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Abstract. In this paper, we study the Onsager-Machlup function and its relationship to the
Freidlin-Wentzell function for measures equivalent to arbitrary infinite dimensional Gaussian mea-
sures. The Onsager-Machlup function can serve as a density on infinite dimensional spaces, where a
uniform measure does not exist, and has been seen as the Lagrangian for the “most likely element".
The Freidlin-Wentzell rate function is the large deviations rate function for small-noise limits and
has also been identified as a Lagrangian for the “most likely element". This leads to a conundrum
- what is the relationship between these two functions?

We show both pointwise and Γ-convergence (which is essentially the convergence of minimizers)
of the Onsager-Machlup function under the small-noise limit to the Freidlin-Wentzell function - and
give an expression for both. That is, we show that the small-noise limit of the most likely element is
the most likely element in the small noise limit for infinite dimensional measures that are equivalent
to a Gaussian. Examples of measures include the law of solutions to path-dependent stochastic
differential equations and the law of an infinite system of random algebraic equations.

1. Introduction

The primary objective of this paper is an investigation of the relationship between the Onsager-
Machlup (Onsager and Machlup, 1953) and Freidlin-Wentzell (Freidlin and Wentzell, 1984) functions
for measures equivalent to an arbitrary Gaussian measure.

First, recall the setting of Rd-valued diffusion processes. By Girsanov’s theorem (Øksendal, 2003),
the law of the solution to the stochastic differential equation (SDE)

dXε = b(Xε)dt+ εdB(t)

is equivalent to the law of the Gaussian process εB(t), in the sense that both measures agree on
the same null sets. In ‘small noise’ settings as ε → 0, there has been extensive work deriving the
so-called ‘Friedlin-Wentzell’ large deviations rate functions for diffusions (see Dembo and Zeitouni
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(1998), as well as Gao and Liu (2023); Budhiraja and Song (2020) for more recent work), and it
can be shown that the Friedlin-Wentzell function for Xε is given by

FWX(z) =
1

2

∫ T

0
(z′(t)− b(z(t))2dt.

A well-known interpretation of the minimizer of this Friedlin-Wentzell function is as the “most
likely" path the small noise process takes between fixed initial and final states. On the other hand,
the minimizer of the Onsager-Machlup function (Dürr and Bach, 1978) for Xε (ε > 0),

OMXε(z) =
1

2ε2

∫ T

0
[(z′(t)− b(z(t))2 + ε2b′(z(t))]dt,

when z is sufficiently regular, is also interpreted as the most likely path between initial and final
states. This immediately poses a dilemma - if both theories claim to produce the most likely path,
how can they be reconciled?

In the SDE setting, the relationship between these two theories has been explored in Li and Li
(2021); Lu et al. (2017). As can be immediately anticipated from the displays above, ε2OMXε

converges pointwise to FWX as ε → 0. In these papers the authors further prove that the Onsager-
Machlup function Γ-converges (Braides, 2002) to the Freidlin-Wentzell function. Thus, in particular
for Xε, their results imply that ε2OMXε(z) Γ-converges to the FWX(z) as ε → 0. Since Γ-
convergence can be understood as essentially the convergence of minimizers, it follows, at least
in the case of SDEs, that the Freidlin-Wentzell “most likely path" is the small noise limit of the
Onsager-Machlup “most likely path".

However, the connection between Onsager-Machlup and Freidlin-Wentzell theories appears to be
more subtle. For instance, in the paper Dutra et al. (2014) the authors study numerics for estimating
the most likely path of a given stochastic differential equation. The authors show that the choice
of discretization leads to differing behavior - an Euler-Maruyama discretization led to the Freidlin-
Wentzell “most likely path", while a trapezoid discretization led to the Onsager-Machlup “most likely
path". Further, connections between the Onsager-Machlup and Friedlin-Wentzell theories have been
hinted at in more general settings. For instance, in the context of computing rare event paths for
stochastic partial differential equations (SPDEs), E et al. (2004) observe that the Friedlin-Wentzell
path is an “analogue” of the Onsager-Machlup path (see Liu et al. (2020) as well). However, to the
authors’ best knowledge, no work has been done to rigorously establish the relationship between the
Onsager-Machlup and Freidlin-Wentzell functions (and their minimizers) at this level of generality.

By a sufficiently general version of Girsanov’s theorem, in many settings the law of a solution to
SDEs/SPDEs driven by a general Gaussian noise (which can be a stochastic process, random field
or more general objects) is equivalent to the law of the underlying noise. Utilizing this, our primary
result below encompasses the setting of SDEs/SPDEs, and extends well beyond to that of measures
equivalent to arbitrary Gaussian reference measures.

