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Abstract. In this article we show, in a concise manner, a result of uniform in time propagation of chaos for
non exchangeable systems of particles interacting according to a random graph. Provided the interaction
is Lipschitz continuous, the restoring force satisfies a general one-sided Lipschitz condition (thus allowing
for non-convex confining potential) and the graph is dense enough, we use a coupling method suggested
by Eberle (2016) known as reflection coupling to obtain uniform in time mean-field limit with bounds that
depend explicitly on the graph structure.

1. Introduction

1.1. Model and motivation. Let N € N and consider an adjacency matrix &) = (él(N))Z el N} with
coefficients fi(,];'[) € {0,1}. Denote by GN) = (V(N) E(N)) the graph associated to this adjacency matrix,
in the sense V) := {1,..., N} and E™ := {(i,5) € V¥ x VM s ¢

Y]
convention that 51-(’];[) =0foralli e {1,..., N}
We will consider in this note a system of particles interacting according to this graph, more precisely the
system of N SDEs in R?

= 1}. We assume by

N
dXi = F (X}, w;) dt + O‘WN S e (X;’,wi,xg,wj) dt +V20dB!, ie{l,..,N},  (IPS)
j=1
where (BZ) .—1__ isasequence of independent standard Brownian motions, {Wi}ie{l,..., N} 1s a sequence of

elements in RY (with the convention d’ = 0if I’ does not depend on w) which represents some environmental
disorder, (avy ) ny>1 is a positive scaling, F' : R? x R? +— R? is an outside force, I : (Rd X Rd/) — R
is an interaction kernel and o is a positive diffusion coefficient. We will assume that (w;);=1. ~ is a
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sequence of IID random variables, and that the Brownian motions are independent from the initial condition
(Xé, wj)i=1..,N. We will denote by [E the expectation with respect to the Brownian motions, the initial
condition and the disorder.

One of the main difficulties arising in the study of this model comes from the fact that the particles are not
exchangeable as, a priori, some may interact with more particles than others. This motivates us to consider
the empirical distribution, defined for (X}, ..., X}V) a solution of (IPS) with disorder (wy, .. .,wy), by

1
t . NZ Xt,cuZ
=1

Notice that ¥ is a random variable.

We are interested in the limit, as the number N of particles goes to infinity, of (IPS). Intuitively one
expects the empirical measure to converge towards a measure p which would represent the law of one typical
particle and its disorder within a cloud of interacting disordered particles. :Assuming that < Zj\[: 1 Qw)
converges in some sense (given later) to a parameter p, this typical particle X“ with disorder w would then

in the limit evolve according to the non-linear diffusion

{ de = F (X)?J’w) dt +pf]Rd><Rd’ P (X;J7w7 y7a)) ﬁt(dy7 d(;})dt + \/iUdBt,

ot = Law( K¢, w) S

where B is a standard Brownian motion. This limit was proven rigorously on finite time horizon [0, 77,
where 1" does not depend on N, under some hypotheses on the graph structure, which are in particular
satisfied by sufficiently dense Erd&s-Rényi graphs, see Delattre et al. (2016); Coppini et al. (2020). Our aim
in the present paper is to obtain uniform in time estimates of the distance between the empirical measure
1Y and the limit distribution gy, with estimates that depend explicitly on the graph.

Note that proofs of convergence of particle systems interacting via random graphs possessing a spatial
structure (for example converging to a graphon) were recently obtained in Oliveira and Reis (2019); Lucon
(2020); Bayraktar et al. (2023); Bayraktar and Wu (2023). In particular uniform in time estimates in the
context of graphons were obtained in Bayraktar and Wu (2023), where the empirical measure is shown to be
close to the limit distribution with high probability with respect to the distribution of the random graph. In
this note we aim at obtaining quenched results, i.e. obtaining estimates that hold for almost every realization
of the graph.

These recent results generalize the classical case of complete graph of interaction (ay = 1 and £ = 1) and
without any dependence on the environment w, for which it is well known that under some weak conditions
on F and T' the empirical measure ;Y converges towards the non-linear limit g, see Méléard (1996);
Sznitman (1991). This phenomenon has been named propagation of chaos, an idea motivated by Kac (1956)
: it is equivalent, in the case of exchangeable particles, to the convergence of all £ marginals of the law of
(X}, ..., XN) to pZ* (the non linear limit tensorized k times). Thus, as N goes to infinity, two particles
become “more and more” independent, converging to a tensorized law, hence chaos. The term propagation
emphasizes the fact that it is sufficient to show independence at the limit at time O for it to also hold true at
the limit at later time ¢ > 0. We refer to the recent works of Chaintron and Diez (2022a,b), and references
therein, for a thorough reviews on propagation of chaos.

