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Abstract. In this article we study a one dimensional model for a polymer in a poor solvent: the
random walk on Z penalized by its range. More precisely, we consider a Gibbs transformation of
the law of the simple symmetric random walk by a weight exp(−hn|Rn|), with |Rn| the number
of visited sites and hn a size-dependent positive parameter. We use gambler’s ruin estimates to
obtain exact asymptotics for the partition function, that enables us to obtain a precise description
of trajectories, in particular scaling limits for the center and the amplitude of the range. A phase
transition for the fluctuations around an optimal amplitude is identified at hn ≍ n1/4, inherent to
the underlying lattice structure.

1. Introduction of the model and main results

Consider a simple symmetric random walk (Sk)k≥0 on Zd, d ≥ 1, starting from 0, with law denoted
P. For h > 0, we define the following Gibbs transformation of P, called the polymer measure

dPn,h(S) =
1

Zn,h
e−h|Rn(S)|dP(S) ,

where Rn(S) :=
{
S0, . . . , Sn

}
is the range of the random walk up to time n and | · | is the cardinal

measure. The normalizing quantity

Zn,h = E
[
e−h|Rn(S)|

]
is called the partition function and is such that Pn,h is a probability measure on the space of
trajectories of length n.

The random walk is the "correct" mathematical tool to study polymers, which we briefly explain
here. In physics, a polymer is a long chain of n comparatively small molecules called monomers,
which can be modeled as a simple path of given length n on Zd. In this model, the random variable
Si is the location of the i-th monomer and the polymer is the random walk trajectory with law Pn,h.
To model physical interactions of the polymer with its environment and study typical behavior,
the usual tool is to define Pn,h as a Gibbs measure on this set of paths. The reference measure
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from which we define the Gibbs transformation is taken to be uniform over these path, meaning the
random walk law.

In any dimension d ≥ 1, the asymptotics for the log-partition function are known since Donsker
and Varadhan (1979). These asymptotics strongly suggest that a polymer of length n will typically
fold in (and fill up) a ball of radius ρn

1
d+2 for some specific constant ρ = ρ(d, h). This has been

proved by Bolthausen (1994) in dimension d = 2, but only much more recently in dimension d ≥ 3,
by Berestycki and Cerf (2021) and Ding, Fukushima, Sun and Xu (see Ding et al., 2020). More
precisely, for h = 1 (easily generalized to any h > 0), they prove that there exists a positive ρd,
which only depends on the dimension d, such that for any ε > 0,

lim
n→∞

Pn,1

(
∃x ∈ Rd, B

(
x, (1− ε)ρdn

1
d+2

)
∩ Zd ⊂ Rn ⊂ B

(
x, (1 + ε)ρdn

1
d+2

))
= 1 ,

where B(x, r) is the d-dimensional Euclidean ball centered at x with radius r.
In dimension d = 1, this is much easier since the range is uniquely determined by its two endpoints

(and always fills completely the one-dimensional ball). This allows for more explicit calculations
using mostly gambler’s ruin estimates. In particular, one easily derives that n−1/3|Rn| converges to(
π2

h

)1/3 in Pn,h-probability.

1.1. Outline of the paper. In the current work, we focus only on the case of dimension d = 1.
Also, we allow the penalization intensity to depend on the length of the polymer, meaning h = hn
now depends on n. We exploit gambler’s ruin estimates to their full potential and derive exact
asymptotics for the partition function (not only for the log-partition function). Afterwards, we will
be able to prove a scaling limit (actually we prove a local limit theorem) for the joint law of the
center Wn and the amplitude Tn of the range:

Tn := max
k≤n

Sk −min
k≤n

Sk = |Rn| − 1, Wn :=
Tn
2

+ min
k≤n

Sk =
1

2

(
max
k≤n

Sk +min
k≤n

Sk

)
.

For the sake of the exposition, let us consider the case

lim
n→∞

n−γhn = ĥ ∈ (0,+∞) , for some γ ∈ R . (1.1)

Some results are already presented in Berger et al. (2022a) which considers a disordered version of
the model:

(i) if γ < −1
2 then Pn,hn converges to P in total variation;

(ii) if γ ∈ (−1
2 , 1) then (nπ

2

hn
)−1/3Tn converges to 1 in Pn,hn-probability;

(iii) if γ > 1 then Pn,hn is concentrated on trajectories visiting only two sites.
Since cases (i) and (iii) are degenerate, we focus on the case γ ∈ (−1

2 , 1). In this paper, we give
another proof of the convergence (nπ

2

hn
)−1/3Tn → 1 and we additionally identify the fluctuations of

Tn − (nπ
2

hn
)1/3. We find that a phase transition occurs at γ = 1

4 for the fluctuations:

(i) if γ < 1
4 then the fluctuations, normalized by ( n

h4
n
)1/6, converge to a Gaussian variable;

(ii) if γ > 1
4 then the range penalization is strong enough to collapse the range on (nπ

2

hn
)1/3 in

the sense that the fluctuations live on a finite set (of cardinality 1, sometimes 2).

We will also prove that (nπ
2

hn
)−1/3Wn converges to a random variable with density

π
2 cos(πu)1[− 1

2
, 1
2
](u) with respect to the Lebesgue measure and is independent of the fluctuations.

This type of results appears to be folklore for confined polymers, as the density is the eigenfunction
associated with the principal Dirichlet eigenvalue of the Laplacian on [0, 1] (see e.g. den Hollander
(2009, Ch. 8)), but we are not aware of a proof written in detail (at least for the random walk
penalized by its range).
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Notations. In the rest of the paper we shall use the standard notations: as x→ a, we write g(x) ∼
f(x) if limx→a

g(x)
f(x) = 1, g(x) = ō(f(x)) if limx→a

g(x)
f(x) = 0, g(x) = Ō(f(x)) if lim supx→a

∣∣ g(x)
f(x)

∣∣ <
+∞ and f ≍ g if g(x) = Ō(f(x)) and f(x) = Ō(g(x)). When a is not specified, these notations are
used with x→ +∞.

We also extensively use the following notation: for A an event, we denote

Zn,hn(A) := E
[
e−hn|Rn(S)|1{S∈A}

]
,

so that in particular Pn,hn(A) = 1
Zn,hn

Zn,hn(A).

1.2. Main results. The following two theorems summarize our results, the first being the main result
regarding the asymptotic behavior of (Tn,Wn) and the second being asymptotics for Zn,hn that have
a use of their own.

We define the following quantities, that will be used throughout the paper:

T ∗
n = T ∗

n(hn) :=

(
nπ2

hn

)1/3

, an = an(hn) :=
1√
3

(
nπ2

h4n

)1/6

=
1√
3nπ2

(T ∗
n)

2. (1.2)

Note that lim
n→∞

an = +∞ if and only if lim
n→∞

n−1/4hn = 0.

Theorem 1.1. • Assume that hn ≥ n−1/2(log n)3/2 and lim
n→∞

n−1/4hn = 0; in other words, γ ∈
(−1

2 ,
1
4) in (1.1). Then under Pn,hn, we have the following convergence in distribution(

Tn − T ∗
n

an
;
Wn

T ∗
n

)
(d)−−−−−→

n→+∞
(T ,W) ,

where the random variables T and W are independent with T ∼ N (0, 1) and W with density given
by π

2 cos(πu)1[− 1
2
, 1
2
](u).

• Assume that lim
n→∞

n−1/4hn = +∞ and lim
n→∞

n−1hn = 0; in other words, γ ∈ (14 , 1) in (1.1).
Then,

lim
n→∞

Pn,hn

(
Tn − ⌊T ∗

n − 2⌋ ̸∈ {0, 1}
)
= 0 .

Also, under Pn,hn we have the convergence in distribution Wn
T ∗
n

(d)−−→ W.

Remark 1.2. The term an = 1√
3nπ2

(T ∗
n)

2 in Theorem 1.1 arises naturally as a Taylor expansion
coefficient in the exponential part of the partition function after injecting gambler’s ruin formulae,
see Section 1.4 below.

The assumption that hn ≥ n−1/2(log n)3/2 is due to technicalities in the proof of Theorem 1.6
below and gambler’s ruin formulae.

It should be noted that when n−1/4hn → 0, we have an → +∞, while we have an → 0 if
n−1/4hn → ∞. The condition hnn

−1 → 0 ensures that T ∗
n → +∞, meaning the range is still

growing with n.

Theorem 1.3. We have the following exact asymptotics:
• Assume that hn ≥ n−1/2(log n)3/2 and lim

n→∞
n−1/4hn = 0; in other words, γ ∈ (−1

2 ,
1
4) in (1.1).

Then, as n→ ∞,

Zn,hn = (1 + ō(1))
16

√
2√

3π

(cosh(hn)− 1

hn

)√
n exp

(
− 3

2
hnT

∗
n

)
.
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• Assume that lim
n→∞

n−1/4hn = +∞ and lim
n→∞

n−1hn = 0; in other words, γ ∈ (14 , 1) in (1.1).
Define ton = T ∗

n − ⌊T ∗
n⌋ the decimal part of T ∗

n . Then, as n→ ∞,

Zn,hn =
16

π4/3

(cosh(hn)− 1

h
1/3
n

)
n1/3e−

3
2
hnT ∗

n

∑
t∈{0,1}

exp
(
− Φn(t)

n

(T ∗
n)

4
(1 + ō(1))

)
. (1.3)

with

Φn(t) :=
π4

12
+

3π2

2
ςn(t) , ςn(t) := (t− ton)

2 − 2π2

9

t− ton
T ∗
n

1{0,1}(t) .

Note that lim
n→∞

n
(T ∗

n)
4 = +∞ means ō( n

(T ∗
n)

4 ) could still diverge.

Remark 1.4. If we assume that there is a δ > 0 such that for all n large enough we have ton ≤ 1
2 − δ,

then Pn,hn

(
Tn−⌊T ∗

n − 2⌋ = 0
)
→ 1. If on the other hand ton ≥ 1

2 + δ we have Pn,hn

(
Tn−⌊T ∗

n − 2⌋ =
1
)
→ 1 instead. This is due to the fact that with these assumptions, one of the terms in (1.3)

dominates the other.