Theorem 1.1. Let B be a separable Banach space with centered Gaussian measure µ0. Let µ
be another Borel measure on B equivalent to µ0, with density dµ

dµ0
= exp(Φ), where Φ satisfies

mild regularity conditions. Define the measures µε
0 by µε

0(A) = µ0(
1
εA) for Borel A ⊂ B and

µε = exp( 1
ε2
Φ)µε

0. Then the Onsager-Machlup function for the measures µε exist, denoted by OMµε .
Additionally, we have that {µε} satisfy a LDP with rate function FW(z) := limε→0+ ε2OMµε(z)
and speed ε2.

Furthermore, denoting by OM-Mode(µε) := arg infz∈B OMµε we have that every cluster point of
the elements OM-Mode(µε) is a minimizer of FW, denoted by FW-Mode(µ) := arg infz∈B FW(z).
If ε2OMµε are equicoercive, then we also have that limε→0+ OM-Mode(µε) = FW-Mode(µ).

The proof of Theorem 1.1 boils down to two “tilting" lemmas - one for Onsager-Machlup in
Corollary 2.6 and one for large deviations in Lemma 3.2. In large deviations analysis, the exponential
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tilting principle is a mechanism for transferring large deviations principles from a given sequence of
measures to a sequence of equivalent measures. Lemma 3.2 proves a slightly generalized version of
this principle that applies in the setting of measures equivalent to a Gaussian. In Corollary 2.6, we
present the Onsager-Machlup function for measures equivalent to Gaussians, and represents a type
of tilting. Our proof uses these two results to establish the main Theorem 1.1.

1.1. Literature Review. We provide a short review of the literature related to the Onsager-Machlup
and Friedlin-Wentzell theories; a full review is outside the scope of this short paper. The Onsager-
Machlup theory was originally introduced in Onsager and Machlup (1953) to compute the probabil-
ity that a system experiencing Gaussian (thermodynamic) fluctuations will pass through a succession
of non-equilibrium states over time. This probability was expressed in terms of what is now rec-
ognized as the Friedlin-Wentzell function. The Onsager-Machlup theory for SDEs was originally
studied in Dürr and Bach (1978), who generalized the results in Onsager and Machlup (1953) to
non-Gaussian Markov diffusions. Durr and Bach provide a rigorous definition and derivation of
the Onsager-Machlup function . Subsequently, the theory has been substantially developed and ex-
tended to random fields and SPDEs (Dembo and Zeitouni, 1991; Mayer-Wolf and Zeitouni, 1993) as
well. A key motivation for the continued development of the Onsager-Machlup theory is its central
role in metastability analysis (Cuff et al., 2012; Olivieri, 2003; Cassandro et al., 1986; Hongler and
Desai, 1986; Davies, 1982), and the fact that the Onsager-Machlup function can be viewed as the
Lagrangian yielding the most likely path connecting metastable states in a stochastic system.

The Friedlin-Wentzell function arises as the small noise large deviations rate function of a Markov
diffusion process (Dembo and Zeitouni, 1998; Freidlin and Wentzell, 1984) . The Friedlin-Wentzell
theory is also used in pathwise analyses of metastable behavior, with the large deviations rate func-
tion begin used to determine the time-scale of ‘tunneling’ behavior in the small noise setting (Olivieri
and Vares, 2005). Metastable phenomena emerge outside the small noise setting, and therefore the
relationship between the Onsager-Machlup and Friedlin-Wentzell theories is of significance and in-
terest. The convergence of the Onsager-Machlup to Freidlin-Wentzell for SDEs, specifically, was
studied in Li and Li (2021) and Du et al. (2021). This paper establishes the relationship between
them for measures that are equivalent to Gaussian measures on Banach spaces.

2. The Onsager-Machlup Formalism

In finite dimensional probability, computations involving expectations, probabilities and related
quantities can be greatly eased by working with a probability density function. These densities
capture how a probability distribution compares with some kind of uniform measure - typically
Lebesgue or counting measure. Densities are also the optimization objective to be maximized when
computing the mode (or most likely element) of a distribution.

For instance, given a probability measure µ on Rn that is equivalent to the Lebesgue measure λ,
we can express its Radon-Nikodym derivative by

dµ

dλ
(z) = lim

ε→0

µ(Bε(z))

λ(Bε(z))
= lim

ε→0

µ(Bε(z))

λ(Bε(0))
∝ lim

ε→0

µ(Bε(z))

µ(Bε(0))
,

where the final relation comes from the Lebesgue differentiation theorem. The last expression makes
sense even on non-locally compact spaces where there might not be a uniform measure.