To quantify the convergence of the empirical measure towards the non-linear limit, we will use the L'-
Wasserstein distance defined as follows.

Definition 1.1. For ; and v two probability measures on R?, denote by II (11, v/) the set of couplings of p
and v, i.e. the set of probability measures 7 on R? x R? with (A x R%) = p(A) and 7(R% x A) = v(A)
for all Borel set A of R%. The L'-Wasserstein distance is given by

Wi (u,v) = ﬁehnfw /:p — Z|m (dxdZ) . (1.1)
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Equivalently, we may write in probabilistic terms

4% (M? v) = Xwiur,lif/NVE (’X - Y’) )

where X ~ p is a random variable distributed according to u. This distance is a usual distance in optimal
transport and in the study of measures in general, as the space of probability measures on R?, equipped with
the L'-Wasserstein distance, is a complete and separable metric space (see for instance Bolley (2008)). To
prove the convergence in Wasserstein distance, we use a coupling method. The idea is, instead of considering
the minimum over all couplings of the law of the particle system and the non-linear limit as should be done
according to (1.1), we construct simultaneously two solutions of (IPS) and (NL) such that the expectation of
the L' distance between these solutions tends to decrease. We would thus construct a specific coupling, that
controls the L'-Wasserstein distance, providing a quantitative bound. To construct this coupling, we may
act on the Brownian motions and on the random variables w.

The approach we consider was motivated by the work of Eberle (2016). Let us describe the idea of
the coupling method. Assume, for the sake of the explanation, that ¥ = —VU where U is therefore a
confinement potential. Constructing a solution of (IPS) and N independent solutions of (NL) simultaneously
by choosing the same Brownian motions yields the so-called synchronous coupling, for which the Brownian
noise cancels out in the infinitesimal evolution of the difference Z; = X; — X;”". In that case the contraction
of a distance between the processes can only be induced by the deterministic drift. Such a deterministic
contraction only holds under very restrictive conditions, in particular U should be strongly convex. In the
case of a non-convex confinement potential U, it is necessary to make use of the noise to obtain contraction.
Constructing the solutions choosing the two Brownian motions to be antithetic (or opposite) in the direction
of space given by the difference of the processes maximises the variance of the noise in the desired direction.
However, a priori, nothing ensures the noise will bring the processes closer rather than further. We thus
modify the Euclidean distance by some concave function f, in order for a random decrease of the difference
to have more effect than a random increase of the same amount.

This method was originally designed to deal with the long time behavior of general diffusion processes,
as in Eberle (2016); Eberle et al. (2019), and later extended to show uniform in time propagation of chaos in
a mean-field system in Durmus et al. (2020). The main difference of this work when compared to Durmus
et al. (2020) comes from the non-exchangeability of the particles, as we thus need careful estimates with
respect to the graph. For instance, since the particles do not share a common law, we cannot restrict our
analysis to the study of E[Z}] and then conclude using the fact that all Z} have the same expectation ; the
proof requires a more global approach to the system, by considering the empirical measure, and thus other
tools.

The framework of this article was inspired by Delattre et al. (2016), and we improve their result, obtaining
a uniform in time estimate, while removing some of the boundedness assumptions on the various functions.

Uniform in time propagation of chaos has recently attracted a lot of attention. The ideas behind this
coupling method were used to prove such estimates in a kinetic setting (i.e a particle is represented by both
its position and velocity, and the Brownian motion only acts on the latter) in Guillin et al. (2022a); Schuh
(2022). In Malrieu (2001, 2003), uniform in time propagation of chaos was proved using synchronous cou-
pling assuming a convexity condition on the interaction. Likewise, a similar result was obtained in Cattiaux
et al. (2008), using functional inequalities, under some assumptions of convexity at infinity. Also using func-
tional inequalities for mean field models developed in Guillin et al. (2022b), uniform in time propagation of
chaos was proved in a kinetic setting in Guillin et al. (2021); Guillin and Monmarché (2021); Monmarché
(2017) combining the hypocoercivity approach with uniform in the number of particles logarithmic Sobolev
inequalities. Let us also mention the optimal coupling approach of Salem (2020) using a WJ inequality,
which is also used in Del Moral and Tugaut (2019), which enables to recover the results in Durmus et al.
(2020). Thanks to an analysis of the relative entropy through the BBGKY hierarchy, building upon the
work of Lacker (2023), a result of uniform in time propagation of chaos was obtained, with a sharp rate
in N, in Lacker and Le Flem (2023). Finally, in the recent work of Delarue and Tse (2021), uniform in
time weak propagation of chaos (i.e observable by observable) was shown on the torus via Lions derivative.
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Notably, this result may extend to the case the McKean-Vlasov limit has several invariant measures, as in
the Kuramoto model for instance.

