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Abstract. We consider a Markov jump process on a general state space to which we apply a
time-dependent weak perturbation over a finite time interval. By martingale-based stochastic cal-
culus, under a suitable exponential moment bound for the perturbation we show that the perturbed
process does not explode almost surely and we study the linear response (LR) of observables and
additive functionals. When the unperturbed process is stationary, the above LR formulas become
computable in terms of the steady state two-time correlation function and of the stationary dis-
tribution. Applications are discussed for birth and death processes, random walks in a confining
potential, random walks in a random conductance field. We then move to a Markov jump process on
a finite state space and investigate the LR of observables and additive functionals in the oscillatory
steady state (hence, over an infinite time horizon), when the perturbation is time-periodic. As an
application we provide a formula for the complex mobility matrix of a random walk on a discrete
d-dimensional torus, with possibly heterogeneous jump rates.

1. Introduction

Markov jump processes in continuous time and with general state space form a fundamental class
of stochastic processes. They are often called Markov chains when the state space is discrete and
countable (finite or infinite). If the state space is infinite, the phenomenon of explosion can take
place and it consists of the accumulation of infinitely many jumps in finite time. We consider here an
unperturbed system modelled by a general Markov jump process with time-homogeneous transition
kernel, assuming that a.s. explosion does not take place.

We study the linear response of the system in two regimes. In the first regime we take a time-
dependent weak perturbation and a fixed initial distribution, i.e. not depending on the perturbation.
In the second regime, restricting to finite state spaces, we consider a time-periodic weak perturbation
and take as initial distribution the one producing the oscillatory steady state in the perturbed
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dynamics. In both regimes we focus on the linear response of the expected value of observables at a
fixed time and of the expected value of empirical additive functionals in the time interval [0, t] under
observation, while in the second regime we also give a mathematical formulation of the complex
mobility matrix.

In the last years several rigorous results have been obtained for the linear response (and in par-
ticular for the Einstein’s relation) of Markov processes, even in a random environment, under a
weak external field homogeneous in time and space, with initial distribution given by the station-
ary one for the perturbed dynamics (see e.g. Faggionato et al., 2019; Gantert et al., 2017, 2012;
Komorowski and Olla, 2005; Lebowitz and Rost, 1994; Mathieu and Piatnitski, 2018 and references
therein). Often the unperturbed dynamics in these models is reversible. Our context is simpler
from a technical viewpoint, on the other hand we aim at providing (in a rigorous way) explicit
formulas for the linear response under time-dependent or time-periodic weak external fields, not
necessarily homogeneous in space (without restricting to a reversible unperturbed dynamics). As a
natural development one could then consider e.g. the linear response in the oscillatory steady state
for random walks in random environments (our second regime covers the case of a random walk on
the lattice in a periodized environment).

We now detail our results in the first regime. We apply a time-dependent weak perturbation such
that the perturbed process is again a Markov jump process (now with time-dependent transition
kernel), whose law on the path space associated to a finite time interval [0, t] of observation is
absolutely continuous (when explosion does not take place) w.r.t. the corresponding law of the
unperturbed Markov jump process. We isolate an exponential moment condition (see Condition
C[ν, t] in Definition 2.2) under which we show that the perturbed process a.s. does not explode (see
Theorem 2.5) and linear response takes place. More precisely, the expected value of the observables
at time t, as well as of empirical additive functionals in the time-interval [0, t], is differentiable in
the perturbation parameter λ at λ = 0, and we provide formulas for the derivative at λ = 0 (see
Theorem 3.5). We point out that non–explosion is unstable under weak perturbation (even of a mild
form) as shown by the counterexample in Section 6.3. When the initial distribution is stationary
for the unperturbed process, our formulas allow explicit computations in terms of the stationary
distribution and the two-time correlation function of the unperturbed process (see Theorem 3.6). As
examples of applications of our results, in Section 6 we discuss birth and death processes, random
walks on Zd in a confining potential and random walks in a random conductance field.

In deriving Theorems 2.5, 3.5 and 3.6 mentioned above, we do not use operator perturbative
theory. Our starting point is the explicit Radon-Nykodim derivative of the law of the perturbed
process restricted to paths (without explosion) in the time interval [0, t] w.r.t. the law of the unper-
turbed process. Using stochastic calculus for jump processes (cf. Jacod and Shiryaev, 2003 and the
short overview provided in Section 7), and in particular introducing suitable martingales, we then
obtain both the non-explosion of the perturbed process and the LR formulas for additive functionals
which are cumulative at jump times. We point out that analyzing the Radon-Nykodim derivative
to derive LR has been a common approach in several contributions in probability (see e.g. Fag-
gionato et al., 2019; Gantert et al., 2017, 2012; Komorowski and Olla, 2005; Lebowitz and Rost,
1994; Mathieu and Piatnitski, 2018 and references therein), more often known under the name of
“trajectory-based approach" in statistical physics (see e.g. Baiesi and Maes, 2013; Maes, 2020 and
references therein). We mention the paper Hairer and Majda (2010) for a different approach to the
study of LR in stochastic systems, and that of Dembo and Deuschel (2010) in which LR, and in par-
ticular the Fluctuation Dissipation Theorem, is discussed as a result of perturbations of Markovian
semi-groups.

We now move to the second regime. When the perturbation (in the same form of the first
regime) is time-periodic, the perturbed system admits an oscillatory steady state (OSS), which is
left invariant by time translations by multiples of the period. It is then natural to investigate the LR
in the OSS (which is now an infinite-time horizon problem). The rigorous derivation of the existence
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of the OSS and of the LR is, in general, not a simple problem, especially if one considers stochastic
processes in a random environment (we refer to Faggionato and Mathieu (in preparation) for results
on reversible models without random environment). We restrict here to a finite state space and in
Theorems 4.5, 4.7 and 4.8 we describe the LR for the expected value of observables and additive
functionals in the OSS. Here we use both matrix perturbation theory and our previous results for
the LR over a finite observation time interval. As a special model for transport in heterogeneous
media, we consider as unperturbed process a random walk on a discrete d-dimensional torus with
heterogeneous jump rates (equivalently one could consider a random walk on Zd with spatially
periodic jump rates). In Theorem 5.1 for nearest-neighbor jumps and in Theorem 5.3 for long
jumps, we derive a formula for the complex mobility matrix σ(ω) when the perturbation is of
cosine-type in time (see Kubo et al., 1985, Section 1.6 for some examples of complex mobility). In
Section 6 we compute σ(ω) explicitly in particular cases. When the system is very heterogenous σ(ω)
cannot be computed explicitly, but our formulas for σ(ω) remain useful to investigate properties of
σ(ω) (as in Faggionato and Mathieu, in preparation) and to prove homogenization of σ(ω) under
the infinite volume limit in the case of random unperturbed jump rates (cf. Faggionato and Salvi, in
preparation). We also mention Joubaud et al. (2015) for rigorous LR results in the OSS of Langevin
dynamics.

Outline of the paper: In Section 2 we introduce the unperturbed and the perturbed Markov
jump processes, Condition C[ν, t] and we discuss explosion. In Section 3 we present our main
results concerning linear response in a finite time window and with a fixed initial distribution. In
Section 4 we focus on the linear response in the oscillatory steady state of an irreducible Markov
chain with finite state space and under time-periodic perturbation. In Section 5 we analyse the
complex mobility matrix for a random walk on a discrete torus with heterogenous jump rates. In
Section 6 we discuss several examples. In Section 7 we collect some useful facts from the theory
of stochastic calculus for processes with jumps. Sections 8 to 14 and Appendix A are devoted to
proofs. Finally in Appendix B we consider time-independent perturbations and we comment on how
our results in Section 3 compare to known linear response results when starting with the invariant
distribution of the perturbed process.

2. Continuous-time Markov jump processes

2.1. Unperturbed Markov jump process. Let (X ,B) be a measure space such that singletons {x} are
measurable. We consider the Markov jump process (Xt)t≥0 with initial distribution ν and transition
kernel given by r(x, dy). Here ν is a given probability measure on (X ,B), and r(x, dy) satisfies the
following:

• For any x ∈ X , r(x, ·) is a measure with finite and positive total mass on (X ,B), and
• For any B ∈ B, the map X ∋ x 7→ r(x,B) ∈ [0,+∞) is measurable.

We define the holding time parameter

r̂(x) := r(x,X ) ∈ (0,+∞) , (2.1)

and assume that r(x, {x}) = 0 without loss of generality. Then the stochastic dynamics of (Xt)t≥0

is described as follows. At time t = 0 the Markov jump process starts with X0 having distribution ν.
Once arrived at x, the process waits there an exponential time with parameter r̂(x) (independently
from the rest), after which it jumps to y with jump probability r(x, dy)/r̂(x).

Note that, when X is infinite, such a process may explode in finite time, i.e. it may be the case
that τ∞ < +∞, where τ∞ denotes the explosion time defined as the supremum of the jump times.
By adding a cemetery state † to the state space X and setting Xt = † for all t ≥ τ∞, we may assume
that the Markov jump process is defined for all times.

If X0 has distribution ν, we write Pν for the probability associated to the unperturbed process
and Eν for the corresponding expectation.
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2.2. Non–explosion of the unperturbed process. The following assumption will be understood
throughout the text, without further mention:

Assumption. From now on we fix a probability measure ν on X corresponding to the distribution of
X0, and assume non–explosion of the unperturbed process Pν–almost surely, without further mention.
When ν is the stationary distribution we will denote it by π (see Section 3.2).

Trivially, if supx∈X r̂(x) < +∞, then the unperturbed process does not explode Pν–a.s. as can be
easily checked by a suitable coupling with a Poisson process. When r̂(·) is unbounded, the existence
of a Lyapunov function is enough to guarantee non–explosion. Let us explain this point in more
detail. Given a measurable function f : X → R such that either

∫
X |f(y)|r(x, dy) < +∞ for all

x ∈ X , or f ≥ 0, or f ≤ 0, we define

Lf(x) :=

∫
X
[f(y)− f(x)]r(x, dy) . (2.2)

Note that, due to the assumptions on f , the r.h.s. of (2.2) is well defined in R ∪ {−∞,+∞}. We
call the above operator L the formal generator of the Markov jump process. Then, by Varadhan
(2007, Theorem 4.6), for the unperturbed process not to explode for any initial point (and therefore
also Pν–a.s.) it suffices that there exist a constant C ≥ 0 and a non–negative function U on X such
that

LU(x) ≤ CU(x) ∀x ∈ X (2.3)
and U(x) → +∞ whenever r̂(x) → +∞.

2.3. Perturbed Markov jump process. We fix a bounded measurable function g : [0,+∞)×X ×X →
R. Given λ > 0, the λ–perturbed Markov jump process (Xλ

t )t≥0 is the time–inhomogeneous Markov
jump process with initial distribution ν and transition kernel

rλt (x, dy) = r(x, dy)eλg(t,x,y) . (2.4)

The precise definition of Xλ := (Xλ
t )t≥0 can be given in terms of piecewise deterministic Markov

processes (PDMPs) (cf. Davis, 1993):
(
t,Xλ

t

)
t≥0

is the time–homogeneous PDMP with vector field
∂t and transition kernel Q((s, x), (dt, dy)) = δs(dt)r

λ
t (x, dy). To recall the construction of Xλ we

introduce the holding time parameters

r̂λt (x) :=

∫
X
rλt (x, dy) =

∫
X
r(x, dy)eλg(t,x,y) . (2.5)

Note that, as the function g is bounded and due to (2.1), we have r̂λt (x) ∈ (0,+∞) for all x ∈ X .
Then, up to the possible explosion time τλ∞, the process Xλ

t can be realized as follows. Starting
from a state x, the Markov jump process spends at x a random time τλ1 such that

P (τλ1 > t) = exp
{
−
∫ t

0
r̂λs (x)ds

}
.

Knowing that τλ1 = t1, at time t1 the Markov jump process jumps to a new state x1 chosen randomly
with probability rλt1(x, dx1)/r̂

λ
t1(x). It then waits at x1 until the time τλ2 > t1 with law

P (τλ2 > t) = exp
{
−
∫ t

t1

r̂λs (x1)ds
}
, t ≥ t1 .

Knowing that τλ2 = t2, at time t2 the Markov jump process jumps to a new state x2 chosen randomly
with probability rλt2(x1, dx2)/r̂

λ
t2(x1), and so on. Again if the process explodes in finite time we set

Xλ
t = † for all t ≥ τλ∞, so that the perturbed process is well defined for all times.
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Remark 2.1. In what follows we will mainly be interested in the perturbed process in some time
interval [0, t]. Due to the above construction, it is clear that then only the value of g up to time t
is relevant. As a consequence, in the rest g will simply be a bounded measurable function defined
for times varying in the observation time interval.

If Xλ
0 has distribution ν, we write Pν for the probability associated to the perturbed process and

Eν for the corresponding expectation (the notation is the same as the one we use for the unperturbed
process, but the event and function under consideration will present the superscript λ).

2.4. Finite exponential moments condition. Let us introduce the following notation, that will be
used throughout. For α : [0, t]× X × X → R measurable function and r(x, dy) transition kernel of
the unperturbed dynamics, the contraction of α with respect to the kernel r is defined by

αr(s, x) :=

∫
X
α(s, x, y)r(x, dy) (2.6)

(when the integral in the r.h.s. is well posed). With this notation in place we can define the finite
exponential moments condition, which in particular will assure the linear response regime when
applied to α = g.

Definition 2.2 (Exponential moments condition). We say that α : [0, t] × X × X → R satisfies
Condition C[ν, t] with parameter θ > 0 if

Eν

[
exp

{
θ

∫ t

0
|α|r(s,Xs)ds

}]
< +∞ . (2.7)

We say that α satisfies Condition C[ν, t] if the above holds for some parameter θ > 0.

We now give a criterion assuring Condition C[ν, t]. Recall from (2.2) the definition of Lf .

Lemma 2.3. For a given function α : [0, t] × X × X → R assume that there exist a function
U : X → R and positive constants θ, C, c such that

(a) U(x) ≥ c for all x ∈ X ;
(b) Ur(x) :=

∫
X U(y)r(x, dy) < +∞ for all x ∈ X ;

(c) LU ≤ CU − θ |α|rU ;
(d) ν[U ] < +∞.

Then α satisfies Condition C[ν, t] with parameter θ.

Note that, if U(x) → +∞ when r̂(x) → +∞, then Item (c) in Lemma 2.3 is a reinforced Lyapunov
condition (compare with (2.3)).

This criterion is a special case of a more general (and more technical) criterion presented in
Lemma 9.1 in Section 9, inspired by Lyapunov functions and the arguments in Bertini et al. (2015b,
Section 3). See Bertini et al. (2015b, Condition 2.2) and Donsker and Varadhan (1976, p. 392) for
related conditions in the context of large deviations. We point out that, while Lemma 2.3 gives
sufficient conditions for Condition C[ν, t] to hold, in some cases one can directly and more efficiently
verify Condition C[ν, t] using Definition 2.2. To this aim, see the example in Section 6.4.

The next result states that the exponential moment condition C[ν, t] implies finiteness of small
exponential moments for the sum of the values of α over the jumps of the unperturbed process.

Lemma 2.4. Given α : [0, t] × X × X → R measurable and bounded, suppose that α satisfies
Condition C[ν, t] with parameter θ > 0. Then for γ := 4−1min{θ, ∥α∥−1

∞ } it holds

Eν

[
exp

{
γ

∑
s∈(0,t]:
Xs− ̸=Xs

|α(s,Xs−, Xs)|
}]

< +∞ . (2.8)
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The above lemma in proved in Section 8. We remark that the condition α bounded is necessary:
as a counterexample one can take the unperturbed process (Xs)s∈[0,t] to be a Poisson process of
rate 1 (with ν = δ0), and pick α(·, x, y) := x. Then, Condition C[ν, t] is satisfied while (2.8) is
violated for all γ > 0. Indeed, in this case

∫ t
0 |α|r(s,Xs)ds =

∫ t
0 Xsds ≤ tXt, thus allowing to check

Condition C[ν, t]. On the other hand, the sum in (2.8) equals (X2
t − Xt)/2 ≥ (X2

t − 1)/4 and
Eν [e

(γ/4)X2
t ] diverges for all γ > 0.

2.5. Non–explosion of the perturbed process. We recall that τλ∞ denotes the explosion time of the
perturbed process Xλ, given by the supremum of the jump times. We also recall that we have
assumed that the unperturbed process with initial distribution ν a.s. does not to explode.

As already mentioned, our linear response results will be derived under the assumption that g
satisfies condition C[ν, t]. In fact, this condition automatically implies that the perturbed process
does not explode, and hence we do not need to assume non-explosion of the perturbed process
separately. Of course, if one is just interested in the non-explosion of the perturbed process, one
can more efficiently use the criteria developed e.g. in Chou and Khasminskĭı (2011).

Recall that g, defined in (2.4), is measurable and bounded.

Theorem 2.5. Suppose that g satisfies Condition C[ν, t] with parameter θ > 0. Then for all λ ≤
8−1min{θ, ∥g∥−1

∞ }, the perturbed process Xλ does not explode in [0, t] Pν–a.s., i.e. Pν(τ
λ
∞ > t) = 1.

The above theorem is proved in Section 10 using stochastic calculus techniques inspired by Pal-
mowski and Rolski (2002) (see Lemma 3.1 therein).

Remark 2.6 (Instability of non-explosion under small perturbations). At this point the reader may
wonder whether the fact that g is assumed to be bounded, by itself implies that if the unperturbed
process does not explode then the perturbed process does not either, at least for λ small enough.
This turns out not to be the case: see Section 6.3 for a counterexample.