The notion of a density does not immediately transfer to infinite dimensional probability as there
is no uniform measure on infinite dimensional spaces. However, the so-called Onsager-Machlup
function can serve the role of a density in infinite dimensions. This function was introduced by
Onsager and Machlup (1953), and the key insight in Onsager-Machlup theory is that one can
compare a probability distribution to translations of itself rather than comparing a probability
distribution to some translation invariant measure. This recovers the standard density in the finite
dimensional case but allows for “densities” on infinite dimensional spaces.
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Definition 2.1. Let (X, d) be a metric space. Let µ be a Borel probability measure on X. If the
following limit exists

lim
ε→0

µ(Bε(z1))

µ(Bε(z2))
= exp (OMµ(z2)−OMµ(z1)) , (2.1)

then OMµ(z) is called the Onsager-Machlup function for µ.

Remark 2.2. The Onsager-Machlup function in Definition 2.1 can be thought of as the negative log
“density" of µ. That is,

“
dµ

dλ
(z)” = exp (−OMµ(z))

for some possibly nonexistent uniform measure λ. In the case where X = Rd then the above equality
is rigorous, by the Lebesgue differentiation theorem. Also, note that the Onsager-Machlup function
is only defined up to an additive constant. We also define the “mode" or the most likely element of
µ as the minimizer of OMµ.

Remark 2.3. We also observe that the Onsager-Machlup formalism has found its way into Bayesian
statistics and MAP estimation such as in Dashti et al. (2013); Stuart (2010). Additionally, in Selk
et al. (2021) the authors prove a “portmanteau" theorem that relates the Onsager-Machlup func-
tion on an abstract Banach space equipped with a Gaussian measure to an information projection
problem, to an “open loop" or state-independent KL-weighted control problem, and in the case of
classical Wiener space to an Euler-Lagrange equation or variational form. Furthermore, using this
Portmanteau theorem the authors in Selk and Honnappa (2021) prove a Feynman-Kac type result
for systems of ordinary differential equations. They demonstrate that the solution to a system of
second order and linear ordinary differential equations is the most likely path of a diffusion. This
Feynman-Kac result, like the original Feynman-Kac for parabolic partial differential equations, can
(in principle) be used to efficiently solve systems of ordinary differential equations via Monte Carlo
methods.

The following proposition represents a “tilting” lemma, allowing for Onsager-Machlup functions
to be transfered to equivalent measures.

Lemma 2.4. Let µ0 be a Borel measure on Banach space B. Suppose that µ0 has an associated
Onsager-Machlup function OMµ0 : B → [−∞,∞]. Consider the measure µ with density

dµ

dµ0
=

1

Eµ0 [e
−Φ]

exp(−Φ).

Suppose that for each ε0 > 0, for each x ∈ B and for all ε < ε0 there is some continuous increasing
ϕx,ε0 : [0, ε0] → [0,∞) with ϕ(0) = 0 so that |Φ(u) − Φ(x)| ≤ ϕ(ε) on Bε(x). Then µ has an
associated Onsager-Machlup function

OMΦ(z) = Φ(z) + OMµ0(z).

Proof : We consider the ratio

µ(Bε(z1))

µ(Bε(z2))
=

∫
Bε(z1)

µ(du)∫
Bε(z2)

µ(du)
.
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Using the density, adding and subtracting Φ(zi) for i = 1, 2 in both integrals yields that

µ(Bε(z1))

µ(Bε(z2))
=

∫
Bε(z1)

exp(−Φ(u))µ0(du)∫
Bε(z2)

exp(−Φ(u))µ0(du)

=

∫
Bε(z1)

exp(−Φ(u) + Φ(z1)− Φ(z1))µ0(du)∫
Bε(z2)

exp(−Φ(u) + Φ(z2)− Φ(z2))µ0(du)

= exp (Φ(z2)− Φ(z1))

∫
Bε(z1)

exp(−Φ(u) + Φ(z1))µ0(du)∫
Bε(z2)

exp(−Φ(u) + Φ(z2))µ0(du)
.

By assumption, there are some ϕi on Bε(zi) so that

|Φ(zi)− Φ(u)| ≤ ϕi(ε)

for i = 1, 2. Therefore for ϕ = ϕ1 − ϕ2 we have that

µ0(Bε(z1))

µ0(Bε(z2))
e−ϕ(ε) ≤

∫
Bε(z1)

exp(−Φ(u) + Φ(z1))µ0(du)∫
Bε(z2)

exp(−Φ(u) + Φ(z2))µ0(du)
≤ µ0(Bε(z1))

µ0(Bε(z2))
eϕ(ε).

Taking the limit ε → 0 concludes. □

For the purposes of our paper, we are interested in Gaussian measures. For more information
on Gaussian measure theory see Bogachev (1998); Hairer (2009). For measures equivalent to a
Gaussian (Dashti et al., 2013, Theorem 3.2) derives an expression for the Onsager-Machlup function,
which we recall in the next proposition.
Proposition 2.5. Let µ0 be a centered Gaussian measure on Banach space B with Cameron-
Martin space Hµ0 and Cameron-Martin norm ∥ · ∥µ0 . Let Φ : B → R be a function that is locally
Lipschitz and locally bounded. Define the measure µ with positive density dµ

dµ0
= 1

Eµ0 [e
−Φ]

e−Φ. Then
the Onsager-Machlup function for µ exists and is equal to

OMµ(z) =

{
Φ(z) + 1

2∥z∥
2
µ0

if z ∈ Hµ

∞ else .