All the works mentioned above assume the interaction to be "sufficiently nice" (either gradient of a
convex potential, smooth, bounded, etc), and we will also consider an Lipschitz continuous interaction,
but not according to a random graph. Let us also quickly mention the case of singular interactions which
is, because of the various applications in biology, physics and others, also of great interest. Though some
recent works have obtained quantitative mean-field convergence for some singular potential (for instance
using entropy dissipation in Jabin and Wang (2018), modulated energy in Serfaty (2020), a mix of both in
Bresch et al. (2019), or BBGKY hierarchies in Bresch et al. (2022)), few still have obtained uniform in time
estimates. We mention the results dealing with singular repulsive interactions of the type — log |z| or |z| ™%,
0 < s < d— 2, in Rosenzweig and Serfaty (2023) using the modulated energy, dealing with the specific
case of the 2D vortex model in Guillin et al. (2024) (building upon the work of Jabin and Wang (2018)), or
dealing with repulsive singular interactions in dimension one in Guillin et al. (2023) using another type of
coupling method.

There again, the particles are not interacting according to a graph.

1.2. Assumptions and main result. Denote by dEN) = Zévzl 51-(7]]\-[) and d;(.N) = Zjvzl 53(-,7) the degrees
of vertex ¢. The family & () may be deterministic or random, in this second case we assume that it is
independent from the Brownian motions and from (Xé, wi)i=1,..,~ and that the following assumption is
verified almost surely (the constant C, being in that case random). These assumptions are similar to the

ones made in Delattre et al. (2016).

Assumption 1 (On the graph). The adjacency matrix £V) satisfies the following assertions for all N > 1.

1-1: There exists a positive constant C; such that

limsup Dy,y < Cy,

N—oo
where
(V) 5(N)
Drvg = ie{??.?,]\/} o (d}\f + d;v ) ’
1-2: There exists p € [0, 1] such that
d™
Ing = 16{8113.p,N} QNT -p N:;o 0.

Example 1.2.
e Regular graphs: if €V) defines a regular graph of degree d with dWN N—> p, then £V) satisfies
—00
Assumption | with ay = 1.
e Erdds-Rényi graphs: Let & Z(]]V) be a sequence of IID Bernouilli variables of parameter g with either
1 N
qN Nesoo por .y = O(logN
Qp = qiN and p = 1 in the second case.
e Community models: more generally, suppose that the whole population is divided in 7 sub-
populations of size m (so that N = rm), the graph structure being then defined by independent
NEED for k.k' e {1,...,r} and 4,5 € {1,...,m}. Suppose moreover that

7j
: . : . Nk
the intra-community interaction variables {i( i )

satisfying qiN = o(bg N), while the inter-community interaction variables §Z(]]V

). Then V) satisfies Assumption | with ay = 1 in the first case,

random variables & Z(

are of Bernoulli distribution with parameter gy

kK’ .
koK) are of Bernoulli

distribution with parameter q?\;k/ satisfying q]’i,’k/ = o(qn). Then, for r fixed and m — oo, & (V)
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satisfies Assumption | with ay = -~ and p = % For more details and the proof of this result see

an
Appendix A.

Remark 1.3. In the case of Erdés-Rényi graphs, non uniform in time propagation of chaos has been shown
to hold true for the weaker density condition Nqy — oo (that is diverging average degree), with careful
bounds relying in particular on the Grothendieck inequality, see Oliveira and Reis (2019); Coppini (2022),
that we did not manage to apply in this work. We believe that uniform in time propagation of chaos should
hold true when Ngy — oc.

Assumption 2 (On the restoring force). There exists a continuous function x : Rt +— R satisfying
liminf,_,~ &(r) > 0 such that

Va,y €RY, VweRY, (F(z,w) = F(y,w)) - (z —y) < —r(lz —y|)|z —y[*
In particular, this implies that there exist M > 0 and mp > 0 such that
Vm,y € Rda Yw € Rd/? (F(‘T’w) - F(y,W)) : (:C - y) < MF - mF|‘T - y|2

The added one-sided assumption on F' when compared to Delattre et al. (2016) is both classical (see
Durmus et al. (2020)) and necessary to ensure that the particles tend to come back to a compact set.