3. Linear response of Markov jump processes

We start by fixing some notation. We denote a path (ξs)s∈[0,t] simply by ξ[0,t]. D([0, t],X ) is the
Skohorod space of càdlàg paths from [0, t] to X , while Df ([0, t],X ) is the subset of D([0, t],X ) given
by the paths with a finite number of jumps. For any ξ[0,t] ∈ Df ([0, t],X ), we abbreviate∑

s∈(0,t]

α(s, ξs−, ξs) :=
∑

s∈(0,t] : ξs− ̸=ξs

α(s, ξs−, ξs) (3.1)

throughout this note.
Below we will assume that g satisfies Condition C[ν, t] and we will take λ small. As a consequence,

by Theorem 2.5, the perturbed Markov jump process does not explode Pν–a.s. in the time interval
[0, t]. Due to non explosion (recall our main assumption at the beginning of Section 2.2), almost
surely the paths X[0,t] and Xλ

[0,t] belong to the set Df ([0, t],X ).
As in the trajectory-based approach to linear response (cf. Baiesi and Maes, 2013; Maes, 2020), the

starting point to analyze the response of the perturbed system is the following well-known Girsanov-
type expression, which can be easily verified: for any measurable function F : D([0, t],X ) → R,
bounded or non-negative, and any initial distribution ν it holds

Eν

[
F (Xλ

[0,t])
]
= Eν

[
F (X[0,t])e

−Aλ(X[0,t])
]

(3.2)
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where the action Aλ : Df ([0, t],X ) → R is defined as (see (2.1), (2.4) and (2.5))

Aλ

(
ξ[0,t]

)
: =

∫ t

0

[
r̂λs (ξs)− r̂(ξs)

]
ds− λ

∑
s∈(0,t]

g(s, ξs−, ξs)

=

∫ t

0
ds

∫
X
r(ξs, dy)

(
eλg(s,ξs,y) − 1

)
− λ

∑
s∈(0,t]

g(s, ξs−, ξs) .

(3.3)

The next result, proved in Section 11, is the starting point of our linear response analysis.

Proposition 3.1. Suppose that g satisfies Condition C[ν, t]. Then for any measurable function F :
Df ([0, t],X ) → R such that F

(
X[0,t]

)
∈ Lp(Pν) for some p ∈ (1,+∞], the map λ 7→ Eν

[
F
(
Xλ

[0,t]

)]
is differentiable at λ = 0. Moreover, it holds

∂λ=0Eν

[
F
(
Xλ

[0,t]

)]
= Eν

[
F
(
X[0,t]

)
Gt

(
X[0,t]

)]
(3.4)

where the map Gt : Df ([0, t];X ) → R is defined by

Gt

(
ξ[0,t]

)
:=

∑
s∈(0,t]

g(s, ξs−, ξs)−
∫ t

0
gr(s, ξs)ds (3.5)

with the shorthand notation introduced in (3.1).

The above statement should be understood to include that all the expectations appearing are
well defined and finite under the stated assumptions. Although the time t is fixed once and for all
and omitted from the notation, for later use we have made explicit the dependence on t of Gt. We
also point out that one could give a quantitative bound on the range of values of λ for which the
claim in Proposition 3.1 holds true by taking more care of the constants in the proof.

Remark 3.2. As we will show in Section 7, provided g satisfies Condition C[ν, t], Gt(X[0,t]) is a
martingale (it is in fact a purely discontinuous martingale, in the sense of Jacod and Shiryaev, 2003,
Def. 4.11). As a consequence, the r.h.s. of (3.4) equals the covariance Cov(F

(
X[0,t]

)
, Gt

(
X[0,t]

))
with respect to the probability measure Pν .

3.1. Linear response for observables and additive functionals. We can give explicit expressions for
the r.h.s. of (3.4) for specific classes of functionals F . We are mainly interested in the following
three basic cases (by additivity, functionals given by sums of the following ones can be treated as
well):

(1) F
(
ξ[0,t]

)
= v(ξt) for some measurable function v : X → R;

(2) F
(
ξ[0,t]

)
=

∫ t

0
v(s, ξs)ds, with v : [0, t]×X → R measurable;

(3) F
(
ξ[0,t]

)
=

∑
s∈(0,t]

α(s, ξs−, ξs) for α : [0, t]×X × X → R measurable.

To this aim, fix the following terminology.

Definition 3.3. We say that a measurable function α : [0, t]× X × X → R is Pν–integrable if one
of the following equivalent bounds is satisfied:

Eν

[ ∑
s∈(0,t]

|α(s,Xs−, Xs)|
]
<∞, Eν

[ ∫ t

0
|α|r(s,Xs)ds

]
<∞. (3.6)

The equivalence in the above definition comes from the following fact:
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Lemma 3.4. Given a measurable function α : [0, t]×X × X → R, it holds

Eν

[ ∑
s∈(0,t]

|α(s,Xs−, Xs)|
]
= Eν

[ ∫ t

0
|α|r(s,Xs)ds

]
. (3.7)

In particular, the two bounds in (3.6) are equivalent. As a consequence, if α satisfies Condition
C[ν, t], then α is Pν–integrable.

The proof of the above lemma is given in Section 7. For the next result recall the definition of
Gt given in (3.5).

Theorem 3.5. Suppose that g satisfies Condition C[ν, t]. Then the following holds:
(1) Let v : X → R be a measurable function such that v(Xt) ∈ Lp(Pν) for some p ∈ (1,+∞].

Then
∂λ=0Eν

[
v(Xλ

t )
]
= Eν

[
v(Xt)Gt(X[0,t])

]
. (3.8)

(2) For v : [0, t] × X → R measurable such that
∫ t
0 ∥v(s,Xs)∥Lp(Pν)ds < +∞ for some p ∈

(1,+∞], it holds

∂λ=0Eν

[∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
Eν

[
v(s,Xs)Gs(X[0,s])

]
ds. (3.9)

(3) Let F : Df ([0, t];X ) → R be the additive functional of the form

F
(
ξ[0,t]

)
=

∑
s∈(0,t]

α(s, ξs−, ξs) , (3.10)

with α : [0, t]×X × X → R measurable and such that∑
s∈(0,t]

|α(s,Xs−, Xs)| and
∫ t

0
|α|r(s,Xs)ds (3.11)

belong to Lp(Pν) for some p ∈ (1,+∞]. For example take α bounded and such that it satisfies
Condition C[ν, t]. Then it holds

∂λ=0Eν

[
F
(
Xλ

[0,t]

)]
=

∫ t

0
Eν

[
(αg)r(s,Xs)

]
ds

+

∫ t

0
Eν

[
αr(s,Xs)Gs(X[0,s])

]
ds,

(3.12)

where αr and (αg)r denote the contraction of the functions α, αg with respect to the transition
kernel r, as in (2.6).

The above statement should be understood to include that all the expectations appearing are
well defined and finite under the stated assumptions. The proof of Theorem 3.5 is given in Section
12. Stochastic calculus for processes with jumps will be crucial to derive the above Item (3), we
collect in Section 7 the needed theoretical background.

3.2. Linear response at stationarity. A special role is played by invariant distributions. We recall
that a distribution π on X is called invariant for the Markov jump process (Xt)t≥0 if, when starting
with initial distribution π, it holds (Xt+T )t≥0

L
= (Xt)t≥0 for all T > 0. If there is no explosion, a

distribution π is invariant if and only if we have the following identity between measures on X :

π(dx)

∫
X
r(x, dy) =

∫
X
π(dy)r(y, dx) , (3.13)
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i.e. π(dx)r̂(x) =
∫
X π(dy)r(y, dx). We denote by (X∗

t )t≥0 the stationary time-reversed process. This
is again a non-explosive Markov jump process with initial distribution π and with transition kernel
r∗ satisfying the detailed balance equation

π(dx)r(x, dy) = π(dy)r∗(y, dx) . (3.14)

Note that (3.14) is an identity between measures on X × X . When (Xt)t≥0 is a Markov chain,
writing r(x, dy) as r(x, y)δy and π(dx) as π(x)δx, we have the explicit well known expression
r∗(y, x) = π(x)r(x, y)/π(y). For generic Markov jump processes with non atomic measure r(x, dy),
the transition kernel r∗(y, dx) might not be explicit.

Set

g∗(s, x, y) := g(s, y, x) ,

and introduce the function

ψs(x) :=

∫
X
g(s, y, x)r∗(x, dy)−

∫
X
g(s, x, y)r(x, dy) = g∗r∗(s, x)− gr(s, x) . (3.15)

Theorem 3.6. Suppose that the unperturbed Markov jump process is stationary with initial distri-
bution π. Then, under the assumptions of Theorem 3.5 with ν replaced by π and with the same
notation for the functionals, we have:

∂λ=0Eπ

[
v(Xλ

t )
]
=

∫ t

0
dsEπ

[
v(Xt)ψt−s(Xt−s)] =

∫ t

0
dsEπ

[
v(Xs)ψt−s(X0)]

∂λ=0Eπ

[∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
ds

∫ s

0
duEπ

[
v(s,Xs)ψs−u(Xs−u)

]
∂λ=0Eπ

[
F
(
Xλ

[0,t]

)]
=

∫ t

0
Eπ

[
(αg)r(s,Xs)

]
ds+

∫ t

0
ds

∫ s

0
duEπ

[
αr(s,Xs)ψs−u(Xs−u)

]
.

If, in particular, the perturbation g is of the form g(s, x, y) = τ(s)E(x, y) (decoupled case), then
with E∗(x, y) := E(y, x)

∂λ=0Eπ

[
v(Xλ

t )
]
=

∫ t

0
ds τ(t− s)Eπ

[
v(Xs)

(
E∗

r∗(X0)− Er(X0)
)]

∂λ=0Eπ

[∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
ds

∫ s

0
du τ(s− u)Eπ

[
v(s,Xu)

(
E∗

r∗(X0)− Er(X0)
)]

∂λ=0Eπ

[
F
(
Xλ

[0,t]

)]
=

∫ t

0
ds τ(s)Eπ

[
(αE)r(s,Xs)

]
+

∫ t

0
ds

∫ s

0
du τ(s− u)Eπ

[
αr(s,Xu)

(
E∗

r∗(X0)− Er(X0)
)]
.

The proof of Theorem 3.6 is provided in Section 13. Note that the second and third formulas in
Theorem 3.6 can be rewritten by replacing Eπ[v(s,Xs)ψs−u(Xs−u)] with Eπ[v(s,Xu)ψs−u(X0)] and
Eπ[αr(s,Xs)ψs−u(Xs−u)] by Eπ[αr(s,Xu)ψs−u(X0)] (the equivalence follows from the stationarity
of π).

Remark 3.7. Note that in the stationary case, covered by Theorem 3.6, the linear response of all
the functionals under consideration can be computed explicitly from the 2-time distributions of
the stationary time-reversed process. Moreover, we note that the random variable ψs−u(Xs−u) =
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g∗r∗(s− u,Xs−u)− gr(s− u,Xs−u) has Pπ–zero mean, since

Eπ

[
g∗r∗(s− u,Xs−u)

]
= Eπ

[ ∫
X
g(s− u, y,Xs−u)r

∗(Xs−u, dy)

]
=

∫
X

∫
X
g(s− u, y, x)π(dx)r∗(x, dy)

=

∫
X

∫
X
g(s− u, y, x)π(dy)r(y, dx)

= Eπ

[ ∫
X
g(s− u,Xs−u, y)r(Xs−u, dy)

]
= Eπ

[
gr(s− u,Xs−u)

]
.

As a consequence, the 2–time expectations appearing in the first part of Theorem 3.6 are indeed
correlations.

A comparison of our results with the linear response when starting with the invariant distribution
of the perturbed process is provided in Appendix B.

4. Linear response of periodically driven Markov jump processes in the oscillatory
steady state

In this section, and the next one, we focus on linear response of Markov jump processes in the
oscillatory steady state. We take X finite and we consider the unperturbed Markov jump process
(Xt)t≥0 on X with transition rates r(x, y) (with our previous notation the transition kernel would
be r(x, dy) =

∑
z∈X r(x, z)δz(dy)).

Assumption 4.1. The process (Xt)t≥0 is irreducible, i.e. it can go from any state x to any y via
jumps with positive transition rate.

The above assumption is equivalent to the fact that zero is a simple eigenvalue of the generator
L. We call π the unique invariant distribution of the unperturbed Markov jump process.

The perturbed process (Xλ
t )t≥0 is then the Markov jump process with transition rates

rλs (x, y) = eλg(s,x,y)r(x, y) ,

g(·, x, y) being periodic on R, bounded and measurable with period T ∈ (0,+∞) for any x, y ∈ X .
As X is finite and g is bounded, no explosion takes place. Moreover, also the discrete–time Markov
chain (Xλ

nT )n≥0 is irreducible and therefore it admits a unique invariant distribution πλ. Then the
law of the perturbed process (Xλ

t )t≥0 with initial distribution πλ (called oscillatory steady state,
shortly OSS) is left invariant by time translations which are multiples of T . It is simple to check
that πλ is indeed the unique initial distribution leading to this type of invariance. In what follows
we aim to investigate the linear response of mean observables and additive functionals on the time
interval [0, t] under Pπλ

(note that now the initial distribution changes with λ).
We consider the complex Hilbert space L2(π) with scalar product

⟨f, h⟩ =
∑
x∈X

π(x)f̄(x)h(x) (4.1)

and write ∥ · ∥ for the associated norm. We define L : L2(π) → L2(π) as the Markov generator of
the unperturbed process (Xt)t≥0 and write L∗ for its adjoint operator in L2(π):

Lf(x) =
∑
y∈X

r(x, y)[f(y)− f(x)] , x ∈ X ,

L∗f(x) =
∑
y∈X

r∗(x, y)[f(y)− f(x)] , x ∈ X ,
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where r∗(x, y) = π(y)r(y, x)/π(x). Then ⟨f,Lh⟩ = ⟨L∗f, h⟩ for all f, h ∈ L2(π). The following
lemma will be proved in Section 14.

Lemma 4.2. Zero is a simple eigenvalue of L∗ with eigenspace given by the constant functions. All
other complex eigenvalues of L∗ have strictly negative real part.

We set
L2
0(π) := {f ∈ L2(π) : π[f ] = 0} ,

where π[f ] =
∑

x π(x)f(x). Then L∗ is an isomorphism if restricted to L2
0(π), indeed π[L∗f ] = 0

by stationarity of π (hence L∗f ∈ L2
0(π)) and L∗ restricted to the finite-dimensional space L2

0(π) is
injective by Lemma 4.2. In what follows, we use the following notation:

f ∈ L2
0(π) ⇒ (L∗)−1f := h where h ∈ L2

0(π) , L∗h = f . (4.2)

Moreover, given c ∈ R \ {0}, the operator (ic+ L∗) : L2(π) → L2(π) is an isomorphism, since it is
injective by Lemma 4.2 and L2(π) is finite dimensional.

We can decompose the space L2(π) as direct sum of the L∗–invariant subspaces L2
0(π) and

{constant functions}. Furthermore, we can decompose L2
0(π) as direct sum of L∗–invariant sub-

spaces where, in a suitable basis, L∗ has the canonical Jordan form. Fixed a dimension n, let
Ai be the matrix with ones on the i–th upper diagonal, and zeros on the other entries (i.e.
(Ai)j,k = δj+i,k, thus implying that A0 = I). The canonical Jordan form in dimension n is given by
Jγ := γI+A1 for some γ ∈ C. We have esJγ = esγ(I+sA1+(s2/2!)A2+ · · ·+(sn−1/(n−1)!)An−1).
Therefore, if ℜ(γ) < 0, all entries of esJγ decay exponentially in s. Moreover, since for γ ̸= 0
we have J−1

γ = γ−1I − γ−2A1 + γ−3A2 + · · · + (−1)n−1γ−nAn−1, it is simple to check that∫ +∞
0 esJγds = −J−1

γ if ℜ(γ) < 0. Since ic + Jγ = Jic+γ , the above formula also implies that∫ +∞
0 e(ic+Jγ)sds = −(ic + Jγ)

−1 if ℜ(γ) < 0. Writing ∥ · ∥ for the norm in L2
0(π), the above

observations and Lemma 4.2 imply that there exists κ > 0 such that

∥esL∗
f∥ ≤ e−κs∥f∥ ∀f ∈ L2

0(π) (4.3)

and that (recall (4.2))

(ic+ L∗)−1f = −
∫ +∞

0
e(ic+L∗)sfds , ∀c ∈ R , ∀f ∈ L2

0(π) . (4.4)

We will frequently use the above formulas in what follows.
We introduce the transition matrix Pλ,t =

(
Pλ,t(x, y)

)
x,y∈X defined as

Pλ,t(x, y) := Px(X
λ
t = y) .

When λ = 0 we simply write Pt. Note that, for t > 0, the matrix Pλ,t has positive entries. Hence,
by Perron-Frobenius Theorem, 1 is a simple eigenvalue of Pλ,t for t > 0 and the distribution πλ is
the only row vector satisfying πλPλ,T = πλ,

∑
x∈X πλ(x) = 1.

By Proposition 3.1 the matrix Pλ,t is differentiable at λ = 0. As 1 is a simple eigenvalue of Pt,
by standard finite dimensional perturbation theory Kato (1982) we get that πλ is differentiable at
λ = 0. By setting π̇ := ∂λ=0πλ and ṖT := ∂λ=0Pλ,T we have

π̇(PT − I) = −πṖT . (4.5)

Define
a(x) := π̇(x)/π(x) ∀x ∈ X

and recall from (3.15) that

ψt(x) :=
∑
y∈X

(
r∗(x, y)g(t, y, x)− r(x, y)g(t, x, y)

)
= g∗r∗(t, x)− gr(t, x) . (4.6)
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In what follows we think of a and ψt as column vectors. Note that ψt is T–periodic in time.
Moreover, ψt ∈ L2

0(π) for all t by Remark 3.7. Due to (4.3) and since supt∈R ∥ψt∥ < +∞, we get
for some C, κ > 0 that

sup
u

∥esL∗ψu∥ ≤ Ce−κs ∀s ≥ 0 . (4.7)

In particular, the integral
∫∞
0 ds esL

∗
ψt−s is well defined for any t ∈ R. The linear response of πλ is

described by the following result, proved in Section 14:

Lemma 4.3. We have a =
∫∞
0 ds esL

∗
ψ−s.