Proof : We recall (see e.g. Bogachev (1998), Section 4.7) that the Onsager-Machlup function for the
Gaussian measure µ0 is

OMµ0(z) =

{
1
2∥z∥

2
µ0

if z ∈ Hµ0

∞ else.

The expression for OMµ follows by Lemma 2.4. □

The following corollary can be straightforwardly proved by substitution in Proposition 2.5, and
contains the assumptions we need for Theorem 1.1.
Corollary 2.6 (ε-dependent Tilting Lemma). Let µ0 be a centered Gaussian measure on Banach
space B with Cameron-Martin space Hµ0 and Cameron-Martin norm ∥ · ∥µ0. Consider the functions
F ε(y) : B → R and suppose that they satisfy the following expansion

F ε(y) = F0(y) + εF1(y) +
ε2

2
F2(y) + ...+ εnRn(ε, y),

for some functions Fi : B → R with limε→0Rn(ε, y) = 0. Suppose that F0 is continuous. Further-
more, assume that the functions Fi and Rn satisfy the following moment condition

lim sup
ε→0

ε2 logEµε
0

[
exp

(
γi
max{|Fi(y)|, |Rn(ε, y)|}

ε2

)]
< ∞,
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for some γi > 0 and for all 0 ≤ i ≤ n. Define the measures equivalent to µε
0 by

µε =
1

Eµε
0

[
exp

(
− 1

ε2
F ε(y)

)] exp(− 1

ε2
F ε(y)

)
µε
0.

Then the Onsager-Machlup function for µε exists and is equal to

OMµε(z) =

{
1
ε2
F ε(z) + 1

2ε2
∥z∥2µ0

if z ∈ Hµ0

∞ else .

3. An ε-dependent Tilting Lemma and Small Noise LDPs

There are multiple ways of constructing new LDPs from existing ones. One principled approach
is “tilting" - which passes large deviations principles from a sequence of reference measures to a
sequence of measures equivalent to the reference measures. We direct the reader to den Hollander
(2000, Theorem III.17) , for the standard tilting lemma. One form of the standard tilting lemma
reads as follows.

Lemma 3.1. Let µε
0 be a collection of Borel probability measures on a Banach space B satisfying a

LDP with good rate function I0 : B → [0,∞] and rate ε2. Consider a continuous function F : B → R.
Assume that for some γ > 0 we have

lim sup
ε→0

ε logEµε
0
[exp (γ|F (y)|)] < ∞.

Define the measures equivalent to µε
0 by

µε =
1

Eµε
0
[exp

(
− 1

ε2
F (y)

)
]
exp

(
− 1

ε2
F (y)

)
µε
0.

Then µε satisfies a LDP with good rate function

I(y) := I0(y) + F (y)− inf
z∈B

{F (z) + I0(z)}.

However, in many cases where one would like to apply the tilting lemma, the function F depends
on ε. This is apparent in the case of Freidlin-Wentzell large deviations for stochastic differential
equations as we will see shortly. Therefore, we need a generalized version of the tilting lemma which
we provide.

Lemma 3.2 (ε-dependent Tilting Lemma). Let µε
0 be a collection of exponentially tight Borel mea-

sures on Banach space B satisfying a LDP with good rate function I0 : B → [0,∞]. Consider the
functions F ε(y) : B → R and suppose that they satisfy the following expansion

F ε(y) = F0(y) + εF1(y) +
ε2

2
F2(y) + ...+ εnRn(ε, y),

for some functions Fi : B → R with limε→0Rn(ε, y) = 0. Suppose that F0 is continuous. Further-
more, assume that the functions Fi and Rn satisfy the following moment condition

lim sup
ε→0

ε2 logEµε
0

[
exp

(
γi
max{|Fi(y)|, |Rn(ε, y)|}

ε2

)]
< ∞,

for some γi > 0 and for all 0 ≤ i ≤ n. Define the measures equivalent to µε
0 by

µε =
1

Eµε
0

[
exp

(
− 1

ε2
F ε(y)

)] exp(− 1

ε2
F ε(y)

)
µε
0.

Assume that the measures µε are exponentially tight. Then µε satisfies a LDP with good rate function

I(y) := I0(y) + F0(y)− inf
z∈B

{F0(z) + I0(z)}.



Small-Noise Limit 855

Proof : We will apply Bryc’s lemma (see Dembo and Zeitouni (1998, Theorem 4.4.2)). To this end,
consider a bounded and continuous function φ : B → R. Then consider

L := ε2 log

(
Eµε

[
exp

(
−φ(y)

ε2

)])
.