Example 1.4. Let us give some examples of functions F' satisfying Assumption 2. Let F'(z,w) = —V'(x)
in dimension 1 with :

o V(x)= 2” . then F satisfies Assumption 2 with k = 1.

o V(iz)=12 —%Z:then

T
(F(z) = F(y))(z —y) = — (2° —¢*)(z —y) + (x — y)?
=— (-’ (@@ +ay+y° 1)

<= v? (- -1).

. . . 2
Hence, F' satisfies Assumption 2 with x(z) = - — 1.
Likewise, we may consider disordered restoring forces such as F(x,w) = —2% + wz, provided w belongs

to a bounded subset of R, or F(z,w) = —wx? provided w is positive bounded from below.

A

Assumption 3 (On the interaction). I satisfies 3-1 below, and either 3-2 or 3-2-bis.
3-1: T: (z,w,y,w) = I'(z,w,y,w) is Lipschitz-continuous in (z,y) uniformly in w and w’:
JLr >0, Vz,y,t, s € RY, Vw, o' € Rd/,
‘F(m,w,t,w/) - F(y7w7 Saw,)‘ < LF (f(’x - y|) + f(’t - S’)) ’

where f is a function given below in (1.3) such that 2 + f(|x|) is equivalent to the usual L' distance
in R.
Furthermore, for simplicity, we have I'(0,0,0,0) = 0.
3-2: T is Lipschitz-continuous in w and w’ at (z,y) = (0, 0):

JLr > 0, Ywi, w),ws,w) € Rd/,
|F(0,w1,0,w/1) — I’(O,w270,wé)‘ <Lr (|w1 —wa| + W) — wé]) .
3-2-bis: T is bounded
Lo >0, Vz,y € RY, Vw,w' € RY, IT(z,w,y,w)| < Loo.

These are usual assumptions when proving mean-field limits using coupling methods. In particular,
Assumptions 2 and 3 imply strong existence and uniqueness for the solutions of both (IPS) and (NL).

Assumption 4 (On the initial distributions).
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4-1: The sequence of disorder (w;);—1,... n is IID of distribution v, satisfying
/d/ (|w|2 + |F(0,w)|2) v(dw) < Cgjs.
R

4-2: The random variables (X{);—1 _n are exchangeable, independent from the disorder (w;);—1
and satisfy

N

LA

E (|X5]) < oo.

4-3: The initial distribution py is a product measure with second marginal equal to v, i.e. po(dx, dw) =
py(dx)v(dw). Moreover there exists a positive constant C' such that

[ JaPatan) <.
R4
We may now state the main theorem.

Theorem 1.5. Consider Assumptions 1,2, 3 and 4. There exist positive constants cr, C , C that do not de-
pend on N and the graph such that for all t > 0 and all N > 1, provided Ly < cp/D N,g (recall that
limsupy_,o Dn,g < Cy),

- - anD
EW (1, p1) < C <e—ctEW1 (1d", po) + Lry/ % + Lrlyg + h(N)) , (1.2)

where h : N — R™ is an explicit decreasing function such that h(N) N—> 0 that only depends on the
—00

dimensions d and d’ and the second moment of p and py.

Remark 1.6. The constants cr, C, & could be made explicit using the constants appearing later in Lemma 1.11
and the constants of Theorem 1 of Fournier and Guillin (2015). See in fact the final result (2.6).

Remark 1.7. The smallness assumption on the Lipschitz coefficient of I" is natural to obtain uniform in time
propagation of chaos, as for large interactions the non linear limit may have several stationary measures (see
Herrmann and Tugaut (2010) for instance). Non uniqueness of the stationary measures of (NL) prevents
time-uniform estimate for the mean field limit, since on the other hand there is uniqueness of the stationary
distribution of (IPS). However we do not hope to get the sharp rate of convergence ¢ with the techniques
used in this paper.

Remark 1.8. We may write the order of magnitude of the rate function / depending on the dimension
1 __1
h(N) SN_g]ld—&-d’SQ + N d+d’ 1d+d’23'

In reality, this term is a consequence of the approximation of the measure p; by the empirical measure
given by /N independent random variables distributed according to py, as it is given by Fournier and Guillin
(2015). We notice that it could be improved, however at a cost, as there is a tradeoff between the speed
of convergence and the moments we impose on the initial condition. If we assumed that py admits a ¢-th
moment with ¢ > 2, we could show the following bound:

1
h(N) SN~ 214401 + N2 log(1 + N)lgra—s + N~ 37 Ly, g>3.