Up to now we have focused on the linear response of the marginal πλ at time zero of the OSS,
but there is nothing special about time zero. In particular, writing πλ,t for the marginal at time t
of the OSS (i.e. πλ,t(x) := Pπλ

(Xt = x)), Lemma 4.3 implies the following (we omit the proof since
immediate):

Corollary 4.4. Defining the column vector at as at(x) :=
∂λ=0πλ,t(x)

π(x) for x ∈ X , we have at =∫∞
0 ds esL

∗
ψt−s.

By combining Theorem 3.6 with the above result, we get the linear response in the OSS for the
same functionals of Theorem 3.6:

Theorem 4.5. Consider the OSS of the perturbed dynamics.
(1) For v : X → R it holds

∂λ=0Eπλ
[v(Xλ

t )] =

∫ ∞

0
ds ⟨esLv, ψt−s⟩ =

∫ ∞

0
dsEπ[v(Xs)ψt−s(X0)] . (4.8)

(2) For v : [0, t]×X → R measurable such that
∫ t
0 |v(s, x)|ds < +∞ for all x ∈ X , it holds

∂λ=0Eπλ

[ ∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
du

∫ ∞

0
ds ⟨esLv(u, ·), ψu−s⟩

=

∫ t

0
du

∫ ∞

0
dsEπ[v(u,Xs)ψu−s(X0)] .

(4.9)

(3) For F : Df ([0, t];X ) → R additive functional of the form (3.10), i.e.

F
(
ξ[0,t]

)
=

∑
s∈(0,t]

α(s, ξs−, ξs),

with α : [0, t] × X × X → R measurable and such that
∫ t
0 |α|r(s, x)ds < +∞ for all x ∈ X .

Then it holds

∂λ=0Eπλ

[ ∑
s∈(0,t]

α(s,Xλ
s−, X

λ
s )
]
=

∫ t

0
Eπ

[
(αg)r(s,Xs)

]
ds

+

∫ t

0
ds

∫ ∞

0
duEπ

[
αr(s,Xu)ψs−u(X0)

]
.

(4.10)

We refer to Section 14 for the proof of Theorem 4.5.

Remark 4.6. By the first formula in Theorem 3.6 and the T–periodicity of ψt, from (4.8) we get
that

∂λ=0Eπλ
[v(Xλ

t )] = lim
n→+∞

∂λ=0Eπ[v(X
λ
t+nT )] . (4.11)
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Let ω denote the frequency associated to the period T , i.e. T = 2π/ω. Given a T -periodic
integrable real function f we write

ck(f) :=
1

T

∫ T

0
e−ikωtf(t)dt , k ∈ Z ,

for its Fourier coefficients, thus leading to f(t) =
∑

k∈Z ck(f)e
ikωt. We also write in Fourier repre-

sentation
ψt(x) :=

∑
k∈Z

ψ̂k(x)e
ikωt , g(t, x, y) =

∑
k∈Z

ĝk(x, y)e
ikωt

thus leading to ψ̂k(x) =
∑

y∈X
(
r∗(x, y)ĝk(y, x)−r(x, y)ĝk(x, y)

)
. For the next linear response result,

recall also the notation (4.2) and note that ψ̂k ∈ L2
0(π). Indeed, as already observed, ψt ∈ L2

0(π)

and therefore the same holds for ψ̂k = 1
T

∫ T
0 e−ikωtψtdt.

Theorem 4.7. Given v : X → R, the map t 7→ fλ(t) := Eπλ
[v(Xλ

t )] is T -periodic in time. Moreover,
for any k ∈ Z it holds

∂λ=0ck(fλ) =

∫ ∞

0
ds⟨es(L+ikω)v, ψ̂k⟩

=

∫ ∞

0
ds e−ikωsEπ[v(Xs)ψ̂k(X0)] .

(4.12)

Proof of Theorem 4.7: By (4.9)

∂λ=0ck(fλ) =
1

T

∫ T

0
dte−ikωt

∫ ∞

0
ds ⟨esLv, ψt−s⟩. (4.13)

As ψt is T -periodic we have 1
T

∫ T
0 dte−ikωtψt−s = e−ikωsψ̂k, which gives the result. □

In the special decoupled case g(s, x, y) = τ(s)E(x, y) the linear response formulas collected up to
now admit a simplified form, we omit the proof since straightforward.

Theorem 4.8. Suppose that g(s, x, y) = τ(s)E(x, y) and let E∗(x, y) := E(y, x). Then, ψt(x) =
τ(t)(E∗

r∗(x) − Er(x)) and, in the same setting of Theorems 4.5 and Theorem 4.7, formulas (4.8),
(4.9), (4.10) and (4.12) read:

∂λ=0Eπλ
[v(Xλ

t )] =

∫ ∞

0
ds τ(t− s)Eπ[v(Xs)(E

∗
r∗(X0)− Er(X0))]

∂λ=0Eπλ

[ ∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
du

∫ ∞

0
ds τ(u− s)Eπ[v(u,Xs)(E

∗
r∗(X0)− Er(X0))]

∂λ=0Eπλ

[ ∑
s∈(0,t]

α(s,Xλ
s−, X

λ
s )
]
=

∫ t

0
τ(s)Eπ

[
(αE)r(s,Xs)

]
ds

+

∫ t

0
ds

∫ ∞

0
du τ(s− u)Eπ

[
αr(s,Xu)(E

∗
r∗(X0)− Er(X0))

]
∂λ=0ck(fλ) = τ̂k

∫ ∞

0
e−ikωsEπ

[
v(Xs)(E

∗
r∗(X0)− Er(X0))

]
ds .

5. Complex mobility matrix

As an example of application of the results in Section 4, we discuss the complex mobility matrix
of a random walk on a torus with heterogeneous jump rates. To this aim, given an integer N ≥ 1,
we consider the torus Td

N := Zd/NZd.
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The unperturbed Markov jump process (Xt)t≥0 is given by the random walk on Td
N jumping

between nearest-neighbour points with jump rates r(x, y) > 0 (r(x, y) := 0 if x, y are not nearest-
neighbours). By irreducibility, the random walk admits a unique invariant distribution π on Td

N .
Let r∗(x, y) be the time-reversed jump rates, i.e. r∗(x, y) = π(y)r(y, x)/π(x). A special case is
given by the reversible random walk on the torus, for which r∗(x, y) = r(x, y). For example, if
r(x, y) = r(y, x) for all x, y, then π is the uniform distribution and r∗(x, y) = r(x, y).

We introduce a time-oscillatory field along the direction of a fixed unit vector v ∈ Rd. Given
λ > 0 and ω ∈ R \ {0}, the perturbed random walk (Xλ

t )t≥0 has jump rates at time t given by

rλt (x, y):= exp{λ cos(ωt)(y − x) · v} r(x, y) (5.1)

for x, y nearest-neighbours (rλt (x, y) := 0 otherwise). Above w · v denotes the Euclidean scalar
product of the vectors v, w. As before, we write πλ for the initial distribution of the OSS. Note that
the perturbation is of decoupled form g(s, x, y) = τ(s)E(x, y) with τ(s) = cos(ωs) and E(x, y) =
(y − x) · v for x, y nearest-neighbours and E(x, y) = 0 otherwise. Setting

Ψ(x) := −
∑

e:|e|=1

(r∗(x, x+ e) + r(x, x+ e))e ∈ Rd , (5.2)

we have (recall that E∗(x, y) := E(y, x))

E∗
r∗(x)− Er(x) = Ψ(x) · v . (5.3)

Note that Ψ(x) = −2
∑

e:|e|=1 r(x, x+ e)e for the reversible random walk. As an immediate conse-
quence of Theorem 4.8 we get that, for any function f : Td

N → R,

∂λ=0Eπλ
[f(Xλ

t )] =

∫ ∞

0
cos(ω(t− s))⟨esLf,Ψ · v⟩ds

= ℜ
(∫ ∞

0
eiωt⟨f, e−(iω−L∗)s(Ψ · v)⟩ds

)
= ℜ

(
eiωt⟨f, (iω − L∗)−1(Ψ · v)⟩

)
.

(5.4)

For the above formula, recall (4.4), that the above integrands decay exponentially fast in s and that
ℜ(z) denotes the real part of the complex number z. Calling (Y λ

t )t≥0 the random walk obtained by
lifting to Zd the original one (Xλ

t )t≥0, we get that the mean instantaneous velocity in the OSS at
time t is given by

Vλ(t) :=
d

dt
Eπλ

[
Y λ
t ] =

∑
e:|e|=1

Eπλ

[
rλt (X

λ
t , X

λ
t + e)

]
e . (5.5)

In what follows we denote by e1, e2, . . . , ed the canonical basis of Rd. Moreover, we let c, γ : Td
N → Rd

be defined as

c(x) :=
d∑

j=1

[
r(x, x+ ej) + r(x, x− ej)

]
ej , (5.6)

γ(x) :=
d∑

j=1

[
r(x, x+ ej)− r(x, x− ej)

]
ej =

∑
e:|e|=1

r(x, x+ e)e . (5.7)

Theorem 5.1. Given ω ̸= 0 it holds

∂λ=0Vλ(t) = ℜ
(
eiωtσ(ω)v

)
, (5.8)
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where the complex mobility matrix σ(ω) =
(
σj,k(ω)

)
is the d × d matrix with complex entries

given by

σj,k(ω) = π[cj ]δj,k + ⟨γj , (iω − L∗)−1Ψk⟩

= π[cj ]δj,k +

∫ +∞

0
⟨γj , e−(iω−L∗)sΨk⟩ds .

(5.9)

For the reversible random walk it holds Ψ(x) = −2γ(x) and L∗ = L, thus implying that σ(ω) is
symmetric and

σj,k(ω) = π[cj ]δj,k − 2⟨γj , (iω − L)−1γk⟩

= π[cj ]δj,k − 2

∫ +∞

0
⟨γj , e−(iω−L)sγk⟩ds .

(5.10)

The proof of the above theorem is given in Section 15.1.

Remark 5.2. Given d × d complex matrices A,B with ℜ(eiωtAv) = ℜ(eiωtBv) for all t ≥ 0 and
v ∈ Rd, then necessarily A = B, since it must be cos(ωt)ℜ(A−B)v = 0 and sin(ωt)ℑ(A−B)v = 0
for all t ≥ 0 and v ∈ Rd. In particular, the validity of the identity (5.8) for all t, v univocally
determines σ(ω).

In Section 6.6 we will compute σ(ω) explicitly in particular cases. When the system is very
heterogenous, σ(ω) cannot be computed explicitly. Formulas (5.9) and (5.10) in Theorem 5.1
are nevertheless useful for investigating the properties of σ(ω) (cf. Faggionato and Mathieu, in
preparation) and also for proving homogenization of σ(ω) as N → +∞ in the case of random
unperturbed jump rates (cf. Faggionato and Salvi, in preparation).

5.1. Extension to more general jump rates. We can introduce and analyze the complex mobility
matrix also when the unperturbed process has long jumps. We describe below how to modify the
above discussion in the general case.

We fix a finite set Z ⊂ Zd such that the canonical projection π : Zd → Td
N = Zd/NZd is injective

when restricted to Z. Given x ∈ Td and z ∈ Z we write x + z for the site x + π(z) in Td
N . The

above sum is understood in the additive quotient group Td
N = Zd/NZd (also before we wrote x+ e

for x+ π(e)). Since π restricted to Z is injective, the sites x+ z with z ∈ Z are all distinct.
We assume now that the unperturbed Markov jump process (Xt)t≥0 is an irreducible Markov

chain (random walk) on Td
N with jump rates r(x, y) and that r(x, y) = 0 if y ̸∈ {x + z : z ∈ Z}.

Fixed a unit vector v ∈ Rd we define the perturbed jump rates as

rλt (x, y) :=

{
exp{λ cos(ωt)(z · v)} r(x, x+ z) if y = x+ z for some z ∈ Z ,

0 otherwise .
(5.11)

Since π is injective on Z, if y = x+z for some z ∈ Z then z in univocally determined, thus assuring
the the above definition is well posed. Due to (5.11) g(s, x, y) = τ(s)E(x, y) with τ(s) = cos(ωs)
and

E(x, y) =

{
z · v if y = x+ z for some z ∈ Z ,

0 otherwise .

In place of (5.2) we now set Ψ(x) := −
∑

z∈Z
(
r∗(x, x+z)+r(x, x+z)

)
z. Then (5.3) remains valid.

Indeed, for z ∈ Z we have E(x + z, z) = −z · v and therefore E∗
r∗(x) =

∑
y∈Td

N
r∗(x, y)E(y, x) =

−
∑

z∈Z r
∗(x, x+ z)z · v. Due to (5.3) equation (5.4) is still valid.

We now introduce the lifted random walk Y λ := (Y λ
t )t≥0 by requiring that π(Y λ

t ) = Xλ
t and that

Y λ makes a jump z whenever Xλ jumps from x to x+z for some z ∈ Z (due to our assumptions, a.s.
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the jumps of Xλ belongs to Z). As Y λ
0 we can take any point in π−1(Xλ

0 ). The mean instantaneous
velocity is now given by

Vλ(t) :=
d

dt
Eπλ

[
Y λ
t ] =

∑
z∈Z

Eπλ

[
rλt (X

λ
t , X

λ
t + z)

]
z . (5.12)

Theorem 5.3. Fix ω ̸= 0 and set γ(x) :=
∑

z∈Z r(x, x + z)z. Then the content of Theorem 5.3
remains valid by replacing the term π[cj ]δj,k in (5.9) and (5.10) with

∑
z∈Z π[r(·, ·+ z)]zjzk.

The proof is a slight modification of the proof of Theorem 5.1 and it is sketched in Section 15.2.

6. Examples

In this section we present some applications of the theoretical results developed so far.

6.1. Random walks on Zd with confining potential and external field. Below, given sites y, z ∈ Zd,
we write y ∼ z if |y − z| = 1.

6.1.1. Unperturbed random walk. As unperturbed process we take the nearest–neighbour random
walk (Xt)t≥0 on Zd with transition rates given by

r(y, z) = exp
{
− 1

2
(V (z)− V (y)) +

1

2
f(y, z)

}
, y ∼ z , (6.1)

for V potential function. We assume that

lim
|y|→+∞

V (y) = +∞ and ∥f∥∞ <∞ . (6.2)

At cost of including the inverse temperature β in V and f , we take β = 1. If the above rates
come from a local detailed balance then it must be r(y,z)

r(z,y) = e−∆H(y,z), where ∆H(y, z) is the
energetic variation in a transition from y to z. In this case, due to (6.1), we have ∆H(y, z) =
(V (z) − V (y)) + 1

2 [f(z, y) − f(y, z)] for y ∼ z. It is then natural to think of f(y, z) as the work
done by an external field on the particle during the transition from y to z and therefore to take
f(y, z) = −f(z, y), thus leading to

∆H(y, z) = (V (z)− V (y))− f(y, z) , y ∼ z . (6.3)

The special case of a spatially uniform external field equal to v ∈ Rd (in addition to the conservative
field associated to V ) can be described by taking f(y, z) = v · (z − y), or equivalently by changing
the potential V (y) into V (y) − v · y. In general, one can include into V the effect of all potential
fields.

The factor e−
1
2
f(y,z) in the rate r(y, z) can also be due to a microscopic energetic barrier (as in

the random barrier model) and in this case it is natural to have f(y, z) = f(z, y). Of course, we can
take f ≡ 0 as well.

Following Bertini et al. (2015a, Section 10.5), when V ∈ C1(Rd), we say that V has diverging
radial variation which dominates the transversal variation if, by orthogonally decomposing ∇V (y)
with y ̸= 0 as

∇V (y) = ⟨∇V (y), ŷ⟩ŷ +W (y) with ŷ := y/|y| ,
it holds

lim
|y|→+∞

⟨∇V (y), ŷ⟩ = +∞ and |W (y)| ≤ α√
d
⟨∇V (y), ŷ⟩+ C (6.4)

for α ∈ [0, 1) and C ≥ 0. Note that (6.4) implies that lim|y|→+∞ V (y) = +∞
We recall some results for the unperturbed random walk obtained (sometimes implicitly) in

Bertini et al. (2015a):

Proposition 6.1 (Bertini et al., 2015a). The following hold:



Time-dependent and time-periodic linear response 879

(i) The unperturbed random walk does not explode almost surely for any starting point.
(ii) If f(y, z) = f(z, y) for all y ∼ z and if Z :=

∑
y∈Zd e−V (y) < ∞, then the unperturbed

random walk is reversible with respect to the stationary distribution π(x) = e−V (x)/Z.
(iii) The unperturbed random walk admits a stationary distribution if

lim
|y|→+∞

−LU
U

(y) = +∞ , U(y) := eV (y)/2 . (6.5)

(iv) Setting r0(y, z) := exp{−1
2(V (z)− V (y))}, the above condition (6.5) is satisfied if r̂0(y) :=∑

z:z∼y r0(y, z) → +∞ as |y| → ∞, and this in turn holds whenever V ∈ C1(Rd) has
diverging radial variation which dominates the transversal variation.

We refer the interested reader to Bertini et al. (2015a, Section 10.5) for a class of external forces
f for which the stationary distribution exists and is given by π(x) = e−V (x)/Z.