Using the form of F ε, we get that

L = ε2 log

(
Eµε

0

[
exp

(
−φ(y) + F ε(y)

ε2

)])
− ε2 log

(
Eµε

0

[
exp

(
−F ε(y)

ε2

)])
.

In the limit ε → 0, by Hölder’s inequality, reverse Hölder’s inequality, Varadhan’s lemma and the
assumptions on Fi and Rn, we have that

lim
ε→0

L = lim
ε→0

ε2 log

(
Eµε

0

[
exp

(
−φ(y) + F0(y)

ε2

)])
− ε2 log

(
Eµε

0

[
exp

(
−F0(y)

ε2

)])
. (3.1)

By Varadhan’s lemma (Dembo and Zeitouni, 1998, Theorem 4.3.1) and the assumptions on F0, we
have that

lim
ε→0

L = − inf
y∈B

{φ(y) + F0(y) + I0(y)}+ inf
z∈B

{F0(z) + I0(z)}.

By Bryc’s lemma (Dembo and Zeitouni, 1998, Theorem 4.4.2) and the assumption of tightness of
µε, we conclude. □

Small noise large deviations for arbitrary Gaussian measures on Banach space are well known.
In Bogachev (1998), for instance, it is shown that the Freidlin-Wentzell rate function for a general
Gaussian measure µ0 with Cameron-Martin space Hµ0 is 1

2∥ ·∥
2
µ0

. In particular, the small noise rate
function for εB(t) is

FW(z) =

{
1
2

∫ T
0 (z′(t))2dt for z ∈ W1,2

0

∞ else ,

where W1,2
0 = {t 7→

∫ t
0 f(s)ds :

∫ T
0 f2(s)ds < ∞} is the Cameron-Martin space of the classical

Wiener measure which consists of absolutely continuous functions with L2 weak derivative. The
first instance of small noise large deviations for infinite-dimensional non-Gaussian measures came in
Freidlin and Wentzell (1984), where the authors studied small noise large deviations for the solution
to the SDE

dXε(t) = b(Xε(t))dt+ εdB(t), (3.2)

where b ∈ C1. In particular, Freidlin and Wentzell (1984) shows the following proposition.

Proposition 3.3. The law of Xε satisfies a LDP as ε → 0, with speed ε2 and with rate function

FW(z) =

{
1
2

∫ T
0 (b(z(t))− z′(t))2dt for z ∈ W1,2

0

∞ else .

Below, we offer an alternate, considerably simpler, proof of this result by invoking the ε-tilting
lemma above.

Proof : By Girsanov, the law of Xε, µε, has density with respect to the law of εB(t), µε
0 given by

dµε

dµε
0

= exp

(
1

ε2

(∫ T

0
b(B(t))dB(t)− 1

2

∫ T

0
b2(B(t))dt

))
. (3.3)

At first glance, it might appear from equation (3.3) that we might not need the full ε-dependent
Lemma 3.2. However, note that the Itô integral is not defined pathwise. On the other hand, recall
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that the Itô integral is µε
0-a.s. equal to a Stratonovich integral, which is defined pathwise. Applying

Itô’s lemma under µε
0 yields

dµε

dµε
0

= exp

(
1

ε2

(∫ T

0
b(B(t)) ◦ dB(t)− ε2

2

∫ T

0
b′(B(t))dt− 1

2

∫ T

0
b2(B(t))dt

))
,

where
∫ T
0 b(B(t)) ◦ dB(t) represents the Stratonovich integral. As b is continuous it has an anti-

derivative F , and the Stratonovich integral satisfies
∫ T
0 b(B(t))◦dB(t) = F (B(T ))−F (B(0)), which

is indeed continuous.
Applying the ε-dependent tilting Lemma 3.2 gives that the rate function for µε is

FW(z) =

{
−
(∫ T

0 b(z(t))dz(t)− 1
2

∫ T
0 b2(z(t))dt

)
+ 1

2

∫ T
0 (z′(t))2dt if z ∈ W1,2

0

∞ else .

□

4. Proof of Theorem 1.1

We begin this section with a motivating example for small noise large deviations for Gaussian
measures in finite dimensions.
A Motivating Example. Consider a family of real valued normally distributed random variables Xε

where Xε ∼ N (0, ε2). We are interested in the decay of the probability

P (Xε ∈ A) =

∫
A

1√
2πε2

e−x2/2ε2dx,

for Borel A ⊂ R. Thankfully the standard Laplace principle on R yields the appropriate scaling
and gives the large deviations principle

lim
ε→0+

ε2 logP (Xε ∈ A) = − essinfx∈A
x2

2
.