For the sake of completeness, we add the following result concerning the critical case lim
n→∞

n−
1
4hn =

ĥ ∈ (0,+∞).

Proposition 1.5. Suppose that lim
n→∞

n−1/4hn = ĥ ∈ (0,+∞), so in particular we have limn→∞ an =

π1/3
√
3ĥ2/3

=: a. Then, as n→ ∞, we have

Zn,hn = (1 + ō(1))
16

π4/3

(cosh(hn)− 1

h
1/3
n

)
n1/3e−

3
2
hnT ∗

nθn(a), with θn(a) :=
+∞∑

t=−∞
e−

ςn(t)

2a2 .

Furthermore, for any integers r ≤ s, as n→ ∞ we have

Pn,hn

(
r ≤ Tn − ⌊T ∗

n − 2⌋ ≤ s
)
= (1 + ō(1))

1

θn(a)

s∑
t=r

e−
ςn(t)

2a2 .

1.3. Range’s endpoints and confinement estimates. Let us now state some estimates for the prob-
ability that the range of a random walk is exactly a given interval. The proof is postponed to
Section 4 and follows from gambler’s ruin estimates that can be found in Feller (1968, Chap. XIV).

Let x, y be two non-negative integers and denote by Ey
x(n) the following event

Ey
x(n) :=

{
Rn = J−x, yK

}
=

{
M−

n = −x , M+
n = y

}
,

where we also introduced M−
n := mink≤n Sk, M+

n := maxk≤n Sk, and used the standard notation
Ja, bK = [a, b] ∩ Z. We also define the following function g, that encodes the exponential decay rate
of confinement probabilities inside a strip:

g(T ) := − log cos

(
π

T

)
=

π2

2T 2
+

π4

12T 4
+ Ō(T−6) as T → ∞ . (1.4)

The main result used in the rest of the paper is the following. It is based on sharp gambler’s ruin
estimates, see Lemmas 4.2-4.4 in Section 4.

Theorem 1.6. For any positive T = T (n) → +∞ with n ≥ 1
4T

2 log T , we have:

lim
n→∞

sup
x,y∈N
x+y=T

∣∣∣∣P
(
Ey

x(n)
)

Θn(x, y)
− 1

∣∣∣∣ = 0 , (1.5)
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where we defined the function Θn(x, y) for x+ y = T as

Θn(x, y) :=



4

π
sin

(
π(x+ 1)

T

)
e−g(T+2)n if

n

T 3
→ +∞;

4

π
(eαπ

2 − 1)

[
eαπ

2
sin

(
π(x+ 1)

T

)
− sin

(
πx

T

)]
e−g(T )n if

n

T 3
→ α ∈ (0,+∞);

2π3n2

T 6
sin

(
πx

T

)[
2 +

π

T tan xπ
T

+
T 2

n

1− 2x
T

π tan xπ
T

]
e−g(T+1)n if

n

T 3
→ 0 .

Remark 1.7. The condition n ≥ 1
4T

2 log T is a technicality required to neglect small gambler’s
ruin contributions. In the proof of Theorem 1.6 we have two terms that appear: a Ō(T−2) and a

Ō(e−
nπ2

T2 ). This condition helps getting rid of the second term which is used to get the definitive
asymptotics given by Θn(x, y). In Theorem 1.1, the condition hn ≥ n−1/2(log n)3/2 ensures that
1
4(T

∗
n)

2 log T ∗
n ≤ n so we can apply Theorem 1.6.

Note that 1
4(T

∗
n)

2 log T ∗
n ≤ n also means that in Theorem 1.6, since the range up to time n is

typically of size
√
n, the events Ey

x(n) that we consider are rare events for the random walk.

Remark 1.8. For the rest of the paper we will prefer to write P
(
Ey

x(n)
)
= (1 + ō(1))Θn(x, y) with

ō(1) uniform in x, y and only depending on T = x+ y, in the sense of (1.5).

We can summarize these results in a more compact way, if we exclude the case where x
T is close

to 0 when n
T 3 → 0 (more precisely if x ≲ T 3

n = ō(T )):

P
(
Ey

x(n)
)
= ψ

(nπ2
T 3

)[
sin

(
πx

T

)
+ ō(1)

]
e−g(T+2)n, with ψ(r) :=

4

π
(1− e−r)2. (1.6)

Here, the ō(1) is uniform in x, y and depends only on T = x + y satisfying n ≥ 1
4T

2 log T , in the
spirit of (1.5). To get (1.6), we have used in particular that g(T +2)n− g(T )n ∼ −2π2n

T 3 as T → ∞,
which converges to 2απ2 if limn→∞

n
T 3 = α ∈ [0,+∞).

In what follows, we will always use (1.6) instead of Theorem 1.6 when it is possible. The con-
tribution to the partition function of the trajectories in Ey

x(n) with x ≲ T 3

n (for which (1.6) is not
valid) are examined separately.

Remark 1.9. Whenever x = 0 (or y = 0 using symmetry) we have the same Theorem 1.6 applied to
x = 0, except when n

T 3 → 0 in which case we take instead

Θn(0, T ) = Θn(T, 0) =
4nπ

T 3
sin

(
π

T + 2

)
e−g(T+1)n . (1.7)

This will not be significant starting from Section 2.2 as it only consists of two not-so-peculiar range
configurations among the many configurations in the partition function. We refer to Section 4.2.4
for the proof of this claim.

Let us stress that one easily deduces from Theorem 1.6 the following statement, leading to the
asymptotic independence in Theorem 1.1, as well as the convergence in distribution of Wn

T ∗
n

to W.

Proposition 1.10. Let (tn)n≥1 be any sequence of integers such that tn → +∞ and n ≥ 1
4 t

2
n log tn.

Then, conditioning on Tn = tn, Wn
tn

converges in distribution to W.
More precisely, we have the following local limit convergence: uniformly for w such that 2w ∈

J−tn, tnK, or 2w ∈ J−(1− ε)tn, (1− ε)tnK for some ε > 0 if nt−3
n → 0, we have

P
(
Wn = w |Tn = tn

)
=

π

2tn

[
cos

(
wπ

tn

)
+ ō(1)

]
as n→ ∞ .
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Note that this proposition allows us to focus our study on Tn instead of (Tn,Wn).

Proof : For −1
2 ≤ a ≤ b ≤ 1

2 , we get thanks to (1.6) that

P
(
a ≤ Wn

tn
≤ b ;Tn = tn

)
=

∑
x+y=tn

2atn≤y−x≤2btn

P
(
Ey

x(n)
)

=
4

π

(
1− e

−nπ2

t3n

)2
e−g(tn+2)n

∑
2atn≤2w≤2btn

[
cos

(
wπ

tn

)
+ ō(1)

]
,

where we have set w = w(x, y) := y−x
2 . Similarly,

P
(
Tn = tn

)
=

4

π

(
1− e

−nπ2

t3n

)2
e−g(tn+2)n

∑
−tn≤2w≤tn

[
cos

(
wπ

tn

)
+ ō(1)

]
.

These sums being Riemann sums, we therefore end up with

P
(
a ≤ Wn

tn
≤ b

∣∣∣Tn = tn

)
=

∑
atn≤w≤btn

[
cos(wπ

tn
) + ō(1)

]
∑

−tn≤2w≤tn

[
cos(wπ

tn
) + ō(1)

] −−−→
n→∞

π

2

ˆ b

a
cos(πu) du .

Taking a = b = w/tn, the denominator is a Riemman sum and thus

P
(
Wn = w |Tn = tn

)
=

t−1
n cos(wπ

tn
) + ō(t−1

n )

t−1
n

∑
−tn≤2w≤tn

[
cos(wπ

tn
) + ō(1)

] =
π

2tn

[
cos

(
wπ

tn

)
+ ō(1)

]
.

When n
T 3 → 0, recall that the formula (1.6) fails for |M−

n | = ō(tn). By taking Wn = w with
2w ∈ J−(1 − ε)tn, (1 − ε)tnK we have |M−

n | ≥ εtn and thus (1.6) can be applied. Thus, with the
same proof we get the result and since ε > 0 is arbitrary we get the convergence in distribution. □

1.4. Some heuristics. Let us present some heuristics for obtaining the asymptotics of the partition
function, and explain how the quantities T ∗

n and an (recall (1.2)) appear. We can decompose the
partition function as

Zn,hn =
∑
x,y≥0

e−hn(T+1)P
(
Ey

x(n)
)
,

where we have set T = T (x, y) = x+y. In view of Theorem 1.6, we have P
(
Ey

x(n)
)
= un(x, y)e

−g(T )n

with g(T ) = (1 + ō(1)) π2

2T 2 . Hence, the main contribution to the sum will come from x, y with T
that is close to minimizing the function

ϕn(T ) := hnT +
nπ2

2T 2
. (1.8)

Then, notice that ϕn is minimal at T = T ∗
n :=

(
nπ2

hn

)1/3 (recall (1.2)) and that

ϕn(T
∗
n) =

3π1/3

2
n1/3h2/3n =

3

2
hnT

∗
n .

Let us now factorize eϕn(T ∗
n) (and ehn) in the sum above, to get that

e
3
2
hnT ∗

nehnZn,hn ≈
∑
x,y≥0

un(x, y) exp
(
− (ϕn(T )− ϕn(T

∗
n))

)
.