Proof of Proposition 6.1: Non–explosion in Item (i) is guaranteed by the existence of a diverging
non-negative function U on Zd satisfying (2.3). As discussed in Bertini et al. (2015a, Section 10.5),
this can be taken to be U(y) = eV (y)/2, to find that

LU

U
(y) =

∑
z:z∼y

(
e

V (z)−V (y)
2 − 1

)
r(y, z)

=
∑
z:z∼y

(
1− e−

1
2
(V (z)−V (y)

)
e

1
2
f(y,z) ≤ 2d e

∥f∥∞
2 ∀y ∈ Zd .

(6.6)

To prove Item (ii) one easily checks detailed balance. To prove Item (iii), by Bertini et al. (2015a,
Proposition 4.1), it is enough to show that (6.5) implies Condition C(σ) with σ = 0 defined in Bertini
et al. (2015a, Section 3). By taking un := U there, this condition C(0) reduces to the following:
(a)

∑
z:z∼y r(y, z)U(z) < +∞ for all y; (b) U is bounded from below by a positive constant; (c)

lim|y|→+∞W (y) = +∞ where W (y) := −LU(y)/U(y); (d) W is bounded from below. We note
that (a) is trivially satisfied; (b) is valid as U = eV/2 and lim|y|→+∞ V (y) = +∞; (d) follows from
(c), and (c) corresponds to (6.5).

Finally, Item (iv) follows from the observations contained in the proof of Bertini et al. (2015a,
Lemma 10.3). For the reader’s convenience we just point out that the first part follows from the
estimate

−LU
U

(y) =
∑
z:z∼y

r(y, z)−
∑
z:z∼y

e
1
2
f(y,z) ≥ r̂0(y)e

− 1
2
∥f∥∞ − 2de

1
2
∥f∥∞ . (6.7)

We point out that the derivation of the second part of Item (iv) in the proof of Bertini et al. (2015a,
Lemma 10.3) does not use that

∑
y∈Zd e−V (y) < +∞ as assumed at the beginning of Section 10.5

in Bertini et al. (2015a) . □

In the case d = 1 we can say more. Indeed, writing m(y) = e−V (y)ϕ(y), the measure m(y) satisfies
detailed balance if and only if

ϕ(y)e
1
2
f(y,y+1) = ϕ(y + 1)e

1
2
f(y+1,y) ∀y ∈ Z ,

which means ϕ(y) = ϕ(0)c(y) for all y ∈ Z, where

c(y) :=


∏y−1

j=0 e
1
2

(
f(j,j+1)−f(j+1,j)

)
if y ≥ 1 ,∏−1

j=y e
1
2

(
f(j+1,j)−f(j,j+1)

)
if y ≤ −1 .

(6.8)

As an immediate consequence we have:
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Proposition 6.2. For d = 1 the unperturbed random walk admits a reversible distribution π if
and only if Z :=

∑
y∈Z e

−V (y)c(y) < +∞. In this case we have π(y) = e−V (y)c(y)/Z. In par-
ticular reversibility takes place in the following cases: (i) f(y, z) = f(z, y) for all y ∼ z and∑

y∈Z e
−V (y) < +∞, (ii) f is only non–zero on a finite family of edges and

∑
y∈Z e

−V (y) < +∞,
(iii)

∑
y∈Z e

−V (y)+∥f∥∞|y| < +∞.

6.1.2. Perturbed random walk. For the perturbed process we fix λ > 0 and a bounded and measur-
able function g : [0, t] × Zd × Zd → R, and set rλ(s, y, z) := eλg(s,y,z)r(y, z) for all s ∈ [0, t] and
neighbouring vertices y ∼ z.

We isolate the following technical result for later applications:

Lemma 6.3. Let α : [0, t]× Zd × Zd → R be bounded and measurable (for example, α = g). Then
α satisfies Condition C[ν, t] with parameter θ := ∥α∥−1

∞ e−∥f∥∞ for ν = δx and any x ∈ Zd, and in
general for any distribution ν such that ν[eV/2] < +∞.

Proof : By Lemma 2.3, in order to guarantee that a function α satisfies Condition C[ν, t] with
parameter θ > 0 it suffices to find a positive function U : Zd → R, bounded away from zero, such
that LU ≤ CU − θ|α|rU for some C > 0 and such that ν[U ] < +∞. Again we take U := eV/2.
Since lim|y|→+∞ V (y) = +∞, U is bounded away from zero. By (6.7) (LU/U)(y) ≤ 2d e∥f∥∞/2 −
r̂0(y)e

−∥f∥∞/2, while

|α|r(s, y) :=
∑
z:z∼y

|α(s, y, z)|r(y, z) ≤ ∥α∥∞r̂0(y)e∥f∥∞/2 .

It thus suffices to take θ := ∥α∥−1
∞ e−∥f∥∞ to have that LU/U ≤ C − θ|α|r for some C > 0. □

The application of Lemma 6.3 above is twofold. Firstly, one can take α = g (since g is bounded),
to get that g satisfies Condition C[ν, t] for ν as in the lemma. This, by Theorem 2.5, automatically
implies non-explosion of the perturbed process for λ < 1/

(
8∥g∥∞e∥f∥∞

)
, as well as the linear

response results stated in Theorems 3.5 and 3.6. Secondly, one can apply Lemma 6.3 to a bounded
function α entering in the definition of the additive functional (3.10), to get that α satisfies Condition
C[ν, t] and therefore the quantities in (3.11) belong to Lp(Pν). For example, by Lemma 6.3, if α
and v are bounded then (3.8), (3.9), (3.12) hold for ν = δx with x ∈ X and in general for any initial
distribution ν with ν[eV/2] < +∞.

We conclude this section by discussing an application of Theorem 3.6 on linear response starting
from the unperturbed stationary distribution π. We consider jump rates defined in terms of a
local detailed balance. As for (6.3) we consider g(s, ·, ·) antisymmetric, i.e. g(s, x, y) = −g(s, y, x).
Then we focus on the work functional F (X[0,t]), given by the work done by all forces (also the
time-dependent ones producing the perturbation). We have

F (X[0,t]) := −V (Xt) + V (X0) +
∑

s∈(0,t]

f(Xs−, Xs) + 2λ
∑

s∈(0,t]

g(s,Xs−, Xs) . (6.9)

Proposition 6.4. Suppose that the unperturbed process has a stationary distribution π, from which
it is started (see Propositions 6.1 and 6.2 for sufficient conditions). Suppose that f and g satisfy
Condition C[π, t] and that V ∈ Lp(π) for some p ∈ (1,+∞) (by Lemma 6.3 and since V → +∞
it suffices to require π[eV/2] < +∞, which reads

∑
y∈Zd e−V (y)/2 < +∞ in the case of zero external

force f ≡ 0). Then

∂λ=0Eπ[F (X
λ
[0,t])] =−

∫ t

0
dsEπ

[
V (Xs)ψt−s(X0)] +

∫ t

0
Eπ

[
(fg)r(s,Xs)

]
ds

+

∫ t

0
ds

∫ s

0
duEπ

[
fr(s,Xs)ψs−u(Xs−u)

]
+

∫ t

0
Eπ[gr(s,Xs)]ds ,
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with ψt(x) defined as in (3.15).

Proof : By linearity, we have

∂λ=0Eπ[F (X
λ
[0,t])] = ∂λ=0Eπ[F1(X

λ
[0,t])] + ∂λ=0Eπ[F2(X

λ
[0,t])] + ∂λ=0

(
2λEπ[F3(X

λ
[0,t])]

)
,

where

F1(ξ[0,t]) := −V (ξt), F2(ξ[0,t]) :=
∑

s∈(0,t]

f(ξs−, ξs), F3(ξ[0,t]) :=
∑

s∈(0,t]

g(s, ξs−, ξs) .

Note that, referring to the beginning of Section 3.1, F1 is a functional of type (1), while F2 and F3

are functionals of type (3) with f and g bounded.
If the bounded functions f and g satisfy Condition C[π, t] and V ∈ Lp(π) for some p ∈ (1,+∞)

(which, by stationarity, is equivalent to V (Xt) ∈ Lp(Pπ)), then the assumptions of Theorem 3.6
are satisfied. We point out that we have excluded apriori the case p = +∞ since V (y) → +∞
as |y| → ∞, and therefore it cannot be V ∈ L∞(π). We observe that π[eV/2] < +∞ and the
boundedness of f and g imply that f and g satisfy Condition C[π, t] by Lemma 6.3. If π[eV/2] < +∞,
then trivially we also have V ∈ Lp(π) for any p ∈ (1,+∞). If f ≡ 0, then π(y) = e−V (y)/Z where
Z :=

∑
y e

−V (y) < +∞ (see Proposition 6.1–(ii)). On the other hand, the condition Z < +∞ is
trivially satisfied if

∑
y∈Zd e−V (y)/2 < +∞ as V is a diverging function. In particular, for f ≡ 0 and

under the assumption
∑

y∈Zd e−V (y)/2 < +∞, we get π[eV/2] =
∑

y∈Zd e−V (y)/2 < +∞.
By applying Theorem 3.6 we then get

∂λ=0Eπ

[
F1(X

λ
t )
]
= −

∫ t

0
dsEπ

[
V (Xs)ψt−s(X0)],

∂λ=0Eπ[F2(X
λ
[0,t])] =

∫ t

0
Eπ

[
(fg)r(s,Xs)

]
ds+

∫ t

0
ds

∫ s

0
duEπ

[
fr(s,Xs)ψs−u(Xs−u)

]
,

∂λ=0

(
2λEπ[F3(X

λ
[0,t])]

)
= 2 lim

λ→0
Eπ[F3(X

λ
[0,t])] = 2Eπ[F3(X[0,t])] = 2

∫ t

0
Eπ[gr(s,Xs)]ds.

In the last line, the second equality follows from (3.4) in Proposition 3.1, and in the third equality
we have used that Gt(X[0,t]) introduced in (3.5) defines a martingale, as anticipated in Remark 3.2.
Putting all together we get our claim. □

Remark 6.5. We point out that the non-explosion of the perturbed chain could have alternatively
been derived using Theorem 1 in Chou and Khasminskĭı (2011) with Lyapunov function eV/2, with
computations similar to the one in (6.6), under the assumption that the perturbation g is continuous
in time.

6.2. Birth and death processes. Consider a birth and death process on the set of non-negative
integers N, that is a Markov jump process (in particular, a continuous-time Markov chain) (Xt)t≥0

with transition rates
r(0, 1) = r+0 > 0 r(k, k ± 1) = r±k > 0

and r(k, j) = 0 otherwise (for later use we set r−0 := 0). This can of course be seen as a particular
instance of a random walk in confining potential with external field, and thus analyzed as in the
previous section. We take here a different approach.

It is known (cf. Chen, 2004, Corollary 3.18, Chou and Khasminskĭı, 2011, Remark 4) that the
the unperturbed process a.s. does not explode if and only if

∞∑
k=0

γk = +∞ , with γk :=
1

r+k
+
r−k
r+k

· 1

r+k−1

+ · · ·+
r−k
r+k

·
r−k−1

r+k−1

· · · r
−
1

r+1
· 1

r+0
. (6.10)
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Hence, we assume (6.10) to be satisfied. If in addition

Z := 1 +
∑
k≥1

r+0 r
+
1 · · · r+k−1

r−1 r
−
2 · · · r−k

< +∞ , (6.11)

then the unperturbed process admits a invariant distribution π, which is unique, reversible and
given by

π(0) =
1

Z
, π(k) =

1

Z

r+0 r
+
1 · · · r+k−1

r−1 r
−
2 · · · r−k

, k ≥ 1 (6.12)

(this statement can be verified by simple computations). Note that when r+k = r+ for all k ≥ 0 and
r−k = r− for all k ≥ 1 then (6.10) is always satisfied, while (6.11) reduces to r− > r+, and π(k) is
proportional to (r+/r−)k for all k ≥ 0.

For the perturbation fix λ > 0 and a bounded measurable function g : [0, t]×N×N → R, and set

rλt (k, k ± 1) = eλg(t,k,k±1)r±k .

Then, if ν is a probability distribution on N and t > 0, the function g satisfies Condition C[ν, t] in
Definition 2.2 if and only if for some θ > 0

Eν

[
exp

{
θ

∫ t

0
|g(s,Xs, Xs + 1)|r+Xs

ds+ θ

∫ t

0
|g(s,Xs, Xs − 1)|r−Xs

ds
}]

<∞. (6.13)

If the above condition is satisfied then the perturbed process Xλ almost surely does not explode in
[0, t] for λ small by Theorem 2.5, and the linear response results described in Theorems 3.5 and 3.6
hold.

Note that, since g is bounded, (6.13) trivially holds if, writing r̂k = r+k +r−k , the collection (r̂k)k≥0

is uniformly bounded. If, on the other hand, supk≥0 r̂k = +∞ then again (6.13) trivially holds if g
is only non-zero on a finite number of edges (i.e. if the perturbation is finitely supported). We now
discuss sufficient conditions for (6.13) to hold in the general case supk≥0 r̂k = +∞ and g non-zero
on infinitely many edges. To this aim we first observe that, if lim supk→∞ r+k /r

−
k < 1, then both

(6.10) and (6.11) are satisfied. In particular, the unperturbed system a.s. does not explode and it
admits the invariant distribution π.

Lemma 6.6. Assume that lim supk→∞ r+k /r
−
k < 1. Let α : [0, t] × N × N → R be measurable and

bounded (e.g. take α = g). Then, for any B > 1, there exists θ > 0 such that α satisfies Condition
C[ν, t] with parameter θ for any distribution ν satisfying ν[W ] < +∞ where W (k) := Bk. In
particular, α satisfies Condition C[δx, t] with the same parameter θ for all x ∈ Zd.

Proof : Recalling Lemma 2.3, to guarantee (6.13) it suffices to find a positive function U : N → R,
strictly bounded away from zero, such that ν[U ] < +∞ and such that LU ≤ CU − θ|α|rU for some
C, θ > 0. The last property holds provided(U(k + 1)

U(k)
− 1 + θ∥α∥∞

)
r+k +

(U(k − 1)

U(k)
− 1 + θ∥α∥∞

)
r−k ≤ C ∀k ∈ N . (6.14)

Under the assumption that lim supk→∞ r+k /r
−
k < 1, there exists γ < 1 such that r+k ≤ γr−k for all

k sufficiently large. Set U(k) := Ak for A ∈ (1, B] to be chosen later. Then, by taking ν with
ν[W ] < +∞, we have ν[U ] < +∞. Moreover the inequality (6.14) reads(

A− 1 + θ∥α∥∞
)
r+k +

( 1

A
− 1 + θ∥α∥∞

)
r−k ≤ C ∀k ∈ N .

Using that r+k ≤ γr−k we see that the left hand side is bounded by (γ(A − 1) + θ(γ + 1)∥α∥∞ +

1/A− 1)r−k for k large enough, so (6.14) holds provided

γ(A− 1) + θ(γ + 1)∥α∥∞ + 1/A− 1 ≤ 0.
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Writing A = 1 + ε, and multiplying both members by (1 + ε)/ε, it can be easily checked that the
last expression is equivalent to

γ(1 + ε) + θ(γ + 1)∥α∥∞(1 + ε)/ε ≤ 1 . (6.15)

As γ < 1 we can take ε small to have A = 1 + ε ≤ B and γ(1 + ε) < 1, afterwards we can take
θ small to ensure (6.15). This proves the first part of the lemma, while the last statement follows
immediately from the first part. □

We conclude by discussing linear response formulas when starting from the stationary distribution
π defined in (6.12) assuming both (6.10) and (6.11). We suppose that g satisfies condition C[π, t].
For example, according to Lemma 6.6 and due to the explicit form (6.12) of π, g satisfies condition
C[π, t] if γ := lim supk→∞ r+k /r

−
k < 1 and

∞∑
k=1

r+1
r−1

· r
+
2

r−2
· · ·

r+k−1

r−k−1

· B
k

r−k
< +∞

for some B > 1. As γ < 1, it is enough that
∑∞

k=1 γ̃
k/r−k < +∞ for some γ̃ ∈ (γ, 1).

Note that, since the unperturbed dynamics is reversible with respect to the stationary distribution
π, then r∗(k, k ± 1) = r(k, k ± 1) = r±k . It thus follows from Theorem 3.6 that if v : N → R is a
measurable function with v(Xt) ∈ Lp(Pπ) (i.e. v ∈ Lp(π)) for some p > 1, then

∂λ=0Eπ

[
v(Xλ

t )
]
=

∫ t

0
dsEπ

[
v(Xs)ψt−s(X0)]

with ψt−s(X0) defined as in (3.15). By reversibility we have

ψs(k) = r+k
(
g(s, k + 1, k)− g(s, k, k + 1)

)
+ r−k

(
g(s, k − 1, k)− g(s, k, k − 1)

)
.

In the decoupled case g(s, k, k ± 1) = τ(s)E±
k for s ∈ [0, t] and k ≥ 0, we get

∂λ=0Eπ

[
v(Xλ

t )
]
=

∫ t

0
dsτ(t− s)Eπ

[
v(Xs)(E

∗
r (X0)− Er(X0))

]
=

∫ t

0
dsτ(t− s)Eπ

[
v(Xs)((E

−
X0+1 − E+

X0
)r+X0

+ (E+
X0−1 − E−

X0
)r−X0

)
]
.

Note that if E+
k = E+ and E−

k = E− the above formula simplifies to

∂λ=0Eπ

[
v(Xλ

t )
]
= (E− − E+)

∫ t

0
dsτ(t− s)Eπ

[
v(Xs)(r

+
X0

− r−X0
)
]
.

Linear response formulas for the additive functionals discussed in Theorem 3.6 can be written down
similarly. To check that the quantities in (3.11) are in Lp(π) for α bounded, it is enough to check
that α satisfies condition C[π, t] and Lemma 6.6 can help to this aim.

Remark 6.7. An alternative criterion for non-explosion of the perturbed birth and death process is
proved in Chou and Khasminskĭı (2011), see Proposition 6 therein.

