ rts) dsQ(U‘l,T(g'Tfov,T — v,v)))] (x)

—v)dvdrdz,
where, due to (3 ‘)) and the fact that &k > 0,

vg(z,r,s) = 1—f(:c,7“,s)—/Sk(:z,r,s—v)U(s—v)dv < 11— f(z,m,s)
0

= /037;[\Il(~,r—|—s)f(-,r—i—s,s—u)] () du <

S—

Ts—u¥(,r+s—u)(z)du
since |f| <1 due to (3.5), where the second equality follows from (3.6). Hence,

Vo (@, T — v,0) < /0 T [Up (T — 1)) () dl = /0 TOr(T—v+D)] (@) d.  (4.23)
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Using that g(s) = ﬁ and the fact that U > 0, we get

CIy(T /Rd/ /Tr [\I/T TTM /T\I/T —v+l)dl>}()u(T—v)dvdrda:.

By self-similarity of the semigroup (7¢):>0, and changing the order of the integration with respect
to v and r we obtain

C T pT—r T 2
—Iy(T) < H;%/Rd/o ; TT_t_ng)l(:B)(/O ’ﬁgbl(m)dl) U(t —v)dvdrdx

c T ’
< Rd( /O 7z¢1<:c>d1> dz U(T),

T
sup (/O T (x) dl) < Ci(a, ¢1,d)Fr,

We also have

where
1, if d > «,
Fr={ log(T), if d=a,
T4, ifd< a.

Hence, for d > « we can estimate

2
c T Cy ga _ Co
—Iy(T) < 317 d ] d —= 1T —
(1)< /R(/O 7z¢1<:c>) v= TR = 0,

where C; = Cy(a, ¢1,d,v) > 0, i = 1,2. In the same way, if d < « then

L(r) < Slppe- 2/ / Tor(@)dide = Co b % _ 32 0

— et = 2 2« .

4 i o 1 T = C2 PO Y 2

A similar argument works for d = «. This finishes the proof of (1.18) for i = 4. U

Step 4. Proof of (4.18) for i = 2. This part can be proved in a similar way as in Bojdecki
et al. (2007a) p. 512-515. Notice that inequality (4.23) implies ( [y To®@r(-, T +u — s)(ac)du)2 —
(vo, (2, T — s,5))* > 0. Since g(s) = %, it follows that

0 < —20y(T / /Rd [(/ (T +u—s)(z )du>2—(v\pT(z,T—s,s))2

We will prove that, as T" — oo,

/ /Rd [</ T+“_5)du)2—U\PT($,T—s,s)2

Indeed, from (3.10) we obtain

U(T — s)dxds.

U(T — s)dxds — 0. (4.24)

—vg,(z,T — s,5)

S _/O%\IIT(7T—$+U)f(7T—3+u73_u)(x)dU+;/O%U\QI/T(J??T_S—"_U’S_u)dU(u)
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Therefore,

0 < /%\I/T(-,T—i-u—s)(:v)du—vq,T(x,T—s,s)

o

< / T Vr(,T—s4+u)(1—f(,T—s+u,s—u)(x)) du
0
—i—% / 7;1)\21,T (2, T — s+ u,s —u)dU(u). (4.25)
0
Also, from (3.6) and (3.9),
1—f(-,T—s+u,s—u)§/_ To¥r(, T — s+ u+w)dw (4.26)
0
and
s—u 2
U?I,T(~,T—s+u,s—u) < </ 7ZU\I/T(-,T—s+u—|—w)dw> . (4.27)
0
Thereby,
1 5 1 s s—u 2
2/ ’EU?I,T(Q:,T— s+u,s —u)dU(u) < 2/ Tu (/ TV (x, T — s+u+w)dw) dU (u).
0 0 0
(4.28)
From (4.25), (4.26), (4.27) and (4.28),
0 < / TV, T+ u—s)(z)du — vy, (x, T —s,3)
0
< / Tu <\IJT T—|—u—8)/ ) 7ZU\IJT(-,T—5+u+w)> () dw du
0 0
1 2
5 / w < T Up(z, T —s+u+w) dw> U (u). (4.29)
0 0
In addition, from (4.23)
s 2
0< (/ TVr(, T +u— s)(x)du) - v?pT(x,T —5,8)
0
= </ T¥r(, T +u—s)(z)du — vy, (z,T — s, s))
0
. (/ T¥r(, T +u—s)(z)du+ vy, (z,T — s, s))
0
< 2/ T V(T +u—s)(x) du(/ T.¥r(,\ T +u—s)(z)du — vy, (z,T — s,s))
0 0
where due to (4.29)
§2/ TV, T +u—s)(x (\IIT T +u—s) 7{U\IIT(‘,T—s+u+w)> () dw du
0 0