In this case, the Onsager-Machlup function for the law of the random variable Xε is just the term
in the exponent - OMµε(x) = x2

2ε2
and we have that ε2OMµε(x) = x2

2 = FW(x).

Perhaps surprisingly, this equivalence (up to an ε2 scaling) of the Onsager-Machlup and Freidlin-
Wentzell functions holds true even for a Gaussian measure on a Banach space. More precisely,
consider a Banach space (B, ∥·∥) with a Borel measure µ so that all the one dimensional projections
are Gaussian. Consider the measure µε defined by µε(A) := µ(ε−1A) for Borel A ⊂ B. Then it is
shown in e.g. Bogachev (1998) section 4.9, that the measures µε satisfy a large deviations principle
(LDP) with rate function FWµ and additionally for regular enough z we have that, for any ε > 0,

ε2OMµε(z) = FWµ(z) =
1

2
∥z∥2µ,

where ∥ · ∥µ is the so-called Cameron-Martin norm (distinct from the norm on the Banach space).
To obtain an analogous result on arbitrary Banach spaces, first recall the definition of

Γ-convergence (for more information on Γ-convergence see Braides (2002)):

Definition 4.1. Let X be a topological space and N (x) denote the set of all neighborhoods of
x ∈ X. Further, let Fn : X → R be a sequence of functions on X. The Γ-lower and Γ-upper limits
are defined as

Γ− lim inf
n→∞

Fn(x) = sup
Nx∈N (x)

lim inf
n→∞

inf
y∈Nx

Fn(y),

Γ− lim sup
n→∞

Fn(x) = sup
Nx∈N (x)

lim sup
n→∞

inf
y∈Nx

Fn(y).
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Then, the function F : X → R is a Γ-limit of Fn if Γ− lim infn→∞ Fn = Γ− lim supn→∞ Fn = F .

Recall the small-noise SDE in (3.2), whose measure µε satisfies (3.3). Applying Proposition 2.6
shows that the Onsager-Machlup function for µε is

OMµε(z) = − 1

ε2

(∫ T

0
b(z(t))dz(t)− ε2

2

∫ T

0
b′(z(t))dt− 1

2

∫ T

0
b2(z(t))dt

)
+

1

2ε2

∫ T

0
(z′(t))2dt,

for z ∈ W1,2
0 and infinite otherwise. It is not hard to see that ε2OMµε converges to FW both as a

pointwise and as a Γ-limit.
The following proposition shows that this conclusion can be generalized considerably.

Proposition 4.2. Let µ0 be a centered Gaussian measure on a Banach space B with Cameron-
Martin norm ∥ · ∥µ0 (see Hairer (2009), Section 3.2). Let µε

0 denote the measure defined by µε
0(A) =

µ0(ε
−1A) for Borel A ⊂ B. Let F : B → R be a function and suppose that F (y) = F0(y) + εF1(y) +

... + εnRn(ε, y) := F ε(y), µε
0-a.s. where the Fi and Rn satisfy the assumptions of Lemma 3.2, and

suppose that the Fi are locally bounded. Define the measures µε with densities

dµε

dµε
0

=
1

Eµε
0
[e−

1
ε2

F ε(y)]
exp

(
− 1

ε2
F ε(y)

)
.

Then the Freidlin-Wentzell rate function for µε exists and is

FW(y) = F0(y) +
1

2
∥y∥2µ0

− inf
z∈Hµ0

(F0(z) +
1

2
∥z∥2µ0

).

Furthermore, denote by OMε(z) the Onsager-Machlup function for µε. Then the limit

lim
ε→0+

ε2OMε(z) = FW(z).

holds, both as pointwise and in the Γ-limit sense.

Proof : By Lemma 3.2, we have that the Freidlin-Wentzell rate function for µε exists and is FW(z) =
F0(z) +

1
2∥z∥

2
µ0

− infz∈Hµ0
(F0(z) +

1
2∥z∥

2
µ0
). Then we just need to check the pointwise and Γ con-

vergence. Without loss of generality, we may assume that infz∈Hµ0
(F0(z) +

1
2∥z∥

2
µ0
) = 0. This is

because the Onsager-Machlup function is only defined up to an additive constant and we may add
− 1

ε2
infz∈Hµ0

(F0(z) +
1
2∥z∥

2
µ0
) to OMε. Proceeding with that, using Corollary 2.6 we have that

ε2OMε(z) = F0(z) + εF1(z) + ...+ εnRn(ε, z) +
1

2
∥z∥2µ0

,

as the Onsager-Machlup function for µε
0 is 1

2ε2
∥z∥2µ0

. Clearly the pointwise limit of this is F0(z) +
1
2∥z∥

2
µ0

. Now we just have to check Γ convergence. To this aim, note that F0(z) +
1
2∥z∥

2
µ0

is
continuous and Γ convergence is stable under continuous pertubations. Therefore we just need to
show that

Γ− lim
ε→0

εF1(z) + ...+ εnRn(ε, z) = 0.