Now, since ϕ′n(T ∗
n) = 0, we have ϕn(T ) ≈ ϕn(T

∗
n) +

1
2(T − T ∗

n)
2ϕ′′n(T

∗
n), with ϕ′′n(T

∗
n) =

3nπ2

(T ∗
n)

4 = 1
a2n

(recall (1.2)). In the sum above the main contribution therefore comes from values of T that are
such that ϕn(T )− ϕn(T

∗
n) is at most of order 1, that is with T − T ∗

n = Ō(an).
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1.5. Further comments on the results. Theorem 1.1 states that asymptotically, the polymer behaves
as a random walk whose range’s size Tn fluctuates around the optimal T ∗

n =
(
nπ2

hn

)1/3. If hnn−1/4 → 0

(weak penalization), then the fluctuations are Gaussian at a scale an = 1√
3

(
n
h4
n

)1/6. On the other
hand, if hnn−1/4 → ∞ (strong penalization), then the fluctuations vanish and Tn is equal to either
⌊T ∗

n⌋ − 2 or ⌊T ∗
n⌋ − 1.

Recall that if lim
n→∞

n−1/4hn = 0 then lim
n→∞

an = +∞, whereas if lim
n→∞

n−1/4hn = +∞ then
lim
n→∞

an = 0. Theorem 1.1 states that an is the scale of the Gaussian fluctuations of Tn around
T ∗
n , with an → 0 corresponding to zero fluctuation (after a slight correction on T ∗

n). The condition
lim
n→∞

n−1hn = 0 ensures that lim
n→∞

T ∗
n = +∞ meaning that in both cases, the range grows with n

while the fluctuations undergo a phase transition at hn ≍ n1/4.
In both cases, the relative position of the center of the range is asymptotically independent of its

size, with distribution given by the density π
2 cos(πu)1[− 1

2
, 1
2
](u), conjectured or discussed in previous

works (see den Hollander (2009, Theorem 8.3) for example) but with no concrete proof (to the best
of our knowledge).

1.5.1. Continuous analogue of the model. One can easily see the similarities between this polymer
model and the study of the Brownian motion penalized by the amplitude of its trajectory. For a
Brownian motion β, define |CT | := | {βt : t ≤ T} | its amplitude at time T (here | · | is the Lebesgue
measure). Then, Donsker and Varadhan (1975) proved that

lim
T→∞

1

T 1/3
logE

[
e−ν|CT |

]
= −3

2
(νπ)2/3 .

Schmock later expanded on this result in Schmock (1990) and obtained that the associated Gibbs
measures PT,ν(dω) = e−ν|CT |W(dω) (with W the Wiener measure) converge weakly to a measure
P∞,ν given by

P∞,ν(A) =

ˆ cν

0

π

2cν
sin

(
πu

cν

)
Pu−cν ,u(A) du ,

with cν = (π2/ν)1/3, where Pu−cν ,u denotes the path measure of a Brownian taboo process with
taboo set {u− cν , u}. In other words, P∞,ν is a mixture of taboo processes Pu−cν ,u, which correspond
to the actual diffusion process conditioned to stay in an interval of length cν and upper edge u;
additionally, the mixing measure selecting the upper edge u is identical to W in Theorem 1.1 (if one
selects the center of the range rather than the upper edge). This is therefore completely analogous
to our Theorem 1.1.

However, because there is no underlying lattice, the continuous case should not display a transition
for the fluctuations at ν = νT ≍ T 1/4: when limT→∞ T−1/4νT = +∞, fluctuations become ō(1)
but still remain Gaussian after a proper scaling. Let us also stress that in the continuous case,
well-known results such as Lévy triple law (see Schilling and Partzsch, 2014, Theorem 6.18) allow
for relatively simple computations of the law of the endpoint βT for a large T conditioning on the
range’s endpoints — which Theorem 1.6 does not provide in our setting, we only get the position
of the starting point relative to the range, see Proposition 1.10. Obtaining a result for the starting
and endpoint for our model would require the joint law of (M−

n ,M
+
n , Sn) or a study based on local

times of the polymer, which are both beyond the scope of this paper.

1.5.2. Other related models. Related models for self-interacting polymers have been studied in the
literature these past years. We mention here two of these models and their recent advancements.

First, one can consider a disordered version of the random walk penalized by its range, i.e. the
case where the penalization by the range is perturbed by a random environment. Take a collection
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of i.i.d variables (ωz)z∈Z and consider the random polymer measure

dPω,β
n,h(S) =

1

Zβ,ω
n,h

exp
( ∑

z∈Rn(S)

(
βωz − h

))
dP(S) ,

in particular Pn,h = Pω,0
n,h. This quenched model was studied in Berger et al. (2022a,b); Huang (2019),

for size-dependent parameters hn and βn. In dimension d = 1, Berger et al. (2022a) finds a wide
range of behaviors for the polymer depending on the sign and the growth speed of the parameters
hn, βn. However, several questions remain open, such as determining the location and fluctuations
of the range (in the spirit of Theorem 1.1) in a regime where the range size (properly rescaled)
converges to a non-random quantity — we are currently investigating this question Bouchot (2024).

Another related model is the charged polymer, where charges are attached to the different
monomers and interact with each other, see den Hollander (2009, Chapter 8) for an overview. Take
i.i.d. random variables (ωk)k∈N, and consider the following quenched Gibbs measure on random
walk trajectories

dPω
n,β(S) =

1

Zω
n,β

exp
(
− β

∑
1≤i<j≤n

ωiωj1{Si=Sj}

)
dP(S) .

Some recent papers Berger et al. (2018); Caravenna et al. (2016); Athreya et al. (2019) are dealing
with the annealed version of the model, that can be written in the following form

dPann
n,β (S) =

1

Zann
n,β

exp
(
−

∑
x∈Zd

gβ(ℓn(x))
)
dP(S) ,

where ℓn(x) =
∑n

i=1 1{Si=x} is the local time at site x and where gβ is a function that depends on
β and on the distribution of ω. This model has been shown to undergo a folding/unfolding phase
transition, and the case of dimension d = 1 has been investigated in remarkable detail in Caravenna
et al. (2016). Our model falls in the same class of models: it corresponds to using the function
h1{ℓn(x)>0} instead of the function gβ(ℓn(x)); note that our model also displays a folding/unfolding
transition when h goes from positive to negative values.

Finally, we mention a link to the annealed polymer model among Bernoulli obstacles. Take a
Bernoulli site percolation with parameter p, meaning a collection O =

{
z ∈ Zd, ηz = 1

}
where ηz

are i.i.d. Bernoulli variables with parameter p, and denote by P = B(p)⊗Zd its law on Zd. Consider
the random walk starting at 0 and killed when it first encounters O, see for example Ding and Xu
(2019) and its references. The annealed partition function of the corresponding polymer measure is
given by

EP ⊗E
[
1{Rn∩O=∅}

]
= E

[
P
(
∀z ∈ Rn, ηz = 0

)]
= E

[
(1− p)|Rn|

]
= E

[
e|Rn| log(1−p)

]
.

Observe that this partition function is exactly Zn,hp with hp = − log(1− p), thus our model can be
seen as an annealed version of the random walk among Bernoulli obstacles with common parameter
1− e−hn .

Organization of the rest of the paper. The rest of the paper is organized as follows:
• In Section 2 we focus on the case of a “weak” penalization, that is lim

n→∞
n−1/4hn = 0: we give

local asymptotic estimates for the partition function (Lemma 2.1), from which we deduce
the first point of both Theorem 1.3 and Theorem 1.1 (in that order).

• In Section 3 we treat the case of a “strong” penalization, that is lim inf
n→∞

n−1/4hn > 0: we
modify the arguments of Section 2 to provide local asymptotic estimates for the partition
function (Lemma 2.1). From this, we deduce first the second point of Theorems 1.1-1.3, i.e.
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in the case limn→∞ n−1/4hn = +∞, before we turn to the border case of Proposition 1.5,
i.e. limn−1/4hn = ĥ ∈ (0,+∞).

• Finally, in Section 4 we derive sharp gambler’s ruin estimates (see Lemmas 4.2-4.4) and
their consequences for the range of a random walk, that is we prove Theorem 1.6.

2. Weak penalization: the case lim
n→∞

n−1/4hn = 0

Recall that T ∗
n :=

(
nπ2

hn

)1/3 and an := (T ∗
n)

2
√
3nπ2

, as well as Zn,hn(A) = E
[
e−hn|Rn(S)|1{S∈A}

]
.

We start with the case where hn ̸→ 0 meaning n(T ∗
n)

−3 ̸→ 0 to avoid considering the cases where
M−

n is close to 0 or T . The case n(T ∗
n)

−3 → 0 is adressed at the end of the present section and only
consists of splitting the partition function as Zn,hn = Zn,hn(An) + Zn,hn(

cAn) with

An :=

{
Tn√
log Tn

≤ |M−
n | ≤ Tn − Tn√

log Tn
, |Tn − T ∗

n | ≤ εn

}
.

Recall that formula (1.6) is valid for |M−
n | ≳ (T ∗

n)
3/n which is at most 4T ∗

n/ log T
∗
n (recall that

n ≥ 1
4(T

∗
n)

2 log T ∗
n). Since on An we have |M−

n | ≫ T ∗
n/ log T

∗
n , we can use (1.6). Thus, with the

same techniques as for hn ̸→ 0, we can get results on Zn,hn(An) and Pn,hn(· ∩ An). On the other
hand, writing cAn for the complement of An, we will prove that Zn,hn(

cAn) is negligible compared
to Zn,hn(An), leading to Theorem 1.3 and 1.1 for this case.

2.1. Local asymptotics for the partition function. Our first preliminary result computes the contribu-
tion of the partition function from trajectories with a fixed size of the range Tn, with Tn = T ∗

n+ō(T
∗
n).