These bounds correspond to the sharp dependency in IV for the convergence of the empirical measure of IID
random variables toward its limit (see Fournier and Guillin (2015)).

Remark 1.9. If Assumption 3-2-bis holds instead of Assumption 3-2, the coefficients L1 within the paren-
theses in (1.2) are to be replaced by L.
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Remark 1.10. Although we do not write the calculations for the sake of conciseness, a similar theorem can
be proved if p = 0 for weaker assumptions on I'. In this case,there is no interaction term in the limit, and
we do not rely on a form of Law of Large Number to get the limit as /N goes to infinity, we only have to
show that the interaction term vanishes sufficiently fast. Thus we need the expectation of I" to be bounded
uniformly in time, which can be done under weaker assumptions and in particular doesn’t require a Lipschitz

assumption, as the convergence to 0 of E;V: 1 §§g) then yields the result of propagation of chaos.

1.3. Semimetric and preliminary results. As mentioned previously, we use a concave function to modify
the Euclidean distance in order to use the reflection coupling. Define

Rp:=inf{s >0 : Vr > s, s(r) >0},

Ry :=inf{s > Ry : Vr > s, s(s — Ro)r(r) > 8%},

o) imexp (= 4o [ w915 ).

and the functions

-1
where x_ = max(0, —x) and ¢ = ( 0R1 (I>(s)¢(s)_1ds) . Finally, define

f(x) = /0 " gttt (1.3)

Note that ¢ and g are positive non-increasing on R* and that ¢(r) = ¢(Ry) < 1 forr > Ry, and g(r) = %
for r > Rj. In particular, for » > R; we simply have f(r) = f(Ry) + w. The function f satisfies
moreover some useful properties gathered in the following Lemma, the proof of which can be found in

Durmus et al. (2020, Section 2).

Lemma 1.11 (Some properties of the semimetric). The function f satisfies the following properties :
o [ : Rt — RT is non-negative and increasing. Furthermore 0 < f'(x) < 1 forall x > 0.
e There exist ¢y, Cy > 0 such that for all x € R, we have cf|z| < f(|z|) < Cflxl.
o We have

Vr ERF\(Ri), F() — pra(nf () < — S (). (14

We now give a uniform in time moment bound for the non linear process (NL), relying in particular on
Assumption 2.

Lemma 1.12 (Uniform in time bound on the second moment). Consider Assumption 2, 3 and 4, and let
(X{)¢ be the unique strong solution of (NL). Assuming 2pCyLr < mp, there exists a constant Ca > 0
such that for all t > 0

E (|X7]?) < Co.
Proof: Using 1td’s formula on the function H (x) = %, we obtain
dH (X)) = Aedt + dM;, (1.5)
where (M), is a continuous local martingale and

A= X F(X2,w) +p/ XE T (X2, w,y,0) pi(dy, ds) + o*d.
Rdx R
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First, using Assumption 2,
X¢ - F(XPw) < Mp—mp | X¢)P+ X2 F(0,0).
Then, using Assumption 3
XiT (XY, w,y,0) =X (0 (X, w,y,&) — T (0,w,0,0)) + X - (' (0,w,0,0) —T(0,0,0,0))
<CyLr |X¢] (| X8| + yl) + Lr | X¢] (o] + |@]) -

Note that if Assumption 3-2-bis holds rather than Assumption 3-2, the term above can directly be bounded
by Loo|X{’|. Then

p/ X;;)F (X;J, w, yva)) ﬁt(dy7 d(‘_j)
R xR’
— 2 — — — —
<pCyLr | X7 "+ pCrLr | X¢| E X7 | + pLr [ X[ ] + pLrCyl | X7
where for this last term we used Assumption 4. Finally
EA; < Mp +0%d — (mp — 2pCyLr) B (| X¢|*) + B (|X2| (1F (0,w)] + pLrlw| + pLrCyll) ).
Assuming 2pC'y Lt < mp, using the inequality Vz,y € R, Va > 0, zy < O‘sz + %, we can ensure there
exist two non negative constant B and By such that

EA, < B — ByEH(X¥).

Consider the time evolution of  + 52! (H(Xg") — g—) using (1.5)

1
2

_ _ B
d <eBQt (H(th) - )) = ByeB?t <H(X,§") - B;) dt 4 P2 Aydt + P2t M.