Note that the Fi are locally bounded and thus on the neighborhood Nz of the point z, we have that

lim
ε→0

inf
x∈Nz

εF1(x) + ...+ εnRn(ε, x) = 0.

Since Nz is an arbitrary neighborhood of z, it follows by definition that OMε Γ-converges to FW . □
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Proof of Theorem 1.1: Following Proposition 4.2, by Γ convergence, we have that every cluster point
of the minimizers of ε2OMµε is a minimizer of FW (see Braides (2002), section 1.5). If additionally
we know that the functions ε2OMµε are equicoercive (which is the case with SDEs with C1 drift),
by the fundamental theorem of Γ convergence (see Braides (2002) section 1.5), then we have the
full version of Theorem 1.1. □

As a consequence of Theorem 1.1, we can specialize to the case of the generalized Girsanov
theorem given in e.g. Nualart (2006), Theorem 4.1.2.

Proposition 4.3. Let (B, µ0) be a Gaussian Banach space with Cameron-Martin space Hµ0 and
Cameron-Martin norm ∥·∥µ0. Define µε

0 as above and consider white noise process {W (h) : h ∈ Hµ0}
associated to µ0. Suppose that H : B → Hµ0 is a continuous function so that W (H) is defined and
suppose that for all ε > 0 we have

Eµε
0

[
exp

(
1

ε2

(
W (H)− 1

2
∥H∥2µ0

))]
= 1.

Define the collection of measures

µε = exp

(
1

ε2

(
W (H)− 1

2
∥H∥2µ0

))
µε
0.

Then the Friedlin-Wentzell rate function for µε exists and is equal to

FW(z) =

{
1
2∥z −H(z)∥2µ0

if z ∈ Hµ0

∞ else.

Furthermore we have that limε→0 ε
2OMε(z) = FW(z) both pointwise and in sense of Γ convergence.

Proof : Let i : Hµ0 → L2([0, T ],R) be an isomorphic isometry of separable Hilbert spaces. Denote
by z∗t = i−1(χ[0,t]). Then W (z∗t ) is a standard Brownian motion. Furthermore, one can verify that
for all h ∈ Hµ0 we have

W (ω, h) =

∫ T

0
(ih)(t)dW (ω, z∗t ).

Therefore we have that

W (ω,H(ω)) =

∫ T

0
(iH(ω))(t)dW (ω, z∗t ).

Under the measure µε
0, we can change to Stratonovich integration to get that∫ T

0
(iH(ω))(t)dW (ω, z∗t ) =

∫ T

0
(iH(ω))(t) ◦ dW (ω, z∗t )−

ε2

2
[(iH)(ω),W (ω, z∗t )](T ).

The Stratonovich integral is a continuous function of ω so long as H is, and so is 1
2∥H∥2µ0

, so
therefore Proposition 4.2 applies and

FW(z) =

{
−
∫ T
0 (iH(z))(t) ◦ dW (z, z∗t ) +

1
2∥H(z)∥2µ0

+ 1
2∥z∥

2
µ0

if z ∈ Hµ0

∞ else.

One may note that for z ∈ Hµ0 we have∫ T

0
(iH(z))(t) ◦ dW (z, z∗t ) = −⟨(iH)(z), (iz)⟩L2

= −⟨H(z), z⟩µ0 .

Therefore we arrive at

FW(z) =

{
1
2∥z −H(z)∥2µ0

if z ∈ Hµ0

∞ else.
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Finally, note that

OMε(z) =

{
1

2ε2
∥z −H(z)∥2µ0

+ 1
2 [(iH)(z),W (z, z∗t )](T ) if z ∈ Hµ0

∞ else.

□

Remark 4.4. Note that the remainder term

ε2OMε(z)− FW(z) =
ε2

2
[(iH)(z),W (z, z∗t )](T )

could be seen as a test of whether µε is Gaussian or not. For example, if iH(z) = b(z(t)) for some
sufficiently regular b : R → R, as is the case with SDEs, then

ε2

2
[(iH)(z),W (z, z∗t )](T ) =

ε2

2

∫ T

0
b′(z(t))dt.

Which is constant as a function of z if and only if b′ is constant. That is, if W (H) − 1
2∥H∥2µ0

is a
quadratic function.

This is not always the case, as we can show. Letting µ0 be the law of a Brownian motion on the
space of continuous functions, we can consider the density defined by

Ψ(B) = exp

(
1

ε2

(∫ T

0
ϕ(t)dB(t)− 1

2

∫ T

0
ϕ2(t)dt

))
,

where ϕ is the adapted process defined by

ϕ(t) =

{
B(t) if t ∈ [0, T/2]

−B(T − t) if t ∈ [T/2, T ].