s [T T4 - ) du /0 ([ xT—s+u+w>dw)2dU(u>-
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We define

RU(T) = /Rd/ </ ( (-,T+u—s)/osuﬁuwT(-,T—s+w+u)dw>(x)du>2

T — s)dsdz,
2

Ro(T) = /R/ (/ (/s_ufrwq/T(-,T—s+u+w>dw>2dU<u)> U(T — s) ds da.

Then, by the Cauchy-Schwarz inequality applied to the measure [pq fOT U(T — s)dsdx it follows

that
/Rd/ (/ TP ( T+u3)(x))2U\ZIIT(x’TS,S))U(TS)dsdx
< C/I(T)(VRi(T) + /Ra(T))

We need to show that Ry (7)) — 0 and Ry(T) — 0 as T' — oo. Indeed, for Ry(T),

R(T) < O /R d / (/ 7. (410 /OTS_“mmdw) <x>du)2u<T<1—s>>dsdx
T ([ oo i)

Following similar arguments as in Bojdecki et al. (2007a, (3.30)-(3.33)), from here we can deduce
that limy_,oo R1(T") = 0.
We now work the term Ra(T"). We define

1 1 u d 1
7“(.7]) :/0 pu(x) du7 fl,T(m) = A pu,a(x)zéj(;r_l)du? gl,T(x) = TE¢1(TE$)'

Here ||f17|1 < UT@, which is bounded uniformly in 7" for T sufficiently large. Moreover, it can be

shown, as in Bojdecki et al. (2007a), that ||g1,7[1 = ||¢1]l1 < oo and ||r||2 < co. Making the change
of variables s’ = 7 gives

<o [ [ ( [Cr([" o)

Making the change of variables u' = % yields

2 2
(m)U(u)du) UT(1—s))dsdx.

2
T2+1 T(s—u) 2
Ry (T /Rd/ (/ Tru (/0 Twd1(:) dw) ()U(Tu) du) UT(1 - s))dsda.

Making the change of variables w’ = % renders

Ror) < T =L / ( [ /OS”m¢1<->dw)2<x>u<Tu>du)2u<T<1—s))dsdx

721+ y(T) 1 1 2 U(Tu) ?
< C H% T /]Rd /OTTu (/0 75“w¢1(-)dw> (x) o1 du| dz.
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By self—81m11ar1ty property of (7,,)u>0 and making the changes of variables 2’ = Tféa:, y = Tféy,
and 2/ =T~ az

1 1 , , 2 2
Ry(T) < QT) /R d [ /R d /0 pu:a(“’”_y)uT(wT? du ( /R ) /0 Pua(y—2) dwTs ¢y (T 2) dz> dy]d:c
— D k2 1),

o

and || f1 7|1 is bounded uniformly in 7" for T sufficiently large. Hence

U(T) U(T)
Ry(T) < C p—, 1Azl + o173 < O A lTlrlslgrrl,

where we have used Young’s inequality. Again, as ||g1,7[1 = ||¢1]l1 and ay < d < a(1 + ), we will

have Y8 T2 0 and I7|l2 < co. Therefore, limp_,o, Ro(T) = 0.
We have proved that both Ry (7T) and R2(T') tend to 0 as T' — oo. This proves Step 4 and shows
that (4.18) holds. O