Taking the expectation, remarking that M, is a martingale, we obtain

d . B
—E (e HXY) - =) <
dt <€ ( ( t) BQ)) =0

hence the result. U

2. Mean-field limit

Let ¢, ¢, : RT — R be two Lipschitz continuous functions satisfying, for some parameter § > 0, the
following conditions

1 ifx>6
Ve €RY, du(2)? + dp(2)? =1, ¢r<x)={0 it < 6/2 2.1)

These functions describe the regions of space in which we either use a synchronous coupling (¢s = 1 and
¢ = 0) and a reflection coupling (¢s = 0 and ¢, = 1). Ideally, we would like to use ¢, (x) = 1,0, but
the indicator function is not continuous, hence the reason we use a Lipschitz approximation.

Consider the initial conditions (X, w;);e (1,...,n} for (IPS), and consider N independent random variables
(X8)i=1,.. n identically distributed according to pj (recall Assumption 4). We know (see for instance Propo-
sition 2.1 of Peyré and Cuturi (2019)) that there exists at least one permutation 7 : {1,..., N} — {1,..., N}

such that
1Y 1Y 1 & e
(5 St s D) =y Lo

2.2)
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If there exists more that one such permutation we choose one of them uniformly. Up to renumbering, we
assume 7(z2) = i for all ¢ € {1,..., N}. The random variables (X, w;) are then IID with distribution py.
Using these initial conditions, we now consider the following coupling

dXj = F(Xj,w)di+ %N M (Xg’,wi,xg',wj) dt + 2o\ X] — Xi|)dBi
B +V20¢,(|X{ — X{|)dB, S 2.3)
dX{ = F(Xj,wi)dt+p [T(X] wi,z,w)pi(de,dw)dt + 20| X] — X{|)dB]
+V20(1d — 2¢i(e))) ¢, (|1 X} — X{|)dBY,

where
XX . =
¢ = Xxyy X XE£0,
: ot ,
0 if Xi— Xi = 0.
and (B?')Z,f1  and (B?) are sequences of independent Brownian motions, and p; is the distribu-
=L, i=1,..

tion of the non linear diffusion (NL). In particular, using (2.1), Levy’s characterization of Brownian motion
ensures that, with a slight abuse of notations, (qﬁs(]Xf — Xi)dBi + ¢,(|X} — Xﬂ)dB;) Ny (and
(]

€1,

likewise (¢S(|Xti — X{|)dBi + (Id — 2ei(eD)T) e, (| X} — Xf])dBi) ( N}), are IV independent Brow-
ief{l,...,

nian motions. This implies that ()_( ‘ wi)i are NV independent copies of the same diffusion process and thus

Pt = Law(th,wl)': = Law (XY, wy). 4
Let us denote Z; = X} — X/. The following lemma concerning the dynamics of | Z{|, which can be found
in Durmus et al. (2020), relies on dominated convergence and the fact that ¢, (x) is zero around x = 0.

Lemma 2.1 (Lemma 7 of Durmus et al. (2020)). Forallt > 0andalli € {1,...,N},
d|Zi| = (F (X}, w;) — F (X}, w;)) - eidt + Aldt + 2v/20¢,(|Z}|)éi - dB;,

where (AL); is an adapted stochastic process such that
an o ; ;
A; < WN Z@(g)F (X;,wz-,Xt],wj> —p/F(XtZ,w,;,x,w)ﬁt(d:r,dw) .
j=1

Applying Itd-Tanaka’s formula, as the function f is C! and piecewise C? and concave, and relying on
Lemma 2.1 we obtain

df (|Zi|) = £ (|12}]) ((F (X{,wi) — F (X{,wi)) - e; + Ay) dt+4f" (| Z{]) o*$2(| Zi|)dt +d Dy, (2.4)

where, with a slight abuse of notation, f " denotes the left derivative of f and f” its almost everywhere defined
second derivative, and (M} ), is a continuous martingale (recall f’ is bounded). Let us define w : R — RT
by

w(r) := sup sk_(s).
s€[0,r]