Lemma 2.1. Assume that hn ̸→ 0 and that limn→∞ n−1/4hn = 0. Let (εn)n≥1 be any vanishing
sequence. Then, for any t ∈ Z and w ∈ 1

2Z such that |t| ≤ εnT
∗
n and w ∈ J−1

2(⌊T
∗
n⌋+t), 12(⌊T

∗
n⌋+t)K,

we have

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)
= ψn ×

(
cos

(πw
T ∗
n

)
+ ō(1)

)
× e

−(1+ō(1)) t2

2a2n
+ō(1)

, (2.1)

where the ō(1) only depends on εn, and where we have set:

ψn := ψ(hn) exp
(
− hn(T

∗
n + 1)− g(T ∗

n + 2)n
)
, with ψ(r) =

4

π
(1− e−r)2 . (2.2)

Proof : We have
Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)
= e−hn(x+y+1)P

(
Ey

x(n)
)
,

with x + y = ⌊T ∗
n⌋ + t and 1

2(y − x) = w. Thanks to Theorem 1.6, we can estimate this term.
Indeed, for every x, y such that limn→∞

x+y
T ∗
n

= 1, using (1.6) we have

P
(
Ey

x(n)
)
= ψ

( nπ2

(T ∗
n)

3

)(
sin

(πx
T ∗
n

)
+ ō(1)

)
e−g(x+y+2)n , (2.3)

where the ō(1) is uniform in x, y. Note that by the definition of T ∗
n we have nπ2

(T ∗
n)

3 = hn.
Now, here we have that x = 1

2(⌊T
∗
n⌋ + t) − w, with 1

2T ∗
n
(⌊T ∗

n⌋ + t) → 1
2 . Hence, we can write

sin(πxT ∗
n
) = cos(πwT ∗

n
) + ō(1) in (2.3). Recall the definition (1.8) ϕn(T ) = hnT + nπ2

2T 2 and write

hn(T + 1) + g(T + 2)n = φn(T ) + hn + g̃(T )n, with g̃(T ) = g(T + 2)− π2

2T 2 , to get that

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)

= ψ(hn)
(
cos

(πw
T ∗
n

)
+ ō(1)

)
exp

(
− ϕn(⌊T ∗

n⌋+ t)− hn − g̃(⌊T ∗
n⌋+ t)n

)
.

(2.4)



800 Nicolas Bouchot

We can use that ϕ′n(T ∗
n) = 0, ϕ′′n(T ∗

n) =
3nπ2

(T ∗
n)

4 = 1/a2n and ϕ′′′n (T ) = −12nπ2

T 5 , as well as Taylor’s
theorem, to get that for any 1

2T
∗
n ≤ T ≤ 2T ∗

n∣∣∣∣φn(T )− φn(T
∗
n)−

(T − T ∗
n)

2

2a2n

∣∣∣∣ ≤ C
|T − T ∗

n |3n
(T ∗

n)
5

= C ′ |T − T ∗
n |3

T ∗
n a

2
n

.

Hence, using that an → ∞, we get that

ϕn(⌊T ∗
n⌋+ t) = φn(T

∗
n) + (1 + ō(1))

t2

2a2n
. (2.5)

We can also perform the same expansion for g̃(T ) = g(T + 2) − π2

2T 2 , for which g̃′(T ) = π2

T 3 −
π

(T+2)2
tan( π

T+2) = Ō((T ∗
n)

−4):

|g̃(T )− g̃(T ∗
n)| ≤ C

|T − T ∗
n |

(T ∗
n)

4
,

so that, inserting T = ⌊T ∗
n⌋+ t = T ∗

n − ton + t (where we recall ton = T ∗
n − ⌊T ∗

n⌋),

|g̃(⌊T ∗
n⌋+ t)n− g̃(T ∗

n)n| ≤ C
|t− ton|
a2n

= ō(1)
t2

a2n
+ ō(1) (2.6)

as n→ ∞, uniformly in t (consider separately the case |t| ≤ an and |t| ≥ an).
All together, plugging (2.5)-(2.6) into (2.4), we end up with the desired result, with ψn :=

ψ(hn) exp(−hn − ϕn(T
∗
n)− g̃(T ∗

n)n) which coincides with the definition (2.2) above. □

2.2. Asymptotics of the partition function. Lemma 2.1 allows us to obtain the correct behavior for
the partition function.

Proof of Theorem 1.3: Assume that hn ̸→ 0 and that limn→∞ n−1/4hn = 0, so in particular an →
+∞.

Note that by Berger et al. (2022a, Theorem 3.7/Region 5), we have for any ε > 0

lim
n→∞

Pn,hn

(
|Tn − T ∗

n | > εT ∗
n

)
= 0 .

Therefore, one can find some vanishing sequence (εn)n≥0 such that we have the asymptotic equiv-
alence Zn,hn = (1 + ō(1))Zn,hn(|Tn − T ∗

n | ≤ εnT
∗
n). We therefore only have to estimate that last

partition function. We may decompose it as

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
=

εnT ∗
n∑

t=−εnT ∗
n

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t ,Wn = w
)
.

where for the sake of clarity, we omitted the integer part in the bounds of the sums, to write
−εnT ∗

n ≤ t ≤ εnT
∗
n instead of ⌈(1 − εn)T

∗
n⌉ ≤ ⌊T ∗

n⌋ + t ≤ ⌊(1 + εn)T
∗
n⌋. Therefore, thanks to

Lemma 2.1, we get that

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
= ψn

εnT ∗
n∑

t=−εnT ∗
n

e
−(1+ō(1)) t2

2a2n
+ō(1) ∑

−(T ∗
n+t)≤2w≤T ∗

n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

(
cos

(πw
T ∗
n

)
+ ō(1)

)
.

Now, as T ∗
n goes to +∞, the internal sum is a Riemann sum: we have, uniformly for ⌈(1−εn)T ∗

n⌉ ≤
⌊T ∗

n⌋+ t ≤ ⌊(1 + εn)T
∗
n⌋,

lim
n→∞

1

T ∗
n

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

(
cos

(πw
T ∗
n

)
+ ō(1)

)
=

ˆ 1
2

− 1
2

cos(πv) dv =
2

π
.
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Then, a sum over t remains, which is also a Riemann sum: as an → +∞ and εnT
∗
n/an → +∞

(T ∗
n/an ≥ (cst.)

√
log n so such sequence (εn) exists), we have

lim
n→∞

1

an

εnT ∗
n∑

t=−εnT ∗
n

e
−(1+ō(1)) t2

2a2n
+ō(1)

=

ˆ ∞

−∞
e−

u2

2 du =
√
2π .

Altogether, we have proved that, as n→ ∞

Zn,hn ∼ 2
√
2√
π
ψnanT

∗
n . (2.7)

Recalling the definition of T ∗
n and an, we have anT ∗

n = π√
3

√
n

hn
. Additionally, recalling the defini-

tion (2.2) of ψn, and using that g(T + 2) = π2

2T 2 − 2π2

T 3 + Ō( 1
T 4 ) as T → ∞, we get that

ψn = ψ(hn) exp
(
− hnT

∗
n − hn − nπ2

2(T ∗
n)

2
+

2π2n

(T ∗
n)

3
+ ō(1)

)
,

since limn→∞
n

(T ∗
n)

4 = 0 because limn→∞ n−1/4hn = 0. By the definition of T ∗
n we have nπ2

(T ∗
n)

3 = hn,

we get that ψn ∼ ψ(hn)e
hne−

3
2
hnT ∗

n . Putting all estimates together and noting that eα(1− e−α)2 =
2(cosh(α)− 1), this concludes the proof. □

Proof of Theorem 1.1: The proof reduces to showing the following Lemma.

Lemma 2.2. Let hn ̸→ 0 be such that lim
n→∞

n−1/4hn = 0. Then, for any r < s, we have

lim
n→∞

1

ψnanT ∗
n

Zn,hn

(
r ≤ |Tn − T ∗

n |
an

≤ s
)
=

2

π

ˆ s

r
e−

u2

2 du ,

where ψn is the sequence that appears in Lemma 2.1.

Indeed, once we have this lemma, in view of the asymptotics (2.7) and Proposition 1.10, we get
that for any r < s and any a < b,

Pn,hn

(
r ≤ |Tn − T ∗

n |
an

≤ s, a ≤ Wn

T ∗
n

≤ b
)
=

1

Zn,hn

Zn,hn

(
r ≤ |Tn − T ∗

n |
an

≤ s, a ≤ Wn

T ∗
n

≤ b
)

n→∞−−−→
ˆ s

r

1√
2π
e−

u2

2 du

ˆ b

a

π

2
cos(πv)1[− 1

2
, 1
2
]dv ,

which concludes the proof. □

Proof of Lemma 2.2: The proof proceeds as for the proof of Theorem 1.3. We can decompose the
partition function as

san∑
t=ran

∑
−⌊T ∗

n⌋−t≤2w≤⌊T ∗
n⌋+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t ,Wn = w
)

= ψn

san∑
t=ran

e
−(1+ō(1)) t2

2a2n

∑
−⌊T ∗

n⌋−t≤2w≤⌊T ∗
n⌋+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

(
cos

(πw
T ∗
n

)
+ ō(1)

)
,

where we have used Lemma 2.1 as above (using that an → ∞) and where we omitted the integer
parts for the bounds on t, meaning that ⌈ran⌉ ≤ t ≤ ⌊san⌋.
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Again, as T ∗
n goes to +∞, the internal sum is a Riemann sum: we have, uniformly for ⌈T ∗

n+ran⌉ ≤
⌊T ∗

n⌋+ t ≤ ⌊T ∗
n + san⌋ and since an/T ∗

n → 0,

lim
n→∞

1

T ∗
n

∑
−⌊T ∗

n⌋−t≤2w≤⌊T ∗
n⌋+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

(
cos

(πw
T ∗
n

)
+ ō(1)

)
=

ˆ 1
2

− 1
2

cos(πv) dv =
2

π
.

Then, the sum over t that remains is also a Riemann sum: as an → +∞, we have

lim
n→∞

1

an

san∑
t=ran

e
−(1+ō(1)) t2

2a2n =

ˆ s

r
e−

u2

2 du ,

which concludes the proof. □

2.3. Adapting to reduced penalization. Now assume that hn → 0 with hn ≥ n−1/2(log n)3/2 and
write νn = (log T ∗

n)
−1/2. We first adapt Lemma 2.1.