6.3. Instability of non-explosion under small perturbations. We provide here the counterexample
mentioned in Remark 2.6. As unperturbed process we take a birth and death process on N =
{0, 1, 2, 3 . . .} with birth rates r+k = (k + 1)2 for all k ≥ 0 and death rates r−k = r+k for all k ≥
1. By criterion (6.10) it is simple to check that the unperturbed process a.s. does not explode.
However, we can perturb it by setting rλ,−k := r−k and rλ,+k := eλr+k (i.e. g(s, k, k + 1) = 1 and
g(s, k + 1, k) = 0). Then, again by (6.10), one can check that for any λ > 0 the perturbed process
explodes in finite time with positive probability. Indeed, for the perturbed process γk in (6.10)
is given by γk =

∑k
j=0

1
(k+1−j)2ejλ

. In the last sum the first C ln k terms contribute for at most
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C(ln k)(k + 1− C ln k)2 which is summable in k, while the remaining terms contribute for at most
(k + 1)e−C(ln k)λ which is summable in k when taking C = C(λ) large enough.

6.4. Birth processes. We point out that, while we have presented in Lemma 2.3 sufficient conditions
for Condition C[ν, t] to hold, these are not necessary, and in some cases one can directly and more
efficiently verify Condition C[ν, t] using Definition 2.2. As an example, take a pure birth process on
N = {0, 1, 2 . . .}, starting at 0 (hence ν = δ0) and staying in each state i ∈ N an exponential time
of parameter r̂i ∈ (0,∞) and then jumping to i + 1. Then if α : [0, t] × N × N → R is a bounded
measurable function,

E
[
exp

{
θ

∫ t

0
|α|r(s,Xs)ds

}]
≤ E

[
exp

{
θ∥α∥∞

∫ t

0
r̂(Xs)ds

}]
,

and by taking θ = 1/∥α∥∞ one can directly check that

E
[
exp

{∫ t

0
r̂(Xs)ds

}]
= 1 +

∞∑
n=1

r̂0r̂1 · · · r̂n−1
tn

n!

which is finite as long as r̂n < n/t for n large enough. On the other hand, if we take e.g. α constant,
the criterion in Lemma 2.3 cannot be fulfilled for diverging rates r̂n. To justify our claim, we take
α(s, x, y) = 1 without loss of generality. Then (c) in Lemma 2.3 reads r̂n(

U(n+1)
U(n) − 1 + θ) ≤ C. If

limn→+∞ r̂n = +∞, we would have lim supn→+∞
U(n+1)
U(n) ≤ 1 − θ. As θ > 0, this would imply that

limn→+∞ U(n) = 0, thus violating (a) in Lemma 2.3.

6.5. Random walk on Zd in a random conductance field. We consider a random walk (Y ξ
t )t≥0 on Zd

in a random environment ξ. The space of environments is given by the product space Ξ := (0, A]Ed

with the product topology, endowed with the Borel σ–field, Ed being the set of non-oriented edges
of Zd and A being a fixed positive constant. We write ξx,y in place of ξ{x,y} for the value of ξ at
the edge {x, y} (note that ξx,y = ξy,x). Since the environment ξ at a given edge does not depend
on the orientation of the edge, ξ is also called conductance field. Given ξ ∈ Ξ the random walk
(Y ξ

t )t≥0 starts at the origin and performs nearest–neighbour jumps with jump rate from x to y

given by r(x, y) := ξx,y. We consider the perturbed random walk (Y ξ,λ
t )t≥0 with perturbed jump

rates rλt (x, y) = r(x, y)eλg
ξ(t,x,y) = ξx,ye

λgξ(t,x,y) where g is bounded and measurable in ξ, t, x, y.
As ξx,y ≤ A, both the original random walk and the perturbed one a.s. do not explode, g satisfies
condition C[ν, t] for any distribution ν and any time t and one can therefore apply Theorems 3.5
and 3.6 to deal with the linear response (for each fixed environment ξ).

To benefit from the stationarity and get more explicit formulas, it is convenient to change view-
point by considering the process environment viewed from the particle, as we now detail. The group
Zd acts on Ξ by spatial translations as (τzξ)x,y := ξx+z,y+z. We fix a probability measure P on Θ
which is stationary w.r.t. the spatial translations τz and such that

P(ξ ∈ Ξ : τzξ = τz′ξ for some z ̸= z′ in Zd) = 0 (6.16)

(for example P can be a product probability measure on Ξ). We assume that also g is stationary,
i.e. g is of the form

gξ(t, x, y) = h(t, τxξ, y − x)

for some bounded measurable function h : [0,+∞)× Ξ× {z ∈ Zd : |z| = 1}.
Given ξ ∈ Ξ we write (ξ̄t)t≥0 for the Markov jump process given by the environment viewed from

the walker when the latter starts at the origin with environment ξ. Simply we have ξ̄0 := ξ and
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ξ̄t := τ
Y ξ
t
ω for all t ≥ 0. The Markov jump process (Xt)t≥0 we are interested in is just (ξ̄t)t≥0. The

space (X ,B) is then given by Ξ with the Borel σ–field and the transition kernel is given by

r(ξ, ·) :=
∑

z:|z|=1

ξ0,zδτzξ(·) .

Note that now the perturbation is dictated by the new function ḡ(t, ξ, ξ′) := h(t, ξ, z) if ξ′ = τzξ

with |z| = 1 (i.e. rλt (ξ, dξ′) = eλḡ(t,ξ,ξ
′)r(ξ, dξ′) as in (2.4)). Moreover the random walk (Y ξ

t )t≥0

starting at the origin can be written as an additive functional of ξ̄[0,t]:

Y ξ
t = F (ξ̄[0,t]) :=

∑
s∈(0,t]:ξ̄s− ̸=ξ̄s

α(ξ̄s−, ξ̄s) ∀t ≥ 0 , (6.17)

where

α(ξ′, ξ′′) :=

{
z if ξ′′ = τzξ

′ for some z with |z| = 1 ,

0 otherwise .

Although a priori the above function α is not well defined pointwise, due to (6.16) for P–a.a. ξ
the expression F (ξ̄s−, ξ̄s) in (6.17) is well defined for all times s (similar considerations hold for
ḡ(s, ξ, ξ′) defined above).

By the stationarity of P w.r.t. the spatial translations τz and since ξx,y = ξy,x, we get that P is
a reversible distribution for the process (ξ̄t)t≥0. Moreover, we have

(αḡ)r(s, ξ) =
∑

z:|z|=1

ξ0,z z h(s, ξ, z) , αr(s, ξ) =
∑

z:|z|=1

ξ0,zz .

Since |α|r is uniformly bounded, Condition C[P, t] is satisfied (see Definition 2.2). Hence, by
Theorem 3.6, we have

∂λ=0

∫
Ξ
dP(ξ)Eξ

0

[
Y ξ,λ
t

]
=

∫ t

0
ds

∫
Ξ
dP(ξ)Eξ

0

[
(αḡ)r(s, τY ξ

s
ξ)
]

−
∫ t

0
ds

∫ s

0
du

∫
Ξ
dP(ξ)Eξ

0

[
αr(s, τY ξ

s
ξ)ψs−u(τY ξ

s−u
ξ)
]
, (6.18)

where Eξ
0[·] denotes the expectation w.r.t. the random walk (Y ξ,λ

t )t≥0 starting at the origin in the
fixed environment ξ and ψs(ξ) =

∑
e:|e|=1 ξ0,e(h(s, τeξ,−e)− h(s, ξ, e)).

Let us make more explicit formula (6.18) when g(t, x, y) := (y − x) · v for |x − y| = 1 where v
is a fixed vector. This case corresponds to applying to the particle an external field, constant in
time and space. The same external field appears e.g. in Faggionato et al. (2019); Gantert et al.
(2017, 2012); Lebowitz and Rost (1994); Mathieu and Piatnitski (2018). We write φ(ξ) for the so
called local drift of the unperturbed random walk, i.e. φ(ξ) :=

∑
z:|z|=1 ξ0,zz, and we also write

θ(ξ) :=
∑

z:|z|=1 ξ0,z(z · v)z. Since h(t, ξ, z) = z · v, it is easy to check that

αr(s, ξ) = φ(ξ) (αḡ)r(s, ξ) = θ(ξ) ψs(ξ) = −2φ(ξ) · v .

As a consequence (6.18) reads (by the change of variables u→ s− u)

∂λ=0

∫
Ξ
dP(ξ)Eξ

0

[
Y ξ,λ
t

]
=

∫ t

0
ds

∫
Ξ
dP(ξ)Eξ

0

[
θ(τ

Y ξ
s
ξ)
]

+ 2

∫ t

0
ds

∫ s

0
du

∫
Ξ
dP(ξ)Eξ

0

[
φ(τ

Y ξ
s
ξ)
(
φ(τ

Y ξ
u
ξ) · v

)]
.
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Since the probability P is invariant (and even reversible) for the process “environment viewed from
the particle", we can simplify the above expression and get

∂λ=0

∫
Ξ
dP(ξ)Eξ

0

[
Y ξ,λ
t

]
= t

∫
Ξ
dP(ξ)θ(ξ)

+ 2

∫ t

0
dr(t− r)

∫
Ξ
dP(ξ)

(
φ(ξ) · v

)
Eξ
0

[
φ(τ

Y ξ
r
ξ)
]
.

6.6. Complex mobility matrix. We use here the notation introduced in Section 5 dealing with
nearest-neighbor random walks. Suppose that the unperturbed Markov jump process on the torus
Td
N = Zd/NZd has spatially homogeneous jump rates, i.e. r(x, y) = r(x+ z, y+ z) for all x, y ∈ Td

N ,
z ∈ Zd, where the sums x + z, y + z are thought modulo NZd. We consider the perturbation
with jump rates (5.1) with ω ̸= 0. As rλt (x, y) depends on x, y only via y − x, one can directly
compute the mean instantaneous velocity Vλ(t) given in (5.5) getting Vλ(t) =

∑
e:|e|=1 r

λ
t (0, e)e =∑

e:|e|=1 exp{λ cos(ωt)e · v}r(0, e)e. As a consequence

∂λ=0Vλ(t) =
∑

e:|e|=1

cos(ωt)(e · v)r(0, e)e = ℜ(eiωtσ(ω)v) , (6.19)

σ(ω)v =
∑

e:|e|=1

(e · v)r(0, e)e . (6.20)

In particular, denoting the canonical basis of Rd by e1, e2, . . . , ed, we have σ(ω)ej =
(
r(0, ej) +

r(0,−ej)
)
ej , i.e. σ(ω)i,j = δi,j

(
r(0, ei)+ r(0,−ei)

)
. Note that, with spatial homogeneity, σ(ω) does

not depend on the frequency ω. The direct computation of Vλ(t) becomes more involved in the
presence of spatial heterogeneity, where σ(ω) exhibits a nontrivial dependence on ω.

We now use directly Theorem 5.1 to compute σ(ω) in the special case given by d = 1, N even
and 2-periodic unperturbed jump rates of the form

r(x, x+ 1) =

{
r+0 if x ≡ 0 ,

r+1 if x ≡ 1 ,
r(x, x− 1) =

{
r−0 if x ≡ 0 ,

r−1 if x ≡ 1 ,

for positive constants r±0 , r±1 , where we write x ≡ 0 if x is even, and x ≡ 1 if x is odd. Then the
unperturbed invariant distribution is given by

π(x) =

{
(r+1 + r−1 )/Z if x ≡ 0 ,

(r+0 + r−0 )/Z if x ≡ 1 ,

where Z is the normalizing constant Z = (N/2)(r+0 + r−0 + r+1 + r−1 ). Moreover the functions c, γ
in Theorem 5.1 are given by

c(x) =

{
c0 := r+0 + r−0 if x ≡ 0 ,

c1 := r+1 + r−1 if x ≡ 1 ,
γ(x) =

{
γ0 := r+0 − r−0 if x ≡ 0 ,

γ1 := r+1 − r−1 if x ≡ 1 .

The reversed rates are then given by

r∗(x, x+ 1) =

{
(c0/c1)r

−
1 if x ≡ 0 ,

(c1/c0)r
−
0 if x ≡ 1 ,

r∗(x, x− 1) =

{
(c0/c1)r

+
1 if x ≡ 0 ,

(c1/c0)r
+
0 if x ≡ 1 ,

and the function Ψ in (5.2) is given by

Ψ(x) =

{
(c0/c1)γ1 − γ0 = c0(γ1/c1 − γ0/c0) if x ≡ 0 ,

(c1/c0)γ0 − γ1 = c1(γ0/c0 − γ1/c1) if x ≡ 1 .
(6.21)
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If f : Td
N → C has period 2 (i.e. it is constant on even sites and constant on odd sites), then

(iω − L∗)f(x) =

{
iωf(0)− c0

(
f(1)− f(0)

)
if x ≡ 0 ,

iωf(1)− c1
(
f(0)− f(1)

)
if x ≡ 1 .

(6.22)

By comparing (6.21) and (6.22) we get

(iω − L∗)−1ψ(x) =

{
c0(γ1/c1−γ0/c0)

iω+c0+c1
if x ≡ 0 ,

c1(γ0/c0−γ1/c1)
iω+c0+c1

if x ≡ 1 .

By (5.9) in Theorem 5.1 we then get the following expression for the complex mobility constant:

σ(ω) =
c0c1
c0 + c1

[
2 +

(γ1
c1

− γ0
c0

) γ0 − γ1
iω + c0 + c1

]
. (6.23)

Note that, in the spatially homogeneous case r+1 = r+0 = r+ and r−1 = r−0 = r−, (6.23) reduces to
σ(ω) = r+ + r− in agreement with (6.20). Moreover, coming back to the general setting, we have
reversibility if and only if r+1 /r

−
1 = r−0 /r

+
0 , i.e. r+1 = αr−0 and r−1 = αr+0 for some α > 0. Finally, we

point out that one could have computed directly Vλ(t) by finding the distribution πλ,t of the OSS at
time t as πλ,t must be spatially 2-periodic. In particular, πλ,t can be computed from the continuity
equation:

∂tπλ,t(0) + πλ,t(0)
[
eλ cos(ωt)r+0 + e−λ cos(ωt)r−0

]
− πλ,t(1)

[
eλ cos(ωt)r+1 + e−λ cos(ωt)r−1

]
= 0

(6.24)

(use also that πλ,t(1) = 1− πλ,t(0) and that πλ,t(0) is T–periodic for T = 2π/ω). The computation
of σ(ω) by means on Theorem 5.1 is, on the other hand, simpler.

7. Stochastic calculus background

We collect here some useful facts from the theory of stochastic calculus for processes with jumps.
Our discussion is based on Davis (1993) and Jacod and Shiryaev (2003, Chapter 1).

We first prove Lemma 3.4 for later use:

Proof of Lemma 3.4: We just prove (3.7), as the rest of the lemma follows trivially from (3.7).
Defining α(s, x, y) := 0 if s > t it is enough to prove that

Ex0

[ ∑
s∈(0,+∞)

|α(s,Xs−, Xs)|
]
= Ex0

[ ∫ +∞

0
|α|r(s,Xs)ds

]
(7.1)

for each starting point x0 such that the unperturbed process has a.s. no explosion (this holds for
ν–a.a. x0). Let τ1 < τ2 < τ3 < · · · be the jump times of the unperturbed Markov jump process
starting at x0. As a.s. this process does not explode and since r̂(x) ∈ (0,+∞) for all x ∈ X , all
times τk are finite and diverge to +∞.

We have

Ex0

[ ∫ τ1

0
|α|r(s,Xs)ds

]
=

∫ +∞

0
dt1e

−r̂(x0)t1 r̂(x0)

∫ t1

0
ds |α|r(s, x0)

=

∫ +∞

0
ds |α|r(s, x0)

∫ +∞

s
dt1e

−r̂(x0)t1 r̂(x0) =

∫ +∞

0
ds |α|r(s, x0)e−r̂(x0)s ,
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while

Ex0

[
|α(τ1, Xτ1−, Xτ1)|

]
=

∫ +∞

0
ds e−r̂(x0)sr̂(x0)

∫
X
r(x0, dx1)

1

r̂(x0)
|α(s, x0, x1)|

=

∫ +∞

0
ds e−r̂(x0)s|α|r(s, x0) .

The above results imply that Ex0

[ ∫ τ1
0 |α|r(s,Xs)ds

]
= Ex0

[
|α(τ1, Xτ1−, Xτ1)|

]
. By conditioning on

τk, Xτk , we then get

Ex0

[ ∫ τk+1

τk

|α|r(s,Xs)ds
]
= Ex0

[
|α(τk+1, Xτk+1−, Xτk+1

)|
]

for all k ≥ 0, where τ0 := 0. By summing among k ≥ 0 and using that τk → +∞ we get (7.1). □

7.1. Martingales and local martingales. In this subsection and in the next one we let [0, t] be the time
observation window, which in later applications will be the time window of the perturbed Markov
jump process. Let us denote by (Ω,F0,Pν) the probability space on which the unperturbed Markov
process X[0,t] is defined. Denote by (F0

s )s∈[0,t] the natural filtration associated to it, that is F0
s is

the smallest σ–algebra that makes the random variables {Xu : u ≤ s} measurable. We can make
this into a right–continuous filtration (Fs)s∈[0,t] that satisfies the so called usual conditions Jacod
and Shiryaev (2003) by setting Ft := σ(F0

t ,N ) and, for s ∈ [0, t), Fs := limu↘s σ(F0
u ,N ), where in

general σ(F0
s ,N ) is the smallest σ-algebra containing both F0

s and N , and N is the collection of all
subsets of sets in F0 with Pν–measure zero. Similarly we define F := σ(F0,N ). Then (Fs)s∈[0,t] is
right–continuous, Fs ⊂ F and F0 ⊇ N . We can therefore think of the unperturbed Markov jump
process as being defined on the filtered probability space (Ω,F , (Fs)s∈[0,t],Pν), where we keep the
notation Pν for the probability measure on (Ω,F) given by the completion of the original Pν , in
particular giving zero mass to the sets in N . We remark that Ω can be D([0, t],X ), in which case
Pν coincides with the law of the unperturbed process.