Lemma 4.5. Under the assumptions in Proposition J./, the limit (/.13) can be written as
lim E [e*w’jﬂ}
T—oo

2

exp <1"( +1)<( » )d(2—4) fRde |y‘ady fo fo (w, 2)p2(w)P2(2) dw dZ) , ifd# a,

_ (4.30)
exp (2F Will’)(% - fRd e v dy fo fo (w, 2)p2(w)Pa(z) dw dz) , if d = a,

where

d —bopew -1 9—4d 9_d 9_4d

Q(w,z) = E_l s7 [(w/\z—s) a4+ (wVz—8)"a—(w+z—2s) a} ds
0
(4.31)
and
1 ZA\w
K(w,z):= 2/ ST (w42 — 28) In(w + 2 — 25) — (w — 8) In(w — 8) — (2 — ) In(z — s) | ds.

0

Proof: We first deal with the case d # a. Recall that y(u f ¢2(w) dw. Substituting this into

the triple integral in the right hand side of (4.13), by symmetry of the functlon (w, 2) — ¢a2(w)pa(z)
and changing the order of integration we conclude that

/01 /Ou /0 S w4 v — 28) & y(u)x(v) ds dv du = 2(21_2)/01 /OlQ(w,z)qﬁz(w)cbz(z) dw dz,

(4.32)

where

Qw, 2) = <d _ 1) - /OZAw s [(w - 5)2_g + (2 — 3)2_g —(w+z— 23)2_4 ds.

(07

For the case d = «, similarly as above we can show that

/01 /Ou/ové’”_l(wv—28)‘ix(U)x(v) ds dv du = ;/01 /DlK(w,Z)@(w)@(z) dwdz, (4.33)
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with
1 ZAw
K(w,z) := / st
2 Jo

The proof is finished because the expressions (4.32) and (4.33) are equivalent to (4.13) for d # «
and d = « respectively. O
Proof of Theorem 2.1. Proposition 4.3 gives the tightness and Proposition 4.4 identifies uniquely
any limit point of {Jr, T > 0} for non-negative test functions. For general test functions the proof
can be done as in Bojdecki et al. (2006a, page 9). For the sake of brevity we omit the details. [

(w4 z—2s)In(w+2z—2s) — (w—8)In(w—35) — (z—s)In(z — s) | ds.

Proof of Theorem 2.2. The proof of this result can be done following the same lines as the proof
of Theorem 2.1 but using the fact that, in the case of lifetimes with finite mean pu, the renewal
measure is such that

T
U(Tr) —>£ as T — oo for all r > 0.
T @
Formally, this can be thought as putting v = 1 in all the preceding computations. O

4.2. Proof of Theorem 2.5. Proof of (i). Note that, for b = 2

Qup(w,z) = 2 /OzAw s%(z = s)(w — s)ds,

which is a positive definite function and it is finite if and only if @ > —1. For the case b = 0 we
have that

,2) = At)eT
Qa,O(w Z) a+ 1(5 ) )

which, for @ > —1, corresponds to the covariance function of a time-changed Brownian motion.
Let us consider the case of a > —1 and 0 < b < 2, with b # 1. Observe that (2.2) can be written
as

wAz
Qap(w, 2) = / s%kp(w — s,z — s)ds,
0

where

1
1-b
which is a covariance function for b € (0,1) U (1,2), see (2.4) in Bojdecki et al. (2010) or (1.1)
(with K = 1) in Lei and Nualart (2009). Therefore, Qg is a covariance function for a > —1 and
be (0,1)uU(1,2). O
Proof of (ii). Consider ¢ > —1 and —1 < b < 0 such that a +b+ 1 > 0. Note that (2.2) can be
written as

kp(w, z) = (wb + 20— (w+ z)b> ,

Qup(w,z) = ﬁ (Q1(w, z) + Q2(w, 2)) , (4.34)
where
wWAZ 1
Q1(w, z) = / u(w A z — u)bdu = (w A 2)*H0H! / u®(1 — u)’du, (4.35)
0 0
and