Lemma 2.3. Assume that hn → 0 and that hn ≥ n−1/2(log n)3/2. Let (εn)n≥1 be any vanishing
sequence. Then, for any t ∈ Z and w ∈ 1

2Z such that |t| ≤ εnT
∗
n and w ∈ J−(1−νn)12(⌊T

∗
n⌋+ t), (1−

νn)
1
2(⌊T

∗
n⌋+ t)K, we have

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)
= ψn ×

(
cos

(πw
T ∗
n

)
+ ō(1)

)
× e

−(1+ō(1)) t2

2a2n , (2.8)

where the ō(1) only depends on εn and we used the same notations as in Lemma 2.1.

Proof : We only use formula (1.6) that is valid since we have x
T > νn ≫ (T ∗

n)
2

n , where x is defined
as in the proof of Lemma 2.1 and corresponds to the lower edge of the polymer. The proof then
proceeds as previously with a Taylor expansion in the exponential. □

Recall the definition of An:

An =

{
Tn√
log Tn

≤ |M−
n | ≤ Tn − Tn√

log Tn
, |Tn − T ∗

n | ≤ εn

}
.

Proof of Theorem 1.3 for hn → 0: First we get the asymptotics for Zn,hn(An) We repeat the proof
of Theorem 1.3 for hn ̸→ 0, except by restricting the sum to the suitable w given in Lemma 2.3.
This means that

Zn,hn(An) = ψn

εnT ∗
n∑

t=−εnT ∗
n

e
−(1+ō(1)) t2

2a2n

(1−νn)(⌊T ∗
n⌋+t)∑

2w=−(1−νn)(⌊T ∗
n⌋+t)

(
cos

(πw
T ∗
n

)
+ ō(1)

)
.

The sums still are Riemann sums, leading to

Zn,hn(An) ∼ ψnanT
∗
n

√
2π

ˆ 1
2
−νn

− 1
2
+νn

cos(πv)dv ,

which leads to the same asymptotics as the one announced in Theorem 1.3.
Now we turn to the term Zn,hn(

cAn): recall Theorem 1.6 when n/T 3 → 0 and x/T → 0, we have

Θn(x, T − x) =
2π3n2

T 6
sin

(
πx

T

)[
2 +

π

T tan xπ
T

+
T 2

n

1− 2x
T

tan xπ
T

]
e−g(T )n. (2.9)

In the sum appearing in (2.9), the third term behaves as T 3/xn → ∞ when x/T is small,
compared to 1/x for the second term. Thus, it is dominant and we can get an upper bound
Θn(x, T − x) ≤ (cst.) n

T 4 e
−g(T )n for all x = ō(T ). By symmetry, we get the same bound for y/T
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small meaning that this bound encompasses both x/T ∗
n ≤ νnT

∗
n and x/T ∗

n ≥ (1 − νn)T
∗
n . Thus,

consider any (x, t) such that {|M−
n | = x, Tn = t} ⊆ Ac

n, we have

Zn,hn

(
Tn − T ∗

n = t,Wn =
T

2
− x

)
≤ (cst.)

n

T 4
e−h(T−1)−g(T )n = (cst.)

n

T 4
e
− 3

2
hnT ∗

n−(1+ō(1)) t2

2a2n .

Therefore,

Zn,hn(Ac
n)e

3
2
hnT ∗

n ≤
εnT ∗

n∑
t=−εnT ∗

n

e
−(1+ō(1)) t2

2a2n × 2
∑

0≤x≤νnT ∗
n

(cst.)
n

(T ∗
n)

4
≍ anνnn

(T ∗
n)

3
≍ νn

(T ∗
n)

2

n
hn

√
n.

Since (T ∗
n)

2/n and νn both go to 0, this means that Zn,hn(Ac
n) is negligible compared to Zn,hn(An) ≍

hn
√
ne−

3
2
hnT ∗

n and we get the full Theorem 1.3. □

Theorem 1.1 is adapted with no additional difficulty using Proposition 1.10.

3. Strong penalization and vanishing fluctuations

3.1. The case lim inf
n→∞

n−1/4hn = +∞. See that the case where an → 0 is much more restrictive to

establish an analog of Lemma 2.1, as Ō(a−2
n ) quantities now bring extremely large contributions to

the exponential part of Zn,hn and slight deviations from the optimal size T ∗
n will be penalized by a

large factor. Indeed, if we are to get a continuity from Theorem 1.1 when lim supn→∞ an <∞, we
want to know the exact asymptotic law of fluctuations without renormalization. We define

ϕ̄n(T ) := hn(T + 1) +
nπ2

2(T + 2)2
and T o

n := argmin ϕ̄n(T ) . (3.1)

Lemma 3.1. Assume that limn→∞ n−1/4hn = +∞ and limn→∞ n−1hn = 0 and let (εn)n≥1 be
any vanishing sequence. Then, for any t ∈ Z \ {0, 1} and w ∈ 1

2Z such that |t| ≤ εnT
o
n and

w ∈ J−1
2(⌊T

o
n⌋+ t), 12(⌊T

o
n⌋+ t)K, we have

Zn,hn

(
Tn = ⌊T ∗

n − 2⌋+ t,Wn = w
)
= ψ̄n ×

(
cos

(πw
T ∗
n

)
+ ō(1)

)
× e

−(1+ō(1))
(t−ton)2

2a2n , (3.2)

where ton := T o
n − ⌊T o

n⌋, ō(1) is a vanishing quantity that depends only on εn and

ψ̄n := ψ(hn) exp
(
− hn(T

∗
n − 1)− g(T ∗

n)n
)
, with ψ(α) =

4

π
(1− e−α)2 . (3.3)

When t ∈ {0, 1} we instead have

Zn,hn

(
Tn = ⌊T ∗

n − 2⌋+ t,Wn = w
)
= ψ̄n ×

(
cos

(πw
T ∗
n

)
+ ō(1)

)
× e

− 1+ō(1)

2a2n

[
(t−ton)

2− 2π2

9

t−ton
T∗
n

]
. (3.4)

Proof : We can perform the same decomposition as in Lemma 2.1 and setting T = ⌊T ∗
n − 2⌋+ t, we

arrive at (analogously to (2.4))

Zn,hn

(
Tn = T,Wn = w

)
= ψ(hn)

(
cos

(πw
T

)
+ ō(1)

)
× e−hn(T+1)−g(T+2)n

= ψ(hn)
(
cos

(πw
T

)
+ ō(1)

)
× e−ϕ̄n(T )−ḡ(T )n ,

(3.5)

with ϕ̄n defined above in (3.1) and where ḡ(T ) := g(T + 2) − π2

2(T+2)2
. One can then easily check

that T o
n = T ∗

n − 2 and that ϕ̄′′n(T o
n) =

3nπ2

(T o
n+2)4

= a−2
n and ϕ̄(3)n (T o

n) = − 12nπ2

(T o
n+2)5

, thus∣∣∣ϕ̄n(T )− ϕ̄n(T
o
n)−

(T − T o
n)

2

2a2n

∣∣∣ ≤ 12nπ2

6(T o
n + 2)5

|T − T o
n |3 ≤ εn

(T − T o
n)

2

a2n
.
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Furthermore, a series expansion of the first two orders of the Taylor expansion of ḡ(T ) around T o
n

gives

ḡ(T ) = ḡ(T o
n)− (T − T o

n)
π4

3(T ∗
n)

5
(1 + ō(1)) +

5π4(T − T o
n)

2

6(T ∗
n)

6
(1 + ō(1)) .

Assembling the two previous equations and using a−2
n = 3π2n(T ∗

n)
−4 leads to

ϕ̄n(T ) + ḡ(T )n = ϕ̄n(T
o
n) + ḡ(T o

n)n +
(T − T o

n)
2

2a2n
(1 + ō(1)) − (T − T o

n)
π2

9a2nT
∗
n

(1 + ō(1)) .

Now, write T = ⌊T ∗
n − 2⌋+ t = T o

n − ton + t (recall that ton is the decimal part of T o
n), we have

ϕ̄n(T ) + ḡ(T )n = ϕ̄n(T
o
n) + ḡ(T o

n)n +
(t− ton)

2

2a2n
(1 + ō(1)) − (t − ton)

π2

9a2nT
∗
n

(1 + ō(1)) .

For t ̸∈ {0, 1}, we have |T − T o
n | = |t − ton| > 1 meaning that (t − ton)

π2

9a2nT
∗
n
= ō(1) (t−ton)

2

a2n
which

proves (3.2) by injecting in (3.5) and using ϕ̄n(T o
n) + nḡ(T o

n) = hn(T
∗
n − 1) + ng(T ∗

n).
For t ∈ {0, 1}, there is a possibility that |t− ton| gets so small that T ∗

n(t− ton)
2 = ō(1)(t− ton). In

this case, we have to keep both terms in t− ton which leads to (3.4). □

Proof of Theorem 1.3: Suppose lim inf
n→∞

n−1/4hn = +∞ meaning an → 0. Apply Lemma 3.1 with
the same sequence (εn) to write

Zn,hn

(
|Tn − T o

n | ≤ εnT
o
n

)
= ψ̄n

εnT o
n∑

t=−εnT o
n

e
−(1+ō(1))

ςn(t)

2a2n

∑
−(T o

n+t)≤2w≤T o
n+t

w∈ 1
2
(⌊T o

n⌋+t)+Z

(
cos

(πw
T ∗
n

)
+ ō(1)

)
, (3.6)

where we wrote ςn(t) := (t− ton)2− 2π2

9
t−ton
T ∗
n
1{t∈{0,1}} and used abusive notations in the sum to mean

that ⌈(1−εn)T ∗
n⌉ ≤ ⌊T ∗

n⌋+ t ≤ ⌊(1+εn)T ∗
n⌋. As T ∗

n goes to +∞, the sum in w in (3.6) is a Riemann
sum and thus, uniformly for |t| ≤ εnT

o
n ,

lim
n→∞

1

T ∗
n

∑
−(T o

n+t)≤2w≤T o
n+t

w∈ 1
2
(⌊T o

n⌋+t)+Z

(
cos

(πw
T ∗
n

)
+ ō(1)

)
=

ˆ 1
2

− 1
2

cos(πv) dv =
2

π
.