Relying on Assumption 2, (1.4) and (2.1) we then get the following inequality:
(F (Xi,wi) = F (X3 wi)) - eif (|2]) + 47 (|122]) o*07( 23]
=1z w (122]) £ (128]) + 41" (122]) o*67(] Z1))
<—2c0f (|Zi]) 67(|Zi]) — | Zi| s (|1 22]) £ (| Z1]) 621 Z1))
< —2ca’f (|Z{]) $2( |ZZ\ + w(d)
§—2ca2f(‘Zt|) §) 4 2co? £(9).
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We deduce that there exists an adapted process K satisfying
K} < w(8) + 20%f(5),
and such that for all & € [0, 202¢]

d(ePr R p (| ZE])) =@ =Ptar (| ZE]) + (2c0? — R)eP" Pl f (| Z)) dt
N (| ) 4 K+ A+ g, 2s)

with A% given in Lemma 2.1. The next step is to deal with A%. We have
an N
N N i _
SN (X i, X wy) — / T(X, wi, 2,0)py(da, dw)
o N . . . .
< FN ngj\[) (F (XZ7wing7wj) -T (XtZawiathij>)
an v ()

N N i o i _

+ WZ&'J (F (XfawuXZ,wj) —/F(vawi,xyw)m(dﬂ?adwo

=Ii;+ I2,z' + I3,i-

We deal with each of these three terms individually.
Dealing with I; ; : Lipschitz continuity of I'. Using Assumption 3,

N
b =2 S (1 (K X ) 1 (K X))
j=1
N .
e Z (70— Xil) + 77 - X))

N
i O Lra j
=Lef(IZiD 55 D65 + T3 2 &y f(1ZHD.

=1 =1

We then deduce, relying on Assumption 1,
N
Z <¥
- N
=1 7

Dealing with I5 ; : some law of large numbers. Let us denote

Mz

an Ny , Lr al ay 5Ny _ LrDn al
i j 7 g i
1f(’ZtDWdi +sz:;f(’th|)Ndj < Z:fﬂZtD

[(z,w,y,) =T (m,w,y,w’) — /F(z,w,z,d))ﬁt(dz,d(b).
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: - (V) (V2 _ ()
After expansion, we obtain (recall that §;’ ;€ {0,1} so that & ; =& ;» and that we have made the
hypothesis 5%-\[) =0)

N 2
a _ . .
NN er (X;,wi,Xg,wj)

OC?V N (N) 2
== Z §Z F(Xz,wz,Xt,w])

2 N
(6] N — . _
+FJ\2[ Z fz(yj)fl(k‘)r (Xt7wZ7Xt’w])F(th>wiaX1{cvwk) .
Jk=1,5,k#i,57k

The expectation of the last term conditioned to (X},w?) is equal to 0, and thus, relying in particular on
Assumption 3-2 and Lemma 1.11,

E(IQZX;,(UZ)
o2, N 1/2
N —
( Z gz(] (mezvaW]) ‘Xtawz
Jj=1,j#i
N 1/2
2 _.
( S o ‘r (Xt,wZ,Xt,wj)—r(o,w,-,o,wj)‘ ‘X;,wi
Jj=1,j#i
ag N N 9 B 1/2
B S | [ (T 0w0.0) = D00 0.0) (o )| [
J=1j#i
2 N 1/2
+E % Z 51(7];7) /(F(O,wi,o,w)—F(Xf,wijx,w))pt(da:,dw) ‘Xti,wi
J=1j#i
1/2 12
2LECTON ) ([ v _ AL20% (v i
<2 de( )(\X 2+ / \x|2pt<dx,dw>)] +[ —L N / !w\zpt(dm,dw)] .

We deduce, recalling Lemma 1.12 and using the inequality NdEN) /N < Dpg,

5 D
B (1) < 20p(VACCY 1 Ol 2.

Remark that if T" satisfies Assumption 3-2-bis, then we simply have

D
E (I2) < 2Loo/ w-

Dealing with I3 ; : convergence of the graph. We immediately get

E(I3;) <IngE <‘/F()_(Z,wi,x,w)pt(dx,dw)b ,
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and thus, if Assumption 3-2-bis holds, this directly implies E (I3 ;) < LooIn 4. Otherwise, if Assumption 3-
2 holds, we obtain

E (‘/F(Xf,wi,m,w)pt(dx,dw)b <E </ ‘F(Xti,wi,a;,w) — F(O,wi,O,w)‘ pt(dm,dw)>
+E (/ (0, w3, 0, ) — T(0,0,0,0)| 4(dz, dw)>
<2Lr (CsE | X{| + E |wi]) .
So, using Lemma 1.12, we get
E(Is) < 2L (C4G% + 63 Ing.
Conclusion. Recalling (2.5) and choosing k = Lr D , we obtain
d (8(2U2C—LFDN’g)tf(‘ZZD) _ 6(2a2c—LFDN,g)t[~(Zdt + e(2o2c—LFDN,g)thti,

where there exists a constant Cy, depending on the parameters as well as possibly on pg, but that do not
depend on N and on the graph, such that

N
1 SRR JanDn,g 2
Then

o(20%c—LrDy o)t N 1 X
E( 312 )— ( S (1% )
=1

(20’0 LrDp g)t -1 OZN N
<° L e\l A § 202
< S LDn (co p< +Ing | +w(0) +20%f(0) |

1.€.