A càdlàg adapted process M = (Ms)s∈[0,t] on the filtered probability space
(Ω,F , (Fs)s∈[0,t],Pν) is said to be a martingale if Ms is integrable and Eν [Ms|Fu] = Mu almost
surely, for all 0 ≤ u ≤ s ≤ t. It is said to be a local martingale if there exists a non–decreasing
sequence (Tn)n≥0 of stopping times with respect to the filtration (Fs)s∈[0,t] such that Tn → t almost
surely as n → ∞, and the stopped process (MTn

s )s∈[0,t] defined by MTn
s = Ms∧Tn is a martingale

for all n ≥ 0. We recall that a stopping time T with respect to the filtration (Fs)s∈[0,t] is a random
time such that {T ≤ s} ∈ Fs for all s ∈ [0, t].

A sufficient condition for a local martingale (Ms)s∈[0,t] to be a true martingale is given by the
following result.

Lemma 7.1. Let M = (Ms)s∈[0,t] be a local martingale, and assume that there exists an integrable
random variable Y such that |Ms| ≤ Y for all s ∈ [0, t]. Then M is a true martingale.

This is a straightforward corollary of Jacod and Shiryaev (2003, Proposition 1.47-(c)) together
with the observation that under the assumptions of Lemma 7.1 the process M is of class (D), as
defined in Jacod and Shiryaev (2003, Definition 1.46).

A local martingale is said to be continuous if its trajectories are continuous. In what follows we
will work with a class of martingales which is orthogonal, as defined below, to that of continuous
local martingales, namely the class of purely discontinuous local martingales.

7.2. Purely discontinuous local martingales. Recall from Jacod and Shiryaev (2003, Definition 4.11(a))
that two local martingales are said to be orthogonal if their product is a local martingale. A local
martingale equal to zero at time t = 0 and which is orthogonal to all continuous local martingales
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is called a purely discontinuous local martingale (Jacod and Shiryaev, 2003, Definition 4.11(b)). If,
in addition, it is a true martingale, we call it a purely discontinuous martingale.

Let α : [0, t]×X × X → R be a measurable function such that

∑
s∈(0,t]

|α(s,Xs−, Xs)| <∞,

∫ t

0
|α|r(u,Xu)du <∞ (7.2)

Pν–almost surely. Then similarly to Davis (1993, Theorem (A4.9), p. 272) the process (Ms)s∈[0,t]
defined by

Ms =
∑

u∈(0,s]

α(u,Xu−, Xu)−
∫ s

0
αr(u,Xu)du (7.3)

is a local martingale (see Appendix A for the details). Moreover, it is of finite variation, since it is
made of a piecewise constant term and a Lebesgue integral term. Since all local martingales starting
at zero and of finite variation are purely discontinuous (see Lemma 4.14(b) of Jacod and Shiryaev,
2003), it follows that (Ms)s∈[0,t] is a purely discontinuous local martingale.

For the next lemma recall Definition 3.3.

Lemma 7.2. Let M = (Ms)s∈[0,t] be a local martingale of the form (7.3) with α satisfying (7.2). If
α is Pν–integrable (for example if α satisfies Condition C[ν, t]), then M is a martingale.

Proof : It is enough to apply Lemma 7.1 with

Y :=
∑

u∈(0,t]

|α|(u,Xu−, Xu) +

∫ t

0
|α|r(u,Xu)du . □

Let (Ns)s∈[0,t] be another such local martingale, with

Ns =
∑

u∈(0,s]

γ(u,Xu−, Xu)−
∫ s

0
γr(u,Xu)du

where γ : [0, t]× X × X → R satisfies (7.2) with γ in place of α. We define the covariation process
([M,N ]s)s∈[0,t] by setting

[M,N ]s =
∑

u∈(0,s]

α(u,Xu−, Xu)γ(u,Xu−, Xu)

(cf. Definition 4.45 and Theorem 4.52 in Jacod and Shiryaev (2003), and use that the continuous
martingale part, defined in Theorem 4.18 in Jacod and Shiryaev (2003), of purely discontinuous
local martingales is identically zero). It then follows from Proposition 4.50 of Jacod and Shiryaev
(2003) that the process (MsNs − [M,N ]s)s∈[0,t] is again a local martingale.

Remark 7.3. In this subsection and in the previous one we have worked with the unperturbed Markov
jump process up to time t. Equivalently, one could deal with this process defined for all times, and in
particular defined on the filtered probability space (Ω,F , (Fs)s≥0,Pν) where Fs := limu↘s σ(F0

u ,N )
for all s ≥ 0. We point out that in this case, in the definition of local martingale, one has to take a
sequence of stopping times Tn such that Tn → +∞ almost surely. Then, given α : [0, t]×X×X → R,
in order to define processes as Ms in (7.3) for all times s ≥ 0, one has just to extend α to R+×X ×X
by setting α(s, ·, ·) = 0 for times s > t.
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8. Proof of Lemma 2.4

We start with a preliminary lemma.

Lemma 8.1. Let F (s, y, z) be a measurable function on [0, t]×X × X such that

(eF )r(s, y) =

∫
X
eF (s,y,z)r(y, dz) < +∞ for all s ∈ [0, t] , y ∈ X (8.1)

and define MF
t : Df ([0, t],X ) → R as

MF
t

(
ξ[0,t]

)
:= exp

{ ∑
s∈[0,t]

F (s, ξs−, ξs)−
∫ t

0
(eF − 1)r(s, ξs)ds)

}
. (8.2)

Then, Ex[MF
t (X[0,t])] ≤ 1 for ν–a.a. x.

Note that 1r(s, y) = r̂(y) < +∞, hence (eF − 1)r is well defined and finite by (8.1).

Proof : Consider the time-inhomogeneous Markov jump process XF
[0,t] on X with transition kernel

rFs (y, dz) := r(y, dz)eF (s,y,z), defined up its explosion time τ∞. Given a Borel set B ⊂ Df ([0, t],X ),
let PF

x,t(B) be the probability that XF
[0,t] ∈ B when starting at x (note that the event {XF

[0,t] ∈ B}
implies that XF

[0,t] does not explode in [0, t]). Call Px,t(B) the analogous probability for X[0,t]. PF
x,t

and Px,t are measures on Df ([0, t],X ). Take x such that a.s. the unperturbed Markov process
starting at x does not explode (thus implying that Px,t is a probability measure). Note that this
holds for ν–a.a. x by our main Assumption in Section 2.2. Then one easily checks (as for (3.2))
that MF

t is the Radon–Nikodym derivative of the measure PF
x,t w.r.t. Px,t. As PF

x,t has total mass
bounded by 1, we have Ex

[
MF

t (X[0,t])
]
= PF

x,t

(
Df ([0, t],X )

)
≤ 1. □

Proof of Lemma 2.4: We fix δ > 0 and set F (s, y, z) := ln(1 + δ|α|(s, y, z)). Then (eF )r(s, y) =
r̂(y) + δ|α|r(s, y) ≤ (1 + δ∥α∥∞)r̂(y). In particular, condition (8.1) is satisfied. By Lemma 8.1 we
then get that Eν [MF

t (X[0,t])] ≤ 1. Since, (eF − 1)r(s, y) = δ|α|r(s, y), MF
t (ξ[0,t]) can be rewritten as

MF
t (ξ[0,t]) = exp

{ ∑
s∈(0,t]

F (s, ξs−, ξs)− δ

∫ t

0
|α|r(s, ξs)ds

}
. (8.3)

As ln(1 + x) ≥ x/2 for x ∈ [0, 1], by taking δ small such that δ∥α∥∞ ≤ 1 we get that

Eν

[
exp{Nt(X[0,t])}

]
≤ Eν

[
MF

t (X[0,t])
]
≤ 1 (8.4)

where

Nt(ξ[0,t]) :=
δ

2

∑
s∈(0,t]

|α|(s, ξs−, ξs)− δ

∫ t

0
|α|r(s, ξs)ds . (8.5)

We now observe that, by Schwarz inequality, (2.7) and (8.4), for δ ≤ θ it holds

Eν

[
e

δ
4

∑
s∈(0,t] |α|(s,Xs−,Xs)

]
= Eν

[
e

1
2
Nt(X[0,t])+

δ
2

∫ t
0 |α|r(s,Xs)ds

]
≤ Eν

[
eNt(X[0,t])

] 1
2Eν

[
eδ

∫ t
0 |α|r(s,Xs)ds

] 1
2 < +∞ .

(8.6)

By the above considerations, (2.8) holds for γ := δ/4 and in particular for γ := min{∥α∥−1
∞ , θ}/4. □
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9. Proof of Lemma 2.3 and its extension

The following result reduces to Lemma 2.3 when Un = U for all n:

Lemma 9.1. For a given function α : [0, t] × X × X → R suppose that there exist a sequence of
measurable real functions Un on X and positive constants θ, C, c such that

(i) Un(x) ≥ c for all x ∈ X and n ≥ 1;
(ii)

∫
X Un(y)r(x, dy) < +∞ for all x ∈ X and n ≥ 1;

(iii) setting Vn(x) := −LUn(x)/Un(x), the sequence of functions Vn : X → R converges pointwise
to some function V : X → R;

(iv) V ≥ θ |α|r − C;
(v) Usup(x) := supn≥1 Un(x) < +∞ for each x ∈ X ;
(vi) ν[Usup] < +∞.

Then α satisfies Condition C[ν, t] with parameter θ.

Proof : We use Lemma 8.1 with the function Fn(y, z) := ln(Un(z)/Un(y)), which is well defined
by Item (i). Moreover (eFn)r(y) = Un(y)

−1
∫
X r(y, dz)Un(z) < +∞ due to Items (i) and (ii). By

observing that

exp
{ ∑

s∈(0,t]

Fn(s, ξs−, ξs)
}
=
Un(Xt)

Un(X0)

and (eFn − 1)r = LUn/Un, we get that

MFn
t (X[0,t]) =

Un(Xt)

Un(X0)
exp

{
−
∫ t

0

LUn

Un
(Xs)ds

}
≥ c

Usup(X0)
exp

{∫ t

0
Vn(Xs)ds

}
. (9.1)

To get the above lower bound we used Item (i) and the definitions of Usup, Vn. As a byproduct of
(9.1) with the bound Ex

[
MFn

t (X[0,t])
]
≤ 1 (which holds for ν–a.a. x by Lemma 8.1) we get that

Ex

[
exp

{∫ t

0
Vn(Xs)ds

}]
≤ Usup(x)

c

for ν–a.a. x ∈ X . By taking the limit n → ∞ (using Item (iii) and Fatou’s lemma) we get
Ex

[
e
∫ t
0 V (Xs)ds

]
≤ Usup(x)/c. By combining the above bound with Item (iv), we get that

Ex

[
eθ

∫ t
0 |α|r(s,Xs)ds

]
≤ eCtUsup(x)

c
(9.2)

for ν–a.a. x ∈ X . Finally, by averaging the above bound with respect to ν and using Item (vi), we
gather that

Eν

[
eθ

∫ t
0 |α|r(s,Xs)ds

]
≤ eCt ν[Usup]

c
<∞.

This in particular implies (2.7). □

10. Proof of Theorem 2.5

To start with, recall that (3.2) has been obtained under the assumption that the perturbed
process does not explode in [0, t] Pν–a.s.. Nevertheless, the same identity remains valid when
dropping the non–explosion assumption by replacing Eν

[
F (Xλ

[0,t])
]

in the left hand side of (3.2) by
Eν

[
F (Xλ

[0,t])1(τ
λ
∞ > t)

]
. We recall that τλ∞ denotes the explosion time of the perturbed process.

Then, taking F ≡ 1,

Pν

(
τλ∞ > t

)
= Eν

[
e
∫ t
0

[
r̂(Xs)−r̂λs (Xs)

]
ds

∏
s∈(0,t]:
Xs− ̸=Xs

eλg(s,Xs−,Xs)

]
,
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and the non–explosion of the perturbed process up to time t becomes equivalent to

Eν

[
e
∫ t
0

[
r̂(Xs)−r̂λs (Xs)

]
ds

∏
s∈(0,t]:
Xs− ̸=Xs

eλg(s,Xs−,Xs)

]
= 1 . (10.1)

Below we prove that (10.1) holds for λ small enough by observing that the l.h.s. is the expectation
of an exponential martingale associated to the change of measure Pν 7→ Pλ

ν . Our discussion is based
on stochastic calculus (see Jacod and Shiryaev, 2003 and Section 7 above).

For s ∈ [0, t] set

Ys := e
∫ s
0

[
r̂(Xu)−r̂λu(Xu)

]
du

∏
u∈(0,s]:
Xu− ̸=Xu

eλg(u,Xu−,Xu),

we aim to show that Eν [Yt] = 1. It is enough to prove that the process Y := (Ys)s∈[0,t] is a
martingale, since this implies that Eν [Yt] = Eν [Y0] = 1. We will divide the proof that Y is a
martingale in three parts: firstly we introduce in (10.2) a process Z := (Zs)s∈[0,t] and show that it
is a purely discontinuous local martingale, secondly we show that Y is the stochastic exponential of
Z and it is a local martingale; thirdly we prove that Y is uniformly integrable and therefore it is a
martingale. It is only in the last part that we will use Condition C[ν, t] after performing the Taylor
expansion eλg(u,Xu,y) − 1 ≈ λg(u,Xu, y) for λ small (this explains why the condition concerns the
exponential moments on g and not of eλg).

• The process Z = (Zs)s∈[0,t] mentioned above is defined as

Zs :=
∑

u∈(0,s]

(eλg(u,Xu−,Xu) − 1)−
∫ s

0

[
r̂λu(Xu)− r̂(Xu)

]
du . (10.2)

We claim that Z is a purely discontinuous local martingale. To prove our claim we take α(u, x, y) :=
eλg(u,x,y) − 1 and observe that ∥α∥∞ < +∞ as ∥g∥∞ < +∞. Since Zs =

∑
u∈(0,s] α(u,Xu−, Xu)−∫ s

0 αr(u,Xu)du and by the discussion at the beginning of Section 7.2, to show that Z is a purely dis-
continuous local martingale we just need to check that α satisfies condition (7.2). Since∑

s∈(0,t] |α(s,Xs−, Xs)| can be bounded by ∥α∥∞ times the total number of jumps in [0, t], and
since the latter is Pν–a.s. finite as the unperturbed process has no explosion Pν–a.s., we conclude
that

∑
s∈(0,t] |α(s,Xs−, Xs)| < ∞ Pν–a.s.. Now it remains to prove that

∫ t
0 |α|r(u,Xu)du < ∞

Pν–a.s.. To this aim we observe that∫ t

0
|α|r(u,Xu)du ≤ ∥α∥∞

∫ t

0
du

∫
X
r(Xu, dy) = ∥α∥∞

∫ t

0
du r̂(Xu) .

Since Pν–a.s. the trajectory (Xu)u∈[0,t] visits a finite number of states (again as the unperturbed
process does not explode), the last integral is finite Pν–a.s., thus concluding the check of (7.2) and
therefore the proof of our claim.

• We now show that Y is the stochastic exponential of Z and it is a local martingale. The first
property means that Y is the unique (up to indistinguishability) adapted and càdlàg solution in
[0, t] to the SDE {

dYs = Ys−dZs

Y0 = 1,

where Ys− = limu↗s Yu. Indeed, by Theorem 4.61 of Jacod and Shiryaev (2003), the stochastic
exponential of Z is given for s ∈ [0, t] by

E(Z)s = eZs−Z0
∏

u∈(0,s]:
Zu− ̸=Zu

(1 + ∆Zu)e
−∆Zu
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where ∆Zs = Zs − Zs− denotes the jump of the process Z at time s (which vanishes if s is not a
jump time of the process X). Since ∆Zs = eλg(s,Xs−,Xs) − 1, we find

E(Z)s = exp
{
Zs +

∑
u∈(0,s]

[
λg(u,Xu−, Xu)− (eλg(u,Xu−,Xu) − 1)

]}
= exp

{
−

∫ s

0

[
r̂λu(Xu)− r̂(Xu)

]
du+ λ

∑
u∈(0,s]

g(u,Xu−, Xu)
}
= Ys

for all s ∈ [0, t]. Thus Y is the stochastic exponential of Z.
Now, since Z is a purely discontinuous local martingale, it follows from Jacod and Shiryaev

(2003), Theorem 4.61(b) that Y is also a local martingale.

• We conclude by showing that the process Y is in fact a true martingale. Due to Lemma 7.1 it
is enough to show that 0 ≤ Ys ≤ Y for all s ∈ [0, t] and that Eν [Y] < +∞, where

Y := exp
{
2λ

∫ t

0
|g|r(u,Xu)du+ λ

∑
u∈(0,t]

|g(u,Xu−, Xu)|
}
.

To check that 0 ≤ Ys ≤ Y it is convenient to observe that

Ys = exp
{∫ s

0
du

∫
X
r(Xu, dy)(1− eλg(u,Xu,y)) + λ

∑
u∈(0,s]

g(u,Xu−, Xu)
}
.