Q2(w, z) = /Ow/\z u® [(w Vz—u)l—(wAz4+wVz— 2u)b] du. (4.36)
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Note that,
QQ ('LU7 z

)
wAz WAZ—U
= —b/ / u(wV z —u+ ) drdu
0 0

wAz  pw—u)A(z—u)
= —b/ / u(w—u+r)""A (2 —u+ ) tdrdu
0 0

= [ 0 e (L e 0 () o)
-dv dr du,

thus Q9 also is positive definite. Clearly (4.35) is non-negative definite if @ + b+ 1 > 0. Then,
from (4.34) it follows that Qg is a covariance function for @ > —1 and —1 < b < 0 such that
a+b+12>0. (|

4.3. Proof of Lemma 2.7. In order to prove Lemma 2.7 we notice that, for a > —1 and b > —1,
b

2—2b !
Qap(t,t) = ——¢ototl / u®(1 — u)du = B(a+1,b+ 1)+t (4.37)

1-5 0 1-5
The restrictions ¢ > —1 and b > —1 are necessary for the integral above to be finite, and any a or
b out of this range is ruled out. Moreover, for 1 < ¢,

ta+1
1-b

patbl pl/t 1
Quy(1,1) = / w1 = u)du+ ——Ba+1,b+1) -
: 1-b J, 1-b

whereas for 1 > ¢,

1/t
./ u®(t+1—2tu)’du, (4.38)
0

ta+b+1 1 1 t
Qus(1,1) / w1 ) du+ [t [P~ (41— 2] du. (439)
: 1-0b J, 1-0bJ,
Note that, for the case b > 0

WAz wVz wAz
Qap(w, z) = b/ / / u®(r 4+ v — 2u)*~2 dv dr du. (4.40)
0 u u

Proof of (i). Fora > —1and —1 < b < 0, with a+ b+ 1 < 0, the function Qq(-,-) is not a
covariance. In fact, from (4.37) we have that

2 9b atb41

VQus1. DQualt.t) = T—-Bla+1,b+ 1)t
On the other hand, for 0 < ¢ < 1 we have that

t(l+b+1 1 1 t
Qus(1,1) = /ua(l—u)bdu+ u® [(1—u)b—(1+t—2u)b] du  (4.41)
: 1-b Jy 1-bJ,
ta+b+1 1
> /u“(lu)bdu, (4.42)
1-b /g

where to get the inequality we have used that the function u + (1 —u)® — (1 + ¢ — 2u)® > 0 since
—1 < b < 0. Therefore, whenever a+b+1 <0, as t | 0, Qqp(w, 2) does not satisfy the inequality
covariance

Qup(11) < \/Qup(1, DQup(t.1). (4.43)
U
Proof of (ii). Take a > —1 and b > 2. Assume first b > a + 3. From (4.37) we have that
20 —2 o
\/Qa,b(lv 1)Qa,b(ta t) = (b — 1>B(Oé +1,b+ 1)t +g+1 : (444)
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On the other hand, from (4.40) it follows that for ¢ > 1,

1 opt gl
Qap(l,t) = b/ / / u®(r + v — 2u)""2 dv dr du
0 Ju Ju

1,1 gl b—2
= btb_l/ / / u® <1" + 2 2E) dv dr du, (4.45)
0 J% Ju t t
which implies that,

. Qab b ! u®
lim —————==1b du dr dvu o= ﬁ (1 —u)du. (4.46)

t—o00 th— 1

Hence, as ¢ 1 oo, from (4.46) the left-hand side of (4.43) is of order t*~!, whereas the right-hand

side of (4.43) is of order ¢ - Thus, Qq(-,-) can not be a covariance function for a > —1 and
b>a—|—3,sinceb>a—|—31mphesthatb—1>(a—l—b+l)/2. O