This means that injecting in (3.6), we have

Zn,hn

(
|Tn − T o

n | ≤ εnT
o
n

)
= (1 + ō(1))

2

π
T ∗
n ψ̄n

εnT o
n∑

t=−εnT o
n

e
−(1+ō(1))

ςn(t)

2a2n . (3.7)

The largest term in the sum in (3.7) is attained at t = 0 or t = 1 depending on the value of ton.
Thus, write ς̂n := ςn(0)∧ςn(1) so that e−ς̂n/2a2n is the largest term of the sum in (3.7). By computing
ςn(1)− ςn(0) = 1− 2π2

9T ∗
n
− 2ton, we can check that ς̂n = ςn(1{ton>τon}), with τ on := 1

2 − π2

9T ∗
n
. We have

εnT o
n∑

t=−εnT o
n

e
−(1+ō(1))

ςn(t)

2a2n =
∑

t∈{0,1}

e
− 1

2a2n
ςn(t)

+ e
− ς̂n

2a2n

εnT o
n∑

t=−εnT o
n

t̸=0,1

e
ς̂n−(t−ton)2

2a2n
(1+ō(1))

. (3.8)

To get (1.3) we only need to prove that the sum in the second term of (3.8) goes to 0 as n→ +∞.
Indeed, the first sum being of the same order as e−ς̂n/2a2n , this would prove that the second term is
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negligible. To do so, note that for any t ̸∈ {0, 1},

ς̂n − (t− ton)
2 =


2tton − t2 +

2π2

9T ∗
n

ton if ς̂n = ςn(0) ;

1− t2 + 2ton(t− 1)− 2π2

9T ∗
n

(1− ton) if ς̂n = ςn(1) .

(3.9)

One can easily check that if ς̂n = ςn(1), this is always less than −(t− 1)2, while if ς̂n = ςn(1), this
is less than −1

2 t for t ≥ 3, less than −(t2 + 1) for t ≤ −2. Thus, we have

εnT o
n∑

t=−εnT o
n

t̸∈{−1,0,1,2}

e
ς̂n−(t−ton)2

2a2n ≤
+∞∑
t=2

e
− (t−1)2

2a2n +
+∞∑
t=3

e
− t

4a2n . (3.10)

On the other hand for t ∈ {−1, 2} we work out ς̂n − ςn(t):

ς̂n − (−1− ton)
2 = −1− 2ton +

2π2

9T ∗
n

ton + (1− 2ton − 2π2

9T ∗
n

)1{ton>τon} ≤ −1 +
2π2

9T ∗
n

,

ς̂n − (2− ton)
2 = −4 + 4ton +

2π2

9T ∗
n

ton + (1− 2ton − 2π2

9T ∗
n

)1{ton>τon} ≤ −1 +
2π2

9T ∗
n

,

by splitting on whether ton ≤ τ on or not. Combining with (3.10), this shows that
εnT o

n∑
t=−εnT o

n
t̸=0,1

e
ς̂n−(t−ton)2

2a2n ≤
+∞∑
t=2

e
− (t−1)2

2a2n +
+∞∑
t=3

e
− t

4a2n + 2e
−(

1
2−

2π2

9T ∗
n
)a−2

n
. (3.11)

Recall that an → 0 as n → +∞, thus there is a n0 ∈ N such that we have a2n ≤ 1
2 for all n ≥ n0,

and thus

∀t ≥ 2, sup
n≥n0

e
− (t−1)2

2a2n ≤ e−(t−1)2 as well as ∀t ≥ 3, sup
n≥n0

e
− t

4a2n ≤ e−
t
2 .

Therefore, with the use of Lebesgue’s dominated convergence, both sums in the right-hand side of
(3.11) converge to zero as n → +∞. Since it is also true for the third term at the right of (3.11),
we have

εnT o
n∑

t=−εnT o
n

e
−(1+ō(1))

ςn(t)

2a2n =
∑

t∈{0,1}

e
− 1

2a2n
ςn(t)

+ e
− ς̂n

2a2n ō(1) = (1 + ō(1))
∑

t∈{0,1}

e
− 1

2a2n
ςn(t)

,

where for the second equality we used the fact that the sum over t ∈ {0, 1} is at least equal to

e
− ς̂n

2a2n .
We are left to get an asymptotic expansion of g(T ∗

n)n by expanding g up to order T−4

g(T ∗
n)n =

nπ2

2(T ∗
n)

2
+

nπ4

12(T ∗
n)

4
(1 + ō(1)) =

1

2
hnT

∗
n +

nπ4

12(T ∗
n)

4
(1 + ō(1)) ,

which finally means that

Zn,hn =
2

π
ehnψ(hn)(1 + ō(1))

∑
t∈{0,1}

e
− ςn(t)

2a2n
(1+ō(1))

e
−3
2hnT ∗

n− nπ4

12(T∗
n)4

(1+ō(1))
,

and thus proving Theorem 1.3 after using eα(1− e−α)2 = 2(cosh(α)− 1), explicitly writing a−2
n and

factorizing in the exponential. □
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Proof of Theorem 1.1: The above proof of Theorem 1.3 already shows that

Pn,hn

(
|Tn − ⌊T ∗

n − 2⌋| ∈ {0, 1}
)
=

1

Zn,hn

Zn,hn

(
|Tn − ⌊T ∗

n − 2⌋| ∈ {0, 1}
)
−−−→
n→∞

1 .

We also see that if ton ≤ 1
2 − δ for some δ > 0 and all n large enough, ς̂n = ςn(0) and e(ς̂n−ςn(1))a

−2
n ≤

e−δa−2
n → 0, hence the comment below Theorem 1.3. It is similar in the case where ton ≥ 1

2 + δ. □

3.2. Case lim
n→∞

n−1/4hn = ĥ: order one fluctuations.

Proof of Proposition 1.5: Going back to use Lemma 3.1, we get for any vanishing sequence (εn)n≥1

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
= (1 + ō(1))ψ̄n

⌊εnT ∗
n⌋+2∑

t=−⌊εnT ∗
n⌋+2

e
−(1+ō(1))

ςn(t)

2a2n

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos

(
πw

T ∗
n

)
.

The internal Riemann sum is dealt with the same method as before, while we can take the limit
for an in the external sum. Thus we have, as n→ ∞

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
∼ 2

π
T ∗
n ψ̄n

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

e
− ςn(t)

2a2n ,

which clearly gives that Zn,hn ∼ 2
π ψ̄nT

∗
nθn(a), because we already know that taking εn going to zero

sufficienly slowly we have limn→∞ Pn,hn(|Tn − T ∗
n | > εnTn) = 0.

Moreover, applying again Lemma 3.1, we also get that for any fixed integer t ∈ Z,

Zn,hn

(
Tn = ⌊T ∗

n − 2⌋+ t
)
∼ 2

π
T ∗
n ψ̄ne

− ςn(t)

2a2n ,

using the same calculation as above. This concludes the proof of Proposition 1.5. □

4. Range endpoints and gambler’s ruin estimates

4.1. Gambler’s ruin estimates. We consider a band [0, T ] with T some positive integer, and choose
a starting point 0 ≤ z ≤ T . We denote τ0 := min{n ≥ 0 , Sn = 0}, resp. τT := min{n ≥ 0 , Sn = T},
the hitting time of the boundary at 0, resp. at T . We also denote τ := τ0 ∧ τT . We recall the
formulae of Feller (1968, §14.5) for the ruin problem, in the case of a symmetric walk. We use the
notation n ↔ z if n − z is even and denote by Pz the law of the simple random walk starting at
z ∈ Z.

Proposition 4.1. For any z ∈ J1, T − 1K and n > 1,

Pz(τ = τ0 = n) =
2

T

∑
1≤k<T/2

cosn−1

(
πk

T

)
sin

(
πkz

T

)
sin

(
πk

T

)
1{n↔z} . (4.1)

By symmetry, we also have Pz(τ = τT = n) = PT−z(τ = τ0 = n):

Pz(τ = τT = n) =
2

T

∑
1≤k<T/2

(−1)k+1 cosn−1

(
πk

T

)
sin

(
πkz

T

)
sin

(
πk

T

)
1{n↔T−z} . (4.2)

Note that if T − z ↔ n↔ z, if we sum (4.1), (4.2), the terms for even k cancel out and we get

Pz(τ = n) =
4

T

jT∑
j=0

cosn−1

(
(2j + 1)π

T

)
sin

(
(2j + 1)πz

T

)
sin

(
(2j + 1)π

T

)
.

where jT is the largest integer j such that 2j + 1 < T/2, which depends on the parity of T .
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Let us now give the sharp asymptotic behavior of the probabilities (4.1)-(4.2) above. Recall that
since we are interested in the case nT−2 → ∞, these events

{
τ = τ0/T = n

}
are rare as typically

we have |Rn| ≍
√
n and thus τ ≍ T 2 ≪ n. Recall the definition (1.4): g(T ) = − log cos( πT ). By

symmetry, we only deal with the case z ∈ J0, T2 K.

Lemma 4.2. Suppose that T = T (n) → ∞ as n→ ∞ and that limn→∞
n
T 2 = +∞. Then, we have

the following asymptotics: for all z ∈ J0, T2 K,

Pz(τ = τ0 = n) =
(
1 + Ō(e−

π2n
T2 )

) 2
T
sin

(
zπ

T

)
tan

(
π

T

)
e−g(T )n

1{n↔z} , (4.3)

Pz(τ = τT = n) =
(
1 + Ō(e−

π2n
T2 )

) 2
T
sin

(
zπ

T

)
tan

(
π

T

)
e−g(T )n

1{n↔T−z} . (4.4)

Here, Ō(e−
π2n
T2 ) is uniform in z.