As a consequence, for any s ∈ [0, t], we can bound

0 ≤ Ys ≤ exp
{∫ s

0

∫
X
r(Xu, dy)

∣∣eλg(u,Xu,y) − 1
∣∣du+ λ

∑
u∈(0,s]

|g(u,Xu−, Xu)|
}

≤ exp
{
2λ

∫ t

0
|g|r(u,Xu)du+ λ

∑
u∈(0,t]

|g(u,Xu−, Xu)|
}
= Y,

for all λ small enough such that λ∥g∥∞ ≤ 1 (here we used that |ex−1| ≤ 2|x| for all x with |x| ≤ 1).
To see that Y is integrable we note that

Eν [Y] ≤ Eν

[
exp

{
4λ

∫ t

0
|g|r(s,Xs)ds

}]1/2
· Eν

[
exp

{
2λ

∑
s∈(0,t]

|g(s,Xs−, Xs)|
}]1/2

by Schwarz inequality. Recall that g satisfies Condition C[ν, t] with some parameter θ > 0. It
follows that the first expectation in the right hand side is finite provided 4λ ≤ θ, while by Lemma
2.4 the second expectation in the right hand side is finite provided 2λ ≤ 4−1min{θ, ∥g∥−1

∞ }. All
the above constraints on λ reduce to λ ≤ 8−1min{θ, 1/∥g∥∞}. In this case Y is integrable and
therefore Y is a martingale. This concludes the proof of Theorem 2.5.

11. Proof of Proposition 3.1

Trivially, by our assumptions, F (X[0,t]) is integrable with respect to Pν .
In what follows, c, C, .. will denote an absolute constant which can change from line to line.

Moreover, q will be the exponent conjugate to p, i.e. such that 1/p+1/q = 1. Note that q ∈ [1,+∞).
Let ξ[0,t] ∈ Df ([0, t],X ). Recall (3.2):

Eν

[
F (Xλ

[0,t])
]
= Eν

[
F (X[0,t])e

Rλ(X[0,t])
]

with

Rλ(ξ[0,s]
)
:= −Aλ

(
ξ[0,s]

)
=

∫ t

0
ds

∫
X
r(ξs, dy)

(
1− eλg(s,ξs,y)

)
+ λ

∑
s

g(s, ξs−, ξs) .
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From now on we restrict to λ small enough that λ∥g∥∞ ≤ 1/2. As |1− ex + x| ≤ cx2 for |x| ≤ 1, it
holds ∫

X
r(ξs, dy)

∣∣1− eλg(s,ξs,y) + λg(s, ξs, y)
∣∣ ≤ cλ2(g2)r(s, ξs) ≤ c∥g∥∞λ2|g|r(s, ξs) .

Hence, we get ∣∣Rλ(ξ[0,t])− λGt(ξ[0,t])
∣∣ ≤ c∥g∥∞λ2

∫ t

0
|g|r(s, ξs)ds . (11.1)

As |ez − 1− z| ≤ z2e|z| for all z ∈ R, we get |ex − ey| ≤ ey(|x− y|+ |x− y|2e|x−y|) for all x, y ∈ R.
Hence,

|ex − (1 + y)| ≤ |ex − ey|+ |ey − (1 + y)| ≤ e|y|(|x− y|+ |x− y|2e|x−y| + y2). (11.2)

Take now
x := Rλ(X[0,t]) and y := λGt(X[0,t]) .

As F
(
X[0,t]

)
∈ Lp(Pν), by Hölder’s inequality and (3.2), we get

Eν

[ ∣∣F (Xλ
[0,t])

∣∣ ] ≤ ∥F (X[0,t])∥Lp(Pν)∥e
x∥Lq(Pν) , (11.3)

Eν

[ ∣∣F (X[0,t])Gt(X[0,t])
∣∣ ] ≤ ∥F (X[0,t])∥Lp(Pν)∥y/λ∥Lq(Pν) , (11.4)∣∣Eν

[
F (Xλ

[0,t])
]
− Eν

[
F (X[0,t])

]
− λEν

[
F (X[0,t])Gt(X[0,t])

]∣∣
=

∣∣Eν

[
F (X[0,t])

(
ex − (1 + y)

)]
| ≤ ∥F (X[0,t])∥Lp(Pν)∥e

x − (1 + y)∥Lq(Pν) . (11.5)

Hence to get that all expectations in Proposition 3.1 are well defined and finite it is enough to prove
that x, y belong to Lq(Pν), while to get (3.4) it is enough to prove that the r.h.s. of (11.2) has norm
in Lq(Pν) bounded by o(λ). In what follows we focus on the last claim, the proof that x, y ∈ Lq(Pν)
can be obtained by similar arguments.

As g is bounded and it satisfies Condition C[ν, λ], by Lemma 2.4 we get that Gt(X[0,t]) is upper
bounded by the sum of two non-negative terms, namely

∫ t
0 |g|r(s,Xs)ds and

∑
s |g(s,Xs−, Xs)|, each

one having finite exponential moment when multiplied by a suitable small constant (independent
from λ). By applying Schwarz inequality we then conclude that for any a ∈ [1,∞) there exists
λ0(a) <∞ such that e|y| = eλ|Gt(X[0,t])| belongs to La(Pν) for all λ ∈ [0, λ0(a)], and moreover

sup
λ≤λ0(a)

∥e|y|∥La(Pν) < +∞ . (11.6)

In addition, since g satisfies Condition C[ν, λ] we have that
∫ t
0 |g|r(s,Xs)ds belongs to La(Pν) for

any a ∈ [1,+∞). Moreover, since λ−2|x− y| ≤ c∥g∥∞
∫ t
0 |g|r(s,Xs)ds (cf. (11.1)), using (11.6) and

Schwarz inequality we conclude that

sup
λ≤λ0(2q)

∥λ−2|x− y|e|y| ∥Lq(Pν) < +∞ . (11.7)

By the same arguments based on (11.1) we also have that e|x−y| belongs to La(Pν) for any
a ∈ [1,+∞) and λ ≤ λ1(a) for some λ1(a) > 0, with

sup
λ≤λ1(a)

∥e|x−y|∥La(Pν) < +∞ . (11.8)

Hence, using (11.6), (11.8) and Schwarz inequality, we gather that

sup
λ≤λ0(4q)∧λ1(4q)

∥ e|y|e|x−y| ∥L2q(Pν) < +∞ . (11.9)
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By (11.1) and the previous observations on
∫ t
0 |g|r(s,Xs)ds, we get that λ−4|x − y|2 belongs to

L2q(Pν) and the norm can be bounded by a λ–independent constant. As a byproduct of (11.9) and
Schwarz inequality, we get that

sup
λ≤λ0(4q)∧λ1(4q)

∥λ−2|x− y|2e|y|e|x−y| ∥Lq(Pν) < +∞ . (11.10)

As eλ0(1)|Gt(X[0,t])| belongs to L1(Pν) by (11.6), we get that λ−1y = Gt(X[0,t]) belongs to La(Pν) for
any a ∈ [1,+∞). By taking a = 2q, by (11.6) and Schwarz inequality, we conclude that

sup
λ≤λ0(2q)

∥λ−2y2e|y| ∥Lq(Pν) < +∞ . (11.11)

By combining (11.7), (11.10) and (11.11) we conclude that the r.h.s. of (11.2) has norm in Lq(Pν)
bounded by λ2 times a λ–independent constant. Hence the r.h.s. of (11.5) is upper bounded by
C∥F (X[0,t])∥Lp(Pν)λ

2 for λ small enough.

12. Proof of Theorem 3.5

Using that the expectations in the statement of Proposition 3.1 are well defined and finite and
using the bounds in Section 11 as well as the bounds below, it is easy to prove that expectations in
the statement of Theorem 3.5 are well defined and finite.

The result for case (1) follows directly from (3.4) in Proposition 3.1. We use it to deduce the
linear response formula for case (2). Indeed, by Fubini’s theorem,

∂λ=0Eν

[ ∫ t

0
v(s,Xλ

s )ds

]
= ∂λ=0

∫ t

0
Eν [v(s,X

λ
s )]ds = lim

λ→0

∫ t

0

Eν [v(s,X
λ
s )]− Eν [v(s,Xs)]

λ
ds

=

∫ t

0
Eν [v(s,Xs)Gs(X[0,s])]ds

+ lim
λ→0

∫ t

0

(
Eν [v(s,X

λ
s )]− Eν [v(s,Xs)]

λ
− Eν [v(s,Xs)Gs(X[0,s])]

)
ds.

(12.1)

Then, by the last statement in Section 11 applied when ∥v(s,Xs)∥Lp(Pν) < +∞, we have that for
all s ∈ [0, t] ∣∣∣∣Eν [v(s,X

λ
s )]− Eν [v(s,Xs)]

λ
− Eν [v(s,Xs)Gs(X[0,s])]

∣∣∣∣ ≤ Cλ∥v(s,Xs)∥Lp(Pν)

which, together with the assumption
∫ t
0 ∥v(s,Xs)∥Lp(Pν)ds < ∞, implies that the last term in the

chain of equalities (12.1) vanishes, thus proving the required identity.
We now move to case (3). Since α is Pν–integrable, it satisfies condition (7.2) Pν-almost surely.

Hence we can use the stochastic calculus techniques for processes with jumps presented in Section
7. Write Gs in place of Gs(X[0,s]), and for s ∈ [0, t] set

Fs :=
∑

u∈(0,s]

α(u,Xu−, Xu) .

Note that Ft = F (X[0,t]). Since F (X[0,t]) ∈ Lp(Pν) for some p > 1, to get (3.12) we can apply (3.4),
hence we just need to show that the r.h.s. of (3.12) equals Eν [GtFt].

To compute Eν [GtFt] we start by noticing that, since g satisfies condition C[ν, t], (Gs)s∈[0,t] is a
purely discontinuous martingale by Lemma 7.2.
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Next, we compensate (Fs)s∈[0,t] to make it into a purely discontinuous martingale. By the Pν–
integrability assumption on α, we can define

F̄s := Fs −
∫ s

0

∫
X
α(u,Xu, y)r(Xu, dy)du = Fs −

∫ s

0
αr(u,Xu)du ,

and (F̄s)s∈[0,t] is a purely discontinuous martingale again by Lemma 7.2. Recall from Section 7.2
that the covariation process of G and F̄ is given by

[G, F̄ ]s =
∑

u∈(0,s]

α(u,Xu−, Xu)g(u,Xu−, Xu),

which is well defined and integrable since g is bounded and α is Pν–integrable by (3.11). Then
by Proposition 4.50 of Jacod and Shiryaev (2003) the process (GsF̄s − [G, F̄ ]s)s∈[0,t] defines a local
martingale. We claim that it is a true martingale. Indeed, since g is bounded and it satisfies
Condition C[ν, t] (and therefore also (2.8) in Lemma 2.4), the assumptions (3.11) on α together
with Hölder’s inequality imply that the product( ∑

s∈(0,t]

|g(s,Xs−, Xs)|+
∫ t

0
|g|r(s,Xs)ds

)( ∑
s∈(0,t]

|α(s,Xs−, Xs)|+
∫ t

0
|α|r(s,Xs)ds

)
belongs to L1(Pν). It thus follows from Lemma 7.1 that (GsF̄s − [G, F̄ ]s)s∈[0,t] defines a true
martingale, thus proving our claim. As a consequence

Eν [GtF̄t] = Eν [[G, F̄ ]t]

= Eν

[ ∑
s∈(0,t]

α(s,Xs−, Xs)g(s,Xs−, Xs)

]
=

∫ t

0
Eν

[
(αg)r(s,Xs)

]
ds,

(12.2)

where in the second identity we have used that∑
u∈(0,s]

α(u,Xu−, Xu)g(u,Xu−, Xu)−
∫ s

0
(αg)r(u,Xu)du

defines a martingale for s ∈ [0, t], as it is of the form (7.3) and αg is Pν–integrable (see Lemma 7.2).
To finish the computation of Eν [GtFt] we observe that, by Fubini and the fact that (Gs)s∈[0,t] is a
martingale,

Eν

[
Gt

∫ t

0
αr(u,Xu)du

]
=

∫ t

0
Eν

[
αr(s,Xs)Gt

]
ds =

∫ t

0
Eν

[
αr(s,Xs)Gs

]
ds. (12.3)

Putting together (12.2) and (12.3), we get

Eν [GtFt] =

∫ t

0
Eν

[
(αg)r(s,Xs)

]
ds+

∫ t

0
Eν

[
αr(s,Xs)Gs

]
ds,

which concludes the proof of Theorem 3.5.

13. Proof of Theorem 3.6

The decoupled case follows easily from the general case, hence we focus on the first part of the
theorem. We aim to compute the r.h.s. of (3.8), (3.9) and (3.12) in cases (1), (2) and (3) in
Theorem 3.5. We achieve this by performing a time-inversion of the unperturbed process. Recall
the definition of the time–reversed process (X∗

s )s∈[0,t] given in Section 3.2. In particular, we use the
following equality in distribution (valid for any s ∈ [0, t])(

Xs, Gs(X[0,s])
) L
=

(
X∗

0 , G
∗
s(X

∗
[0,s])

)
(13.1)
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by defining

G∗
s(ξ[0,s]) :=

∑
u∈(0,s]:ξu− ̸=ξu

g∗(s− u, ξu−, ξu)−
∫ s

0
gr(s− u, ξu)du .

Let us consider first case (1). From (13.1) it follows that

Eπ[v(Xt)Gt(X[0,t])] = Eπ[v(X
∗
0 )G

∗
t (X

∗
[0,t])] = Eπ[v(X

∗
0 )EX∗

0
(G∗

t (X
∗
[0,t]))] . (13.2)

We claim that the process

[0, t] ∋ s 7→
∑

u∈(0,s]:X∗
u− ̸=X∗

u

g∗(t− u,X∗
u−, X

∗
u)−

∫ s

0
g∗r∗(t− u,X∗

u)ds (13.3)

defines a martingale for the probability measure Px and for π–a.a. x ∈ X , where g∗r∗ denotes the
contraction of g∗ as in (2.6), with respect to the transition kernel r∗(x, dy) in place of r(x, dy).
Note that, with some abuse of notation, we have written Px for the probability referred to the time-
reserved unperturbed process starting at x. To prove our claim, we observe that the above process
(13.3) defines a local martingale since it is of the form (7.3). On the other hand, by time–inversion
and using Lemma 3.4 (recall that g satisfies Condition C[π, t]), we have

Eπ

[ ∑
u∈(0,t]:X∗

u− ̸=X∗
u

|g∗(t− u,X∗
u−, X

∗
u)|

]
= Eπ

[ ∑
u∈(0,t]:Xu− ̸=Xu

|g(u,Xu−, Xu)|
]
< +∞ .

As a consequence Ex

[∑
u∈(0,t]:X∗

u− ̸=X∗
u
|g∗(t− u,X∗

u−, X
∗
u)|

]
< +∞ for π–a.a. x ∈ X , thus implying

that the process (13.3) is a martingale for Px and for π–a.a. x ∈ X as explained in Section 7 (now
referred to the time-reversed unperturbed stationary process).

Due to the above claim, for π–a.a. x ∈ X ,

Ex

[
G∗

t (X
∗
[0,t])

]
= Ex

[ ∫ t

0

(
g∗r∗(t− u,X∗

u)− gr(t− u,X∗
u)
)
du

]
,

from which we gather that (cf. (13.2))

Eπ[v(Xt)Gt(X[0,t])] =

∫ t

0
Eπ

[
v(X∗

0 )
(
g∗r∗(t− u,X∗

u)− gr(t− u,X∗
u)
)]
du

=

∫ t

0
Eπ

[
v(Xt)

(
g∗r∗(t− u,Xt−u)− gr(t− u,Xt−u)

)]
du ,

(13.4)

where the second equality follows from (13.1). This concludes the proof of case (1).
The result for case (2) follows by combining (3.9) in Theorem 3.5 and (13.4) with v(s, ·) and s in

place of v(·) and t, respectively, giving∫ t

0
dsEπ

[
v(s,Xs)Gs(X[0,s])

]
=∫ t

0
ds

∫ s

0
duEπ

[
v(s,X∗

0 )
(
g∗r∗(s− u,X∗

u)− gr(s− u,X∗
u)
)]

=

∫ t

0
ds

∫ s

0
duEπ

[
v(s,Xs)

(
g∗r∗(s− u,Xs−u)− gr(s− u,Xs−u)

)]
.

For case (3), in light of (3.12) in Theorem 3.5, it will suffice to show that for all s ≤ t it holds

Eπ[αr(s,Xs)Gs] =

∫ s

0
Eπ

[
αr(s,X

∗
0 )
(
g∗r∗(s− u,X∗

u)− gr(s− u,X∗
u)
)]
du

=

∫ s

0
Eπ

[
αr(s,Xs)

(
g∗r∗(s− u,Xs−u)− gr(s− u,Xs−u)

)]
du.

(13.5)
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The derivation of (13.5) is identical to the proof of (13.4) (with t replaced by s) and uses the
time-inversion identity (13.1).

14. Time periodic case: Proof of Lemma 4.2, Lemma 4.3 and Theorem 4.5

Proof of Lemma 4.2: Since r∗(x, y) > 0 whenever r(y, x) > 0, Assumption 4.1 implies the irre-
ducibility of the Markov jump process with generator L∗, and this is equivalent to the fact that zero
is a simple eigenvalue of L∗ (trivially the non-zero constant functions are the associated eigenvec-
tors).