4.4. Proof of Theorem 2.10 and Theorem 2.11.

4.4.1. Proof of Theorem 2.10. Since ( is a Gaussian process, the proofs are based on properties of
its covariance function @, given by (2.2).
Proof of (i). Let ¢ be a positive constant and ¢ > 0. Then,

L b b b 2-2 a b
Qaplctyct) = —— s ((ct —8)"+ (ct — 8)” — (2ct — 29) ) ds = s(ct — s)” ds
’ 1-9b 0 1—b 0

T Qu(t, 1),

O
Proof of (ii). From (2.2) it follows easily that

E[(¢(t) —¢(s)?] = 1;}[2/ ua(t—u)bdu—l—Q/Osua(t—i—s—Qu)bdu

—2b </Ot u®(t — u)’du + /OS u?(s — u)bdu> ] (4.47)

26 —2 [
= 373 /S u(t — u)® du
1 S
+ﬁ u® [2b(t —u)l+2%(s —u)b —2(t+ 5 — 2u)b} du. (4.48)
(a). Suppose that b e (1,2], -1 <a<0and 0 <s<t <M with0<t—s <1, where M >0isa
constant. For this case we have in mind (4.48). For 0 < u < s we define

res(u) = 2°(t — u)® 4+ 2°(s — u)® — 2(t + s — 2u)?,

hence
drys(u) B
du
Since 0 < b—1 < 1, the function u — u”~" is concave, which implies that r; s is non decreasing and
r1.s(u) < (28— 2)(t — 5)° for all u € [0, s]. Therefore,

—2h(t — u)>™t — 2%h(s — u)PTt + 4b(t + 5 — 2u)!

b—1

bll/ u® [2%: — )’ +2%(s —u)’ = 2(t + 5 — 2u)’ | du < cap(M)(t — s)°,
- 0
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where ¢, (M) = %%. On the other hand

/Stua(t —u)’du < (t — s)”/:uadu < (t—s) (

where the last inequality is obtained using that ¢t — t®*! is (a + 1)-Ho6lder continuous and ¢, is a
positive constant. Since b <a+ b+ 1 and 0 <t — s <1, we have shown that

ta+1 o Sa+1

a+1 ) < Calt =) ’

E [(¢(t) — ¢(s))?] < k|t — s|’, for some constant £ > 0.

Suppose now that 0 < b < 1. In this case,

_ob t
E[(C(t) - ¢(s))?] = 22 / ot — u)Pdu

1-b

1 s (4.49)

o a oo obis o \b__obre b

+1 p o [2(754—3 2u)? = 2°(t —u)” — 2°(s u)]du,

—0Jo
with
2*2b t 2—21’ t 27217 ta-i—lisa—i-l
b / u(t—w)’du < 1_b(t‘8>b/s utdu =3 (t=s)" <+1> < ) plt—s) T,

where ¢, , > 0 is a constant. Using that 2(f + s — 2u)’ — 20(t — u)? — 2°(s — u)® < (2 —2°)(t — 5)°
for 0 <u <'s, we get that the second integral in (4.49) is bounded from above by

9 _9b s 9 _ 9b gatl
(t — s)b/ udu = i (t —s)P.
0

1-0 1-ba+1
It follows that the process ( is locally -Holder continuous for 0 < 6 < b/2.

(b). Let =1 <b<0and a+b> 0. In this case we work with (4.47). Notice that

t t a
/ Wt —w) du < 10 / (¢ = ) du = (6 = )71 < Coplt = ) (4.50)
and
s 1 a+1p2s 1 a+1 ffs
/ u(t + s — 2u)’du = <) / u(t + s —u)’ du = <> (t 4 5)@to+t / u®(1 — u)’du
0 2 0 2 0
1 a+1
< <2) (t+5) P Ba+ 1,0+ 1)
e <ta+b+1 + sa+b+1) Bla+1,b+1) (4.51)
because the mapping ¢ — t%**1 is convex due to a + b+ 1 > 1. Also
r 1
/ u®(r — )b du = roto+! / u(1 —u)du =" T1Ba+ 1,0+ 1), re {s,t}. (4.52)
0 0
Plugging (4.50)-(4.52) into (4.47) yields
2C.p 2Cap
E[(¢t) —¢(s)] < (t—s)"t < 2t — s,
1-9b 1-b
Thus, ¢ is §-Holder continuous for any 0 < 6 < (b+1)/2. O
Proof of (iii). Follows immediately from (2.2). O