Remark 4.3. We recall that equations such as (4.3) are to be understood in the sense that

∃C > 0,∀T = T (n), sup
z∈J0,T

2
K

n↔z

∣∣∣∣ Pz(τ = τ0 = n)
2
T sin

(
zπ
T

)
tan

(
π
T

)
e−g(T )n

− 1

∣∣∣∣ ≤ Ce−
π2n
T2 as n→ ∞ .

Proof : The proof is inspired by Caravenna and Pétrélis (2009, Appendix B), but we need here a
slightly sharper version. In (4.1) and (4.2) we denote V0 = V0(n, T ) the first term:

V0 =
2

T
cosn−1

(
π

T

)
sin

(
πz

T

)
sin

(
π

T

)
=

2

T
sin

(
zπ

T

)
tan

(
π

T

)
e−g(T )n .

It remains to control the remaining terms. We let

V1 :=
2

T

∑
2≤k<T/2

cosn−1

(
πk

T

)
sin

(
πkz

T

)
sin

(
πk

T

)
,

and we only need to bound V1/V0. Using the bounds 2
πx ≤ sin(x) ≤ x for x ∈ [0, π2 ], we get that

V1
V0

≤ π2

4

∑
2≤k<T/2

k2
(
cos

(
πk
T

)
cos

(
π
T

) )n−1

.

Now, as k
T → 0, we have

cos
(
πk
T

)
cos

(
π
T

) = 1− π2(k2 − 1)

2T 2

(
1 + Ō

( k2
T 2

))
.

Hence, the l.h.s. is bounded by exp(−2π2(k2−1)
5T 2 ) provided that k

T ≤ ε, for some given ε ∈ (0, 12). If
k
T ≥ ε, we can simply bound cos

(
πk
T

)
≤ cos(πε) ≤ e−

1
2
π2ε2 . We therefore get that V1/V0 is bounded

by a constant times ∑
2≤k<εT

k2e−
2nπ2(k2−1)

5T2 +
∑

εT≤k<T/2

k2e−
1
2
nπ2ε2 .

For the first sum, we write that it is

e
2π2n
5T2 T 3 × 1

T

∑
2≤k<εT

k2

T 2
e−

2π2nk2

5T2 ≤ e
2π2n
5T2 T 3

ˆ ∞

2/T
x2e−

2π2

5
nx2

dx

= e
2π2n
5T2

T 3

n3/2

ˆ ∞

2
√
n/T

u2e−
2π2

5
u2
du ≤ (cst.)

T 2

n
exp

(
− 6π2n

5T 2

)
,
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using that
´∞
v u2e−

2π2

5
u2
du ∼ (cst.) v e−

2π2

5
v2 as v → ∞. This term is therefore bounded by a

constant times exp(−π2n
T 2 ), as n/T 2 goes to infinity.

For the other sum, we bound it by a constant times

T 3 exp
(
− 1

2
nπ2ε2

)
≤ n3/2 exp

(
− 1

2
nπ2ε2

)
= ō

(
exp

(
− π2n

T 2

))
,

as n
T 2 → +∞ and T → ∞. We have therefore shown that V1/V0 is bounded by a constant times

exp(−π2n
T 2 ), which concludes the proof. □

We now obtain an expression for the probability of staying in the band [0, T ], without touching
the border, during a time n≫ T 2.

Lemma 4.4. Assume that T = T (n) → ∞ and that limn→∞
n
T 2 = +∞. Then, we have:

• If T is odd,

Pz(τ > n) =
2

T
sin

(
zπ

T

)
1

tan
(

π
2T

)e−ng(T )
(
1 + Ō(e−

π2n
T2 )

)
. (4.5)

• If T is even, letting a = 1{n↔z},

Pz(τ > n) =
4

T
sin

(
zπ

T

)
cosa

(
π
T

)
sin

(
π
T

) e−ng(T )
(
1 + Ō(e−

π2n
T2 )

)
. (4.6)

In particular, with a Taylor expansion, we get that

fn(z, T ) := Pz(τ > n) =
4

π
sin

(
zπ

T

)
e−ng(T )

[
1 + Ō(T−2) + Ō

(
e−

π2n
T2

)]
, (4.7)

and note that if n ≥ 1
4T

2 log T then e−
π2n
T2 ≤ T− 1

4
π2 ≤ T−2.

Proof : First of all, we write

Pz(τ > n) =
∑
k>n

(
Pz(τ = τ0 = k) + Pz(τ = τT = k)

)
. (4.8)

When T is odd, then in (4.8), for each k in the sum there is only one term which is non-zero:
applying Lemma 4.2 to estimate that term, we get

Pz(τ > n) =
(
1 + Ō(e−

π2n
T2 )

) 2
T
sin

(
zπ

T

)
tan

(
π

T

)∑
k>n

e−g(T )k

=
(
1 + Ō(e−

π2n
T2 )

) 2
T
sin

(
zπ

T

)
tan

(
π

T

)
e−g(T )n cos

(
π
T

)
1− cos

(
π
T

) ,
recalling that e−g(T ) = cos

(
π
T

)
. This gives the desired result since sin(θ)

1−cos(θ) =
1

tan(θ/2) .

When T is even, notice that in (4.8), either k ↔ z and then both terms are non-zero or k ̸↔ z
and then both terms are zero. Applying Lemma 4.2, we get

Pz(τ > n) =
(
1 + Ō(e−

π2n
T2 )

) 4
T
sin

(
zπ

T

)
tan

(
π

T

)∑
k>n

e−g(T )k
1{k↔z} .

To deal with the last sum, denote n∗ = n∗(z) := min{k > n, k ↔ z}: note that n∗ is equal to
n+1+a with a = 1{n↔z}. The indices for which the term is not zero can be written as k = n∗+2j
and thus ∑

k>n

e−g(T )k
1{k↔z} = e−n∗g(T )

∑
j≥0

e−2g(T )j = e−ng(T ) cos1+a
(
π
T

)
1− cos2

(
π
T

) ,
recalling that e−g(T ) = cos

(
π
T

)
. This gives the announced expression. □
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4.2. Range estimates: proof of Theorem 1.6. Recall the definition of the event Ey
x(n) = {M−

n =
−x,M+

n = y} for any two positive integers x and y (the case where one equals 0 is dealt with in
Section 4.2.4). We use Lemma 4.4 to estimate P0(E

y
x(n)), i.e. to prove Theorem 1.6. From this point

onward, we always denote T := x+ y and consider that n
T 2 → +∞. Using the spatial invariance of

the random walk, we study the probability starting from x to stay in the strip [0, T ] and to touch
both borders before time n. The symmetry of the walk allows us to assume x ≤ y and 0 < x ≤ T

2 .
We now write the probability of Ey

x(n) as the following differences

P0

(
Ey

x(n)
)
= P0

(
M+

n < y + 1,M−
n = −x

)
− P0

(
M+

n < y,M−
n = −x

)
= P0

(
M+

n < y + 1,M−
n > −x− 1

)
− P0

(
M+

n < y + 1,M−
n > −x

)
−
[
P0

(
M+

n < y,M−
n > −x− 1

)
− P0

(
M+

n < y,M−
n > −x

)]
.

Then each of those probabilities is of a strict confinement event with different strips widths and
starting points: we get

P0

(
Ey

x(n)
)
= fn(x+ 1, T + 2)− fn(x, T + 1)− fn(x+ 1, T + 1) + fn(x, T ) . (4.9)

Since for Theorem 1.6 we also assume that T and n satisfy the assumptions of Lemma 4.4, we can
use it to estimate each of these terms.

In each of the following sections, we prove one of the formulae for Θn(x, y) given in Theorem 1.6,
which we recall here.

With the assumptions of Theorem 1.6/Lemma 4.4 (nT−2 ≥ (cst.) log T → ∞), we want to prove
that P

(
Ey

x(n)
)
= (1 + ō(1))Θn(x, y) with

Θn(x, y) :=



4

π
sin

(
π(x+ 1)

T

)
e−g(T+2)n if

n

T 3
→ +∞;

4

π
(eαπ

2 − 1)

[
eαπ

2
sin

(
π(x+ 1)

T

)
− sin

(
πx

T

)]
e−g(T )n if

n

T 3
→ α ∈ (0,+∞);

2π3n2

T 6
sin

(
πx

T

)[
2 +

π

T tan xπ
T

+
T 2

n

1− 2x
T

π tan xπ
T

]
e−g(T+1)n if

n

T 3
→ 0 .

Remark 4.5. The ratio n
T 3 that separates the cases is known to be the relevant quantity when

studying such constrained random walk (see Caravenna and Pétrélis (2009)). The main reason is
the terms in e−ng(T ), e−ng(T+1) and e−ng(T+2) that appear in the expansion (4.9). Depending on
the convergence of n

T 3 , the ratios between these terms have different convergences, each leading to
its own Θn(x, y).

4.2.1. First case: limn→∞
n
T 3 = +∞; In that case, we have

e−g(T+1)n

e−g(T+2)n
=

(
1− (1 + ō(1))

π2

T 3

)n n→∞−−−→ 0 ,
e−g(T )n

e−g(T+2)n
=

(
1− (1 + ō(1))

2π2

T 3

)n n→∞−−−→ 0 .

Therefore, in view of (4.7), we have that fn(x, T + 1), fn(x + 1, T + 1), fn(x, T ) are all negligible
compared to fn(x+ 1, T + 2). Using (4.9), and (4.7), we therefore get that

P0

(
Ey

x(n)
)
= (1 + ō(1))fn(x+ 1, T + 2) = (1 + ō(1))

4

π
sin

(
π(x+ 1)

T + 2

)
e−g(T+2)n , (4.10)

where the ō(1) depends only on T and is uniform in x, and we can use sin
(π(x+1)

T+2

)
= (1 +

Ō( 1
T )) sin

(π(x+1)
T

)
uniformly in x to get the desired result.
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4.2.2. Second case: limn→∞
n
T 3 = α ∈ (0,+∞); Similarly as above, we have

lim
n→∞

e−g(T+2)n

e−g(T )n
= e2απ

2
, lim

n→∞

e−g(T+1)n

e−g(T )n
= eαπ

2
.