Then converting from Itô to Stratonovich yields zero quadratic covariation with B(t), and thus the
functions are equal but the measures µε := Ψ(B)µε

0 are not Gaussian.

4.1. Examples.

4.1.1. Stochastic Differential Equations. The principal examples of measures satisfying Theorem 1.1
are the laws of solutions to stochastic differential equations. There is the classical theory of SDEs
driven by Brownian motion that motivates our proof, but our result also extends to stochastic
differential equations driven by more general Gaussian processes (see e.g. Budhiraja and Song
(2020)), path dependent SDEs (see e.g. Ma et al. (2016)), the solution to stochastic PDEs driven
by Gaussian fields (see e.g. Liu et al. (2020)), among other SDEs.

We provide one example here for a path-dependent SDE to demonstrate the potential utility of
our result. In order to compute explicitly, we restrict to a linear path-dependent SDE which is
Gaussian so our full machinary isn’t necessary. Nonetheless, modulo solving nonlinear ODEs as in
Ma et al. (2016), this general approach should in principle be able to be applied to more general
path-dependent SDEs. Consider the stochastic process

Xε(t) =

∫ t

0
a(s)εB(s)ds+ εB(t),

where a is continuous. As Xε = εX1 is Gaussian we know that its Onsager-Machlup and Freidlin-
Wentzell functions satisfy FW(·) = ε2OMε(·) = 1

2∥ · ∥
2
µ, where ∥ · ∥µ is the Cameron-Martin norm

associated to X1, but we can still apply Girsanov and our Theorem 1.1.
An application of Girsanov shows that the law of Xε(t), µε with respect to the law of εB(t), µε

0

is given by
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dµε

dµε
0

=exp

(
1

ε2

(∫ T

0

∫ t

0
e−(A(t)−A(s))dB(s)dB(t)

−1

2

∫ T

0

(∫ t

0
e−(A(t)−A(s))dB(s)

)2

ds

))
,

(4.1)

where A′ = a. Converting to Stratonovich integration gives that µε
0-a.s. we have

dµε

dµε
0

= exp

(
1

ε2

(∫ T

0

∫ t

0
e−(A(t)−A(s)) ◦ dB(s) ◦ dB(t)

−1

2

∫ T

0

(∫ t

0
e−(A(t)−A(s)) ◦ dB(s)

)2

ds

))
,

so the Onsager-Machlup function is

OMε(z) =
1

2ε2

∫ T

0

(
z′(t)−

∫ t

0
e−(A(t)−A(s))z′(s)ds

)2

dt =
1

2ε2
∥z∥2µ.

Our Theorem 1.1 shows that ε2OMε(·) → FW(·) both pointwise and as a Γ-limit (which for
emphasis we repeat is known from the fact that Xε is Gaussian). For a more general path-dependent
SDE

dX(t) = b(X(t), B(t), t)dt+ dB(t)

the density in equation (4.1) is more complicated and in general cannot be written down explicitly.
However Girsanov ensures that it exists and a similar procedure would yield the same result.

4.1.2. System of Random Algebraic Equations. We conclude with an example demonstrating that
the utility of our result extends beyond the situation of SDEs. Let an be a sequence of real numbers
that is square summable. Let ξn be a sequence of i.i.d. standard normal random variables. Then by
Hairer (2009), exercise 3.5 we have that the law of g := (a1ξ1, x2ξ2, ...), µ0, is a Gaussian measure on
the Banach (Hilbert) space B of square summable sequences. The Cameron-Martin space of µ0, Hµ0 ,
is the collection of all sequences z = {a2nϕn} for some square summable sequence ϕ = {ϕn}. For each
z ∈ Hµ0 , we have that W (z) = ⟨ϕ,g⟩ =

∑∞
n=1 ϕnanξn where W (z) is understood as in Proposition

4.3. The Onsager-Machlup for µ0 by Theorem 2.6 is OMµ0(z) =
1
2

∑∞
n=1 ϕ

2
na

2
n = 1

2∥z∥
2
µ0

. Let fn be
measurable functions so that fn(ξn) satisfy for all ε > 0

Eµ0

[
e

1
2ε2

∑
f2
n(εξn)a

2
n

]
< ∞.

Denote the law of gε = (a1εξ1, a2εξ2, ...) by µε
0 and define the measures

µε = exp

(
1

ε2

( ∞∑
n=1

fn(ξn)anξn − 1

2

∞∑
n=1

f2
n(ξn)a

2
n

))
µε
0.

Suppose that there exist solutions xn to the random algebraic equations xεn = fn(x
ε
n)+εanξn. Then

µε is the law of the random sequence xε = {xεn}. We have that xε satisfies a LDP with rate function
FWµ(z) =

1
2

∑∞
n=1(ϕn − f(ϕn))

2a2n = ε2OMµε(z).
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