Proof of (iv). Let us first show that
Jim T'°Q(r v, s + T, t +T) = 0. (4.53)
—00
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Using (iii), the equalities

b—1
Tl—b<(t+T_“)b;(s+T_“)b> :Tl_b/HT(w—U)b_ldw:/t <w+;_“) dw

s+T

and the bounded convergence theorem, we obtain

lim 71°° vua (t—u) — (s —u)°| du= b (t—s) (b4 —patl)
f ] ) ( )

T—00

Similarly we get

lim Tl_b/ u® [(t +r—2u)’ — (s+7r— 2u)b} du = (t — s)rott,
0

T—o0

The limit (41.53) follows from

limle[/vu‘l((t—u)b—(s—u du—l—/u (t+7 —2u) — (s+r—2u)b>du

T—o00 r 0
/u t—l—v—2u)b—(s—|—v—2u)b>du}
0

= (t = 5) (v+1 —patt 4 potl _gatl) — g,

Now, observe that

70 T.t+T
lim TszQ(r,v, s+T,t+T)= lim Qr v, s + + )
T—o0 T—o0 T- 1

Due to (4.53) we can use L’Hospital’s theorem to calculate the last limit. Recall that,
1-0)Q(r,v,s+T,t+ 1)
v
= / u® [(T—l—t—u)b— (T+S—u)b} du
T

—/ ua[(T—I—t—l—v—Qu)b—(T+s+v—2u)b}du
0
+/ u‘l{(T+t+rf2u)b—(T+s+r72u)b]du
0
v t v t
= b/ ua’/(T+h—u)b_1dhdu—b/ ua/(T+h+v—2u)b_1dhdu
T s 0 s
T t
+b/ u“/(T+h+r—2u)b_1dhdu.
0 s

Therefore,

(1—-b)T°Q(r,v,s 4+ T,t +T)

/ /( _u>b1dhdu—b/ /( h“’ 2u >b_1dhdu
+b/ /< h+T_2“> dh du.
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Applying L’Hospital’s rule we have that
lim (1 —b)T*7°Q(r,v,s +T,t +T)
T—o00

b—l/ /<1+ _u>b2(h—u)dhdu]
+TILH;O[ b—l/ /( h“’_z“) (h—i—v—Qu)dhdu]
_g%o[ b—l/ / <1+h+r_2”) (h+r—2u)dhdu],

b(bl)/vu“/t(lJrh_
N bl/ / h — ) dh du
|: 2

a+1 — o Ua+2 o Ta+2
e
Similarly, one can see that

-
b(b—l)/ovua/: (1—|—W)b_2(h+v—2u)dhdu
|

= hm

where

u b—2
) (h —u)dhdu

2 a+1 a

t2 oS ,a+1 a+2
2o pb—1) G —a(t—s)v— ,
2 a+1 (a+1)(a+2)
and
! h+r—2
b(b— 1) u/ <1+ T “) (h +r — 2u) dh du
0
2 _ a+1 a+2
Tocor Ly B2 sy —
2 a+1 (a+1)(a+2)
Putting all these limits together we obtain (2.8). O

Proof of (v). The result follows using Kallenberg (2002, Proposition 13.7) (see also Feller (1966,
Section I11.8)) and the fact that the function Qg given in (2.2) does not satisfy

Qa b(S T)Qa b(r t)

Qa b(S t) Qab(r ’I”) , 8<

r <t.