Therefore, using (4.9) and (4.7), we get that
π

4
eg(T )nP0

(
Ey

x(n)
)

= (1 + ō(1))

[
sin

(
π(x+ 1)

T

)
e2απ

2
+ sin

(
πx

T

)
−
[
sin

(
π(x+ 1)

T

)
+ sin

(
πx

T

)]
eαπ

2

]
,

where we have used that sin(π(x+1)
T+2 ) = (1 + ō(1)) sin(π(x+1)

T ) with ō(1) uniform in x, and similarly
with sin(π(x+1)

T+1 ), sin( πx
T+1). This gives the announced asymptotics.

Let us stress that, in the case where x = Ō(1), we get

P0

(
Ey

x(n)
)
= (1 + ō(1))

4

T
(eαπ

2 − 1)(x(eαπ
2 − 1) + eαπ

2
)e−g(T )n. (4.11)

If on the other hand we have x→ ∞, then we have

P0

(
Ey

x(n)
)
= (1 + ō(1))

4

π
(eαπ

2 − 1)2 sin

(
xπ

T

)
e−g(T )n , (4.12)

and one can also write (eαπ
2 − 1)2 = 4eαπ

2
cosh2(απ2).

4.2.3. Last case: limn→∞
n
T 3 = 0; Recall that limn→∞

n
T 2 = +∞ by assumption, in particular

n
T 4 = ō( n

2

T 6 ). We then have the following expansions:

e−g(T )n

e−g(T+1)n
= 1− π2n

T 3
+ (1 + ō(1))

π4n2

2T 6
,

e−g(T+2)n

e−g(T+1)n
= 1 +

π2n

T 3
+ (1 + ō(1))

π4n2

2T 6
.

Hence, from (4.9), using (4.7) (with the fact that n ≥ 1
4T

2 log T so that Ō
(
e−

π2n
T2

)
= ō(T−2)) we

get

π

4
P0

(
Ey

x(n)
)
eg(T+1)n =

{
sin

(
πx

T

)[
1− π2n

T 3
+ (1 + ō(1))

π4n2

2T 6

]
−
(
sin

(
πx

T + 1

)
+ sin

(
π(x+ 1)

T + 1

))[
1 + Ō(T−2)

]
+ sin

(
π(x+ 1)

T + 2

)[
1 +

π2n

T 3
+ (1 + ō(1))

π4n2

2T 6

]}
.

Note that we absorbed all terms Ō(T−2) in the ō( n
2

T 6 ), since limn→∞
n
T 2 = +∞. Hence, we get that

π

4
P0

(
Ey

x(n)
)
eg(T+1)n = A+B + (1 + ō(1))

π4n2

2T 6

[
sin

(
πx

T

)
+ sin

(
π(x+ 1)

T + 2

)]
, (4.13)

with

A = sin

(
xπ

T

)
− 2 sin

(
π(x+ 1

2)

T + 1

)
+ sin

(
π(x+ 1)

T + 2

)
,

B =
nπ2

T 3

[
sin

(
π(x+ 1)

T + 2

)
− sin

(
πx

T

)]
.
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Here, for A, we have also used that sin( πx
T+1) + sin(π(x+1)

T+1 ) = 2 sin(
π(x+ 1

2
)

T+1 ) cos( π
2(T+1)) with

cos( π
2(T+1)) = 1 + Ō(T−2) and absorbed the Ō(T−2) in the ō( n

2

T 6 ). Let us now compute both
terms A and B.

Term B. Note that setting v := T
2 − x we have

B =
nπ2

T 3

[
cos

( πv

T + 2

)
− cos

(πv
T

)]
.

Using the formula for the difference of cosines, we get that

cos
( πv

T + 2

)
− cos

( πv

T + 1

)
= 2 sin

( πv

2(T + 1)(T + 2)

)
sin

( πv

T + 1

T + 3
2

T + 2

)
= (1 + ō(1))

πv

T 2
sin

(πv
T

)
.

We end up with

B = (1 + ō(1))
nπ3v

T 5
sin

(πv
T

)
= (1 + ō(1))

π3n

2T 4

(
1− 2x

T

)
cos

(πx
T

)
. (4.14)

Term A. As far as A is concerned, notice that setting v := T
2 − x we have

A = cos
(πv
T

)
− 2 cos

( πv

T + 1

)
+ cos

( πv

T + 2

)
.

Using the formula for the difference of cosines, we get that A/2 is equal to

− sin

(
πv

2T (T + 1)

)
sin

(
πv

T

T + 1
2

T + 1

)
+ sin

(
πv

2(T + 1)(T + 2)

)
sin

(
πv

T

T (T + 3
2)

(T + 1)(T + 2)

)
=

πv

2T 2

[
sin

(
πv

T

T (T + 3
2)

(T + 1)(T + 2)

)
− sin

(
πv

T

T + 1
2

T + 1

)]
+ Ō

( v

T 3
sin

(
πv

T

))
,

where we have used that sin
(

πv
2T (T+1)

)
= πv

2T 2 (1+Ō(T−1)) and similarly for sin
(

πv
2(T+1)(T+2)

)
. Using

the formula for the difference of sines, we get

sin

(
πv

T

T (T + 3
2)

(T + 1)(T + 2)

)
− sin

(
πv

T

T + 1
2

T + 1

)
= −2 sin

(
πv

2T (T + 2)

)
cos

(
πv

T

[
1 + Ō(T−1)

])
.

Conclusion. Hence, we end up with A = Ō
(
v2

T 4 cos(
πv
T )

)
+ Ō

(
v
T 3 sin(

πv
T )

)
. To compare with B, see

that
v2

T 4 cos
(
πv
T

)
+ v

T 3 sin
(
πv
T

)
nv
T 5 sin

(
πv
T

) =
vT

n tan πv
T

+
T 2

n
. (4.15)

If πv
T → 0, we have

vT

n tan πv
T

+
T 2

n
=

vT

n(πvT + ō( vT ))
+
T 2

n
= (1 + 1

π + ō(1))
T 2

n
−−−→
n→∞

0 .

If πv
T ∼ α ∈ (0, π2 ) we have

vT

n tan πv
T

+
T 2

n
=

(α+ ō(1))T 2

πn(tanα+ ō(1))
+
T 2

n
=

(
1 +

α

π tanα
+ ō(1)

)T 2

n
−−−→
n→∞

0 .
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In both cases, the right-hand side of (4.15) goes to zero, which proves that A is negligible compared
to B. Therefore,

π

4
P0

(
Ey

x(n)
)
eg(T+1)n = (1 + ō(1))

π4n2

2T 6

(
sin

(
πx

T

)
+ sin

(π(x+ 1)

T + 2

))
+ (1 + ō(1))B

= (1 + ō(1))
π4n2

2T 6
sin

(
πx

T

)(
2 +

π

T tan xπ
T

)
+ (1 + ō(1))B ,

and plugging in (4.14) yields the result.

4.2.4. Estimates for a positive random walk. Note that our estimates need adjustments when x = 0
or x = T , which was commented on just after Theorem 1.6. We announced that the theorem was
still true with x = 0 (or identically with y = 0), except when n/T 3 → 0. This section is devoted to
the proof of these claims.

We first go back to correct (4.9) in order to take into account that 0 is the starting point of the
walk. We write

P0

(
Ey

x(n)
)
= P0

(
M−

n > −1,M+
n < y + 1

)
− P0

(
M−

n > −1,M+
n < y

)
= fn(1, T + 2)− fn(1, T + 1) .

Note that y = T but we will keep separating the notations y and T . Thus, we have

P0

(
Ey

x(n)
)
=

4

π

[
sin

(
π

T + 2

)
e−g(T+2)n − sin

(
π

T + 1

)
e−g(T+1)n + Ō(T−3)

]
. (4.16)

Once again we have different asymptotics depending on the ratio n/T 3 that we rapidly present in
the following.
Case n

T 3 → +∞. As previously, e−g(T+2)n is the dominant term and thus

P0

(
Ey

x(n)
)
=

4

π
(1 + ō(1)) sin

(
π

T + 2

)
e−g(T+2)n , (4.17)

and we get the formula of (4.10) applied to x = 0.
Case n

T 3 → α. Factorize by e−g(T )n as in the general case, we thus write

P0

(
Ey

x(n)
)
=

4

π

[
sin

(
π

T + 2

)
e2απ

2 − sin

(
π

T + 1

)
eαπ

2
+ Ō(T−3)

]
e−g(T )n .

That can be rewritten as

P0

(
Ey

x(n)
)
=

4

π
(1 + ō(1))eαπ

2
(eαπ

2 − 1) sin

(
π

T

)
e−g(T )n ,

which is exactly (4.11) taken at x = 0.
Case n

T 3 → 0. In this case, we again factorize by e−g(T+1)n and write

P0

(
Ey

x(n)
)
=

4

π

[
sin

(
π

T + 2

)[
1 +

nπ2

T 3
+
n2π4

2T 6
(1 + ō(1))

]
− sin

(
π

T + 1

)
+ Ō(T−3)

]
e−g(T+1)n .

We are left to compare all the terms in this expression :

A = sin

(
π

T + 2

)
− sin

(
π

T + 1

)
= −2 sin

(
π

2(T + 1)(T + 2)

)
cos

(
π

2T

)
∼ − π

T 2
,

B =
nπ2

T 3
sin

(
π

T + 2

)
∼ nπ3

T 4
, D =

n2π4

T 6
sin

(
π

T + 2

)
∼ n2π5

T 7
.

See that A≪ B and D ≪ B using both n
T 2 → ∞ and n

T 3 → 0, meaning that

P0

(
Ey

x(n)
)
=

4nπ

T 3
(1 + ō(1)) sin

(
π

T + 2

)
e−g(T+1)n .
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This proves the formula given in (1.7).
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