Let us move to the other complex eigenvalues. Write f ∈ L2(π) as f = fR + ifI , where fR, fI
are real functions. Then we have ℜ

(
⟨f,L∗f⟩

)
= ⟨fR,L∗fR⟩ + ⟨fI ,L∗fI⟩, ℜ(·) denoting the real

part. As for real functions g we have ⟨g,L∗g⟩ = ⟨Lg, g⟩ = ⟨g,Lg⟩ we conclude that ℜ
(
⟨f,L∗f⟩

)
=

⟨fR, SfR⟩+ ⟨fI , SfI⟩, where S = (L+ L∗)/2. As Sg(x) =
∑

y rS(x, y)[g(y)− g(x)] with rS(x, y) =
(r(x, y) + r∗(x, y))/2, we find that S itself is the Markov generator of a Markov jump process on X
with rates rS(x, y) which are easily seen to satisfy detailed balance w.r.t. π. We therefore get

⟨g,−Sg⟩ = 1

2

∑
x

∑
y

π(x)rS(x, y)[g(y)− g(x)]2 ≥ 0 g : X → R . (14.1)

Moreover, since rS(x, y) > 0 if r(x, y) > 0, also S is irreducible. This implies that ⟨g,−Sg⟩ in (14.1)
is zero if and only if g is constant, and otherwise it is strictly positive. Putting all together, we
conclude that ℜ

(
⟨f,L∗f⟩

)
< 0 for any f : X → C which is not constant. Now let f be an eigenvector

of L∗ with eigenvalue λ ̸= 0. We have ⟨f,L∗f⟩ = λ∥f∥2. Hence, ℜ
(
⟨f,L∗f⟩

)
= ℜ(λ)∥f∥2. As f is

not constant (otherwise we would have λ = 0), we conclude that 0 > ℜ
(
⟨f,L∗f⟩

)
/∥f∥2 = ℜ(λ). □

Proof of Lemma 4.3: Recall that we consider a, ψt as column vectors, while we consider π, πλ, π̇
as row vectors. We write Aτ for the transpose of a matrix A and we denote by D the diagonal
matrix with diagonal x–entry given by π(x). Letting P ∗

T := eTL∗ , we have (P ∗
T )x,y = Px(X

∗
T = y) =

(PT )y,xπ(y)/π(x). In particular it holds P τ
T = DP ∗

TD
−1 and π̇τ = Da, thus implying that(

π̇(PT − I)
)τ

= D(P ∗
T − I)a . (14.2)

On the other hand, by Theorem 3.6, time-inversion and the T–periodicity of ψs, we have

(πṖT )(x) =
∑
y

π(y)∂λ=0Py(X
λ
T = x) = ∂λ=0Eπ

[
1{Xλ

T=x}
]

=

∫ T

0
dsEπ

[
1{X∗

0=x}ψT−s(X
∗
s )
]
= π(x)

(∫ T

0
ds esL

∗
ψT−s

)
(x)

= π(x)
(∫ T

0
ds esL

∗
ψ−s

)
(x) .

(14.3)

Hence, rewriting the members in (4.5) as (14.2) and (14.3), we haveD(P ∗
T−I)a = −D

∫ T
0 ds esL

∗
ψ−s.

We therefore conclude that a ∈ L2
0(π) solves the equation in α

(P ∗
T − I)α = −

∫ T

0
ds esL

∗
ψ−s α ∈ L2

0(π) . (14.4)

As (P ∗
T − I) is injective on L2

0(π) (recall that 0 is a simple eigenvalue of L∗), we have that the
solution in L2

0(π) of the above equation (14.4) is unique. Since
∫∞
0 ds esL

∗
ψ−s belongs to L2

0(π), to
conclude the proof it remains to check that α :=

∫∞
0 ds esL

∗
ψ−s solves (14.4). By the T -periodicity

of ψs, we have∫ ∞

0
ds esL

∗
ψ−s =

∫ T

0
ds

∞∑
k=0

e(s+kT )L∗
ψ−s =

[ ∞∑
k=0

ekTL∗] ∫ T

0
ds esL

∗
ψ−s . (14.5)
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Since eTL∗
= P ∗

T , we gather that (P ∗
T − I)

∑∞
k=0 e

kTL∗
= −I on L2

0(π). This observation and (14.5)
imply that α =

∫∞
0 ds esL

∗
ψ−s solves (14.4). □

Proof of Theorem 4.5: Since X is finite (and therefore supx∈X r̂(x) < +∞) and g is bounded, g
satisfies Condition C[π, T ].
• Proof of (4.8). We have Eπλ

[v(Xλ
t )] =

∑
x π(x)

πλ,t(x)
π(x) v(x), hence ∂λ=0Eπλ

[v(Xλ
t )] = π[⟨at, v⟩],

i.e. (by Corollary 4.4) ∂λ=0Eπλ
[v(Xλ

t )] =
∫∞
0 ds ⟨v, esL∗

ψt−s⟩, which allows to conclude.
• Proof of (4.9). By (4.8) it is enough to show that

∂λ=0Eπλ

[ ∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
∂λ=0Eπλ

[
v(s,Xλ

s )
]
ds.

To this aim we observe that, by Fubini’s theorem,

∂λ=0Eπλ

[ ∫ t

0
v(s,Xλ

s )ds
]
= ∂λ=0

∫ t

0
Eπλ

[
v(s,Xλ

s )
]
ds

= lim
λ→0

∫ t

0

Eπλ

[
v(s,Xλ

s )
]
− Eπ

[
v(s,Xλ

s )
]

λ
ds

+ ∂λ=0Eπ

[ ∫ t

0
v(s,Xλ

s )ds
]
.

(14.6)

Note that, since X is finite, the assumption
∫ t
0 |v(s, x)|ds < ∞ for all x ∈ X easily implies that∫ t

0 ∥v(s,Xs)∥Lp(Pπ)ds < ∞ for all p > 1. Thus in the last term of (14.6) the derivative can be
exchanged with the integration as follows by comparing (3.8) and (3.9) in Theorem 3.5. The term
in the middle line of (14.6) equals∑

x∈X
lim
λ→0

∫ t

0
v(s, x)

Pπλ
(Xλ

s = x)− Pπ(X
λ
s = x)

λ
ds

=
∑
x∈X

∑
y∈X

π(y) lim
λ→0

[ 1
λ

(πλ(y)
π(y)

− 1
)∫ t

0
v(s, x)Py(X

λ
s = x)ds

]
=

∑
x∈X

∑
y∈X

π(y)a(y)

∫ t

0
v(s, x)Py(Xs = x)ds,

(14.7)

where in the last equality we have used the dominated convergence theorem to argue that
limλ→0

∫ t
0 v(s, x)Py(X

λ
s = x)ds =

∫ t
0 v(s, x)Py(Xs = x)ds, since by assumption

∫ t
0 |v(s, x)|ds < ∞

for all x ∈ X and by Theorem 3.5 Py(X
λ
s = x) is differentiable (and therefore continuous) at λ = 0.

Reasoning as done for (14.7) (but without the use of the dominated convergence theorem), we get

that the last expression in (14.7) equals
∫ t
0 limλ→0

Eπλ

[
v(s,Xλ

s )
]
−Eπ

[
v(s,Xλ

s )
]

λ ds.
Since we have been able to exchange the limit with the integral in the term in the middle line of

(14.6) and to exchange the derivative with the integral in the last term of (14.6), we conclude that

∂λ=0Eπλ

[ ∫ t

0
v(s,Xλ

s )ds
]
=

∫ t

0
∂λ=0Eπλ

[
v(s,Xλ

s )
]
ds

as required.
• Proof of (4.10). We now focus on ∂λ=0Eπλ

[∑
s∈(0,t] α(s,X

λ
s−, X

λ
s )
]
.

Generalizing (2.6), we set βrλs (s, x) :=
∑

y∈X β(s, x, y)r
λ
s (x, y) for any β : [0, t] × X × X → R.

We claim that the process [0, t] ∋ s 7→
∑

u∈(0,s] α(u,X
λ
u−, X

λ
u ) −

∫ s
0 αrλu

(u,Xλ
u )du ∈ R defines a

martingale w.r.t. Pπλ
for all λ. To prove our claim, we think of the process (ξs)s∈[0,t], where

ξs := (s,Xλ
s−, X

λ
s ) and Xλ

0− := Xλ
0 , as a PDMP with state space R×X ×X and with the following
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local characteristics Davis (1993, Section 24): the jump intensity rate at (s, x, y) is given by r̂λs (y) =∑
z∈X r

λ
s (y, z), the probability transition kernel equals Q((s, x, y), ·) =

∑
z∈X

(
rλs (y, z)/r̂

λ
s (y)

)
δ(s,y,z)

and the vector fields on R associated to each (x, y) ∈ X × X are given by the unit vector field.
Then the claim follows from Item 2 of Davis (1993)[Theorem (26.12)] applied to the process
(Mα

s )s∈[0,t] defined therein, since the integrability condition in the above cited theorem reduces
to Eπλ

[
∑

s∈(0,t] |α(s,Xλ
s−, X

λ
s )|] < +∞. Due to Item 1 of Davis (1993)[Theorem (26.12)] the above

bound is equivalent to the bound Eπλ
[
∫ t
0 |α|rλs (s,X

λ
s )] < +∞. This last bound is fulfilled since the

expectation inside can be bounded by eλ∥g∥∞
∑

x∈X
∫ t
0 |α|r(s, x)ds, which is finite by our assump-

tions.
Due to the above claim we find

∂λ=0Eπλ

[ ∑
s∈(0,t]

α(s,Xλ
s−, X

λ
s )
]
= ∂λ=0Eπλ

[ ∫ t

0
αrλs

(s,Xλ
s )ds

]
= ∂λ=0

∫ t

0
Eπλ

[
αrλs

(s,Xλ
s )
]
ds

= ∂λ=0

∫ t

0

∑
x∈X

πλ,s(x)
∑
y∈X

α(s, x, y)rλs (x, y)ds.

(14.8)

Similarly to (14.6), to see that in the last term of (14.8) the derivative can be taken inside the
sign of integration we proceed as follows. Since πλ,s(x) =

∑
z∈X πλ(z)Pz(X

λ
s = x) and π(x) =∑

z∈X π(z)Pz(Xs = x), we can rewrite the last term of (14.8) as the sum of the following three
terms:

A :=
∑

x,y,z∈X
lim
λ→0

∫ t

0

[πλ(z)− π(z)

λ
Pz(X

λ
s = x)eλg(s,x,y)α(s, x, y)r(x, y)ds

]
,

B :=
∑

x,y,z∈X
lim
λ→0

∫ t

0
π(z)

Pz(X
λ
s = x)− Pz(Xs = x)

λ
eλg(s,x,y)α(s, x, y)r(x, y)ds ,

C :=
∑

x,y,z∈X
lim
λ→0

∫ t

0
π(z)Pz(Xs = x)

eλg(s,x,y) − 1

λ
α(s, x, y)r(x, y)ds .

For all terms A,B,C we get that they remain unchanged if we move the limit limλ→0 inside the
time integral. This can be achieved as follows. To deal with A, we take πλ(z)−π(z)

λ outside the
time integral, we use that limλ→0

πλ(z)−π(z)
λ = π(z)a(z) and we apply the dominated convergence

theorem to get the limit of the remaining time integral. Indeed, the remaining integrand is bounded
for, say, all λ ∈ [0, 1], by e∥g∥∞ |α|r(·, x), which is integrable on [0, t] by assumption. To deal with B
we use that Pz(X

λ
s = x) differs from its first-order expansion Pz(Xs = x) + λEz[1{Xs=x}Gs(X[0,s])]

by at most cλ2, where c is a constant independent from z and s (this follows from the last statement
concerning (11.5) in Section 11). We then apply the dominated convergence theorem (we use again
that |α|r(·, x) is integrable on [0, t] and we bound Ez[1{Xs=x}Gs(X[0,s])] by ∥g∥∞(t+Ez[Nt]) < +∞,
Nt being the total number of jumps in the time interval [0, t]). To deal with C we just apply the
dominated convergence theorem.

As commented above, all terms A,B,C remain unchanged if we move the limit limλ→0 inside the
time integral. This allows us to conclude that in the last term of (14.8) the derivative can be taken
inside the sign of integration. As a consequence, this term equals∑

x∈X
π(x)

∑
y∈X

∫ t

0
α(s, x, y)∂λ=0

(πλ,s(x)
π(x)

rλs (x, y)
)
ds.
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Using that

∂λ=0

(πλ,s(x)
π(x)

rλs (x, y)
)
= (as(x) + g(s, x, y))r(x, y)

we end up with

∂λ=0Eπλ

[ ∑
s∈(0,t]

α(s,Xλ
s−, X

λ
s )
]
=

∫ t

0
ds⟨αr(s, ·), as⟩+

∫ t

0
Eπ

[
(αg)r(s,Xs)

]
ds.

As as =
∫∞
0 du euL

∗
ψs−u (see Corollary 4.4) we have∫ t

0
ds⟨αr(s, ·), as⟩ =

∫ t

0
ds

∫ ∞

0
du⟨αr(s, ·) euL

∗
ψs−u⟩

=

∫ t

0
ds

∫ ∞

0
du ⟨euLαr(s, ·), ψs−u⟩ =

∫ t

0
ds

∫ ∞

0
duEπ

[
αr(s,Xu)ψs−u(X0)

]
,

(14.9)

thus giving the identity

∂λ=0Eπλ

[ ∑
s∈(0,t]

α(s,Xλ
s−, X

λ
s )
]
=

∫ t

0
Eπ

[
(αg)r(s,Xs)

]
ds

+

∫ t

0
ds

∫ ∞

0
duEπ

[
αr(s,Xu)ψs−u(X0)

]
.

□

15. Proof of Theorems 5.1 and 5.3

15.1. Proof of Theorem 5.1. By (5.5) we have Vλ(t) =
∑

e:|e|=1 exp{λ cos(ωt)e · v}Eπλ

[
r(Xλ

t , X
λ
t +

e)
]
e. Hence

∂λ=0Vλ(t) =
∑

e:|e|=1

cos(ωt)(e · v)Eπ

[
r(Xt, Xt + e)

]
e

+
∑

e:|e|=1

∂λ=0Eπλ

[
r(Xλ

t , X
λ
t + e)

]
e =: A+B .

(15.1)

By stationarity Eπ

[
r(Xt, Xt + e)

]
= π

[
r(·, · + e)

]
. This observation allows to rewrite the jth coor-

dinate of the vector A as Aj = cos(ωt)vjπ[cj ] = ℜ
(
eiωtvjπ[cj ]

)
. On the other hand, by (5.4) we

have
Bj = ∂λ=0Eπλ

[
γj(X

λ
t )
]
= ℜ

(
eiωt⟨γj , (iω − L∗)−1(Ψ · v)⟩

)
.

Hence(
∂λ=0Vλ(t)

)
j
= ℜ

(
eiωt

(
vjπ[cj ] + ⟨γj , (iω − L∗)−1(Ψ · v)⟩

))
= ℜ

(
eiωt

d∑
k=1

σ(ω)j,kvk

)
(15.2)

where σ(ω)j,k = π[cj ]δj,k + ⟨γj , (iω − L∗)−1Ψk⟩. This allows to get (5.8), (5.9) and (5.10) (recall
(4.4)).

Let us conclude by showing that the matrix σ(ω) in (5.10) is symmetric for the reversible random
walk. It is enough to show that ⟨γj , (iω − L)−1γk⟩ = ⟨γk, (iω − L)−1γj⟩ for all j, k. As L = L∗, we
have ⟨γj , (iω − L)−1γk⟩ = ⟨(−iω − L)−1γj , γk⟩. As γj , γk are real functions, we have

⟨(−iω − L)−1γj , γk⟩ =
∑
x

π(x)
(
(−iω − L)−1γj

)
(x)γk(x)

=
∑
x

π(x)
(
(iω − L)−1γj

)
(x)γk(x) = ⟨γk, (iω − L)−1γj⟩ .
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□

15.2. Proof of Theorem 5.3. By (5.12) we have

Vλ(t) =
∑
z∈Z

exp
{
λ cos(ωt)

(
z · v

)}
Eπλ

[
r(Xλ

t , X
λ
t + z)

]
z .

Hence

∂λ=0Vλ(t) =
∑
z∈Z

cos(ωt)(z · v)Eπ

[
r(Xt, Xt + z)

]
z

+
∑
z∈Z

∂λ=0Eπλ

[
r(Xλ

t , X
λ
t + z)

]
z =: A+B .

(15.3)

The jth coordinate of the vector A is given by

Aj =

d∑
k=1

ℜ
(
eiωt

(∑
z∈Z

zjzkπ[r(·, ·+ z)]
))
vk .

From this point onwards the conclusion of the proof is then identical to that of Theorem 5.1. □

Appendix A. Local martingales for Markov jump processes

Fixed x0 ∈ X we consider here the unperturbed Markov process X := (Xs)s≥0 starting at
X0 = x0 assuming it does not explode and apply the analysis in Davis (1993, App. A5) to the
process Y := (Ys)s≥0 defined as Ys := (Xs−, Xs) for s > 0 and Y0 := (x0, x0). The process Y can
be described via the formalism in Davis (1993, App. A1). To this aim we define T1, T2, . . . as the
jump times of Y and set T0 := 0, Sk := Tk−Tk−1 for k ≥ 1 and Zk := YTk

∈ X ×X for k ≥ 1. Note
that the jump times T1 < T2 < . . . of the process Y coincide with the jump times τ1 < τ2 < . . .
of the process X. Then the process (xs)s≥0 in Davis (1993, page 257) associated to the sequence
(Sk, Zk)k≥1 corresponds to Y . We point out that the functions µk introduced in Davis (1993,
page 258) are the following: µ1 is the law of (S1, Z1) and, for k ≥ 1, µk(ω1, ω2, . . . , ωk−1; ·) is the
law of (Sk, Tk) conditional on the event that (S1, Z1) = ω1, (S2, Z2) = ω2, . . . , (Sk−1, Zk−1) = ωk−1

(if the above event has positive probability, otherwise the definition of µk(ω1, ω2, . . . , ωk−1; ·) does
not play any role).

We now move to Davis (1993, App. A5) and explain how the key objects there read in our context.
Below A is a measurable subset of X × X and u, s, t are times in R+.

We want to compute ΦA
1 (s) introduced in Davis (1993, App. A5). Setting FA,1(u) := Px0(S1 >

u,Z1 ∈ A), we have ΦA
1 (s) := −

∫
(0,s]

1
FX×X ,1(u−)

dFA,1(u). Therefore

dΦA
1 (s) = Px0(S1 ∈ (s, s+ ds], Z1 ∈ A |S1 ≥ s) = r̂(x0)ds

∫
X

r(x0, dx1)

r̂(x0