0

4.4.2. Proof of Theorem 2.11. Since ( is a Gaussian process, to prove the desired convergence it
suffices to show convergence of the covariance functions of the rescaled processes. Suppose that
0<s<tandbe (0,1)U(1,2]. It is not difficult to check that

E(¢(s+T) = C(T)(¢ t+T) ¢(T))]

s+T (4T t+T
/ / / (u+ v —2r)02 “dudvdr—i—// / (u+ v — 2r)°"%% du dv dr

=: b(Jl + J2
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Observe that

s t s r+T @ s t s b
T % :/ / / (u+v—2r)°2 T dudvdr —>/ / / (u+v—2r)""2 dudvdr. (4.54)
0 Jr Jr 0 Jr Jr

The limit in (4.54) corresponds to the covariance of the subfractional Brownian motion with pa-
rameter b+ 1, for b € (0,1) (Bojdecki et al. (2007b)). Moreover, it is the covariance of negative
subfractional Brownian motion if b € (1,2) (Bojdecki et al. (2007b)).

Proof of (i). If b€ (1,2] then, for 0 < s < ¢, we have

tors Yiu+w b2
Toa-(-1 g, _ / / 2b—2/ ( L1 7«> r dr du dv
0 Jo o \ 2T

T2 902B(q 4+ 1,b— 1)st.

T—o00

This, together with (4.54) implies that T4~ ®=Dp(J; + Jp) * =7 2-2bB(a + 1,b — 1)st as T — oo,
which finishes the proof. ([l
Proof of (ii). If b€ (0,1),a > —1 and a+ b+ 1 > 0 then

Lot bo 2T —7\"
T %y = = - drdud
5 2/0 /0/0 (u+v+r) 5T r du dv
1 s t utv+2T 2T — @
= / / / rb=2 w dr du dv.
2 0 0 u+v 2T

(4.55)

It is easy to show that

1 s t [e%¢] 1 s t
T %y — / / / r*=2 dr du dv = / / u—+ )" du do. 4.56
Y20 Jo S 2(1—=1) Jo Jo ( ) (456)

Therefore,

Tb( 1 +T2) = 5

I S (TS B TS PR S | .
(b+1)(1—b)<t +s (t—ys) as T — oo.
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The processes converge to a fractional Brownian motion with Hurst parameter H = b+71. If—-1<
b<0,a>-1land a+b+1 >0, then

E((C(s+T) = ((T)(C(t+T) = (1))
1

= 1_b[/OS+Tua((T+t—u)b+(T+s—u)b—(2T—|—s—|—t—2u)b) du
4 /OTu“ ((T—u)b+(T—u)b—(2T—2u)b> du
—/Tu“ <(T+t—u)b+(T—u)b—(2T+t—2u)b) du
0

_ /OTua ((T+5—u)b+(T—u)b—(2T+S—2u)b) du]

1 T+s T+s
= — / u® ((T+t—u)b+(T+s—u)b) du—/ w27 +t+ s — 2u)’ du
1 g b b
+ l—b{/o u ((2T—|—s—2u) —(2T—2u))du
T
—/ u <(2T+t+s—2u)b—(2T+t—2u)b> du]
0

We are going to deal separately with each term in (4.57). Changing variables u — T — u we get

T“/TJrsua ((T+t—u)b+(T+s—u)b) du = /OS <1+%>a<(t—u)b+(s—u)b> du

T

o S tb+1 b+1 t— b+1

T /0 (- w+ (s —w?) du = 52 b+1( ) (4.58)

and
T+s s U (S —|—t)b+1 _ (t _ s)b+1
T=° (2T —2u)’du= | (14 =)*(s+t—2u)’du ' =° . (4.
/T w' (2T +s+t—2u)’du /0 ( +T) (s+t—2u)’du " = 261 1) (4.59)
From (4.58) and (4.59) we deduce that
: a 1 1
= g (e g o))

The term Hz equals bJy above, and in this case we also obtain convergence (4.56). Thus, the
process {T_O‘/Q(((t +T) —((T)), t >0} converges as T — oo to a fractional Brownian motion
with parameter (b+ 1)/2. This concludes the proof. O
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