1M
E(N;m—xg\)

Cfe (20’ c— LFDNg

)

1 aNDNg 2
L ——2= 4] 2
c1(20%c— LiDny) (Co r <\/ N + N,g> +w(d) + 20 cf(5)>

Thus, denoting /¥ the empirical measure associated with the system of independent non-linear particles
(X}, w1), ..., (X}, wn)), we obtain, for cr = o?cand Lt < cr/Dy,g,

N vy Creoet 1 o i i
EWr (g s fiy ) < y E N;‘Xo X5

- (COLF (\/N + IN79> +w(d) + 20 cf(5)> .
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Notice that
1 N
Wi (ud’, 1)) <N D Oy >N Z wz)>
~  min iZIXi ~ X7 4y — |
T permutation N =1 0 0 (@)
1 N . .
i=1

as both terms to minimize are minimal for 7 the identity. By having 6 — 0, we thus have

—o2ct

C

1 anDpy 4
CoL ——= ] . 2.6
+ cro% ( oLr (\/ N + N,g>> (2.6)

Since ((X},w1), ..., (X}¥,wn)) are N independent random variables with law p; by construction, and since
P+ admits a second moment, Theorem 1 of Fournier and Guillin (2015) yields the existence of a constant C,
depending only on the dimensions d and d’, such that

N~3+N~3 ifd+d =1,
EW, (5, 51) <C (Cais +C2) " { N=3log(1+ N)+ N3 ifd+d =2,
N=% + N~&7 ifd+d > 3.

. . . 11 __1
The convergence rates could be improved (with respective rates N2, N~ 2 log(1 + N) and N d+d") pro-
vided we can prove uniform in time bounds on a moment of order ¢ > 2 for p;. This can be done, but
requires a similar great moment assumption on the initial distribution pg.

Appendix A. Graph estimates

Lemma A.1. Let us fix an integer r, consider an integer m, define the total size of the population N = mpr,

and define independent random variables §§f;{’k’k,) fork, k' € {1,...,r}andi,j € {1,...,m} such that
f(Nkk are of Bernoulli distribution with parameter qi}k = qn satisfying QLN =0 (%), while for

k#K ¢ N BED are of Bernoulli distribution with parameter q]]i;k/ satisfying qf\;kl = o(qn). Then, defining
(Nk) (N kK AN) (N .k
d Zk’ 1 Z] 1 gz and dz Zk’ 1 Z] 1 §] ’

1 dZ(N,k) dZ(N,k)
su N + N < 400 a.s.,

limsup sup
m—00 ke{l,...,r}ie{l,..m} AN

and moreover
d™MF

i a.s

0.

sup sup Naow 7

ke{l,...,r}ie{l,...,m}

N—oo

Proof: We only prove the second estimate, the first one being a consequence of the second claim and the

fact that d,gN’k) and CZEN’k) have the same distribution. Remarking that the independent random variables
Kk’

/ / / 2
Z(i\fk:k) - N;N (gz(lj\/kk) _ qf;v’k> satisfy ‘Z (N, k' )’ <y and E UZZ(]JVM )‘ } < ]‘\ng o Bernstein




788 Pierre Le Bris and Christophe Poquet

inequality leads to

p ZZ (kK)o < 2exp _% NQNt2

k'=1j=1 ZZ’IWE\?(;VN—F?,
Taking ¢ = le\?g N for some positive constant ¢ and remarking that g Nk < gy and % CJI\?{?N < 1for N
large enough and we get
log N 1 log N c
P ZZZ(N“ O <2exp | - - < 2N
k=1 j=1 Ngn 2 may 1 [clogN
i= Zk’:l Ngn + 3 Ngn
So
(
clog N 1<
P sup sup <2N 1,
<ke{1, Sryie{l,..m} NQN k,Z:l Nagn Ngn )
K,k
and we conclude by applying Borel-Cantelli Lemma, taking ¢ large enough and noting that > ,,_; WJL\(,];VN
converges to % as N goes to infinity (recall that qjk\}k = qn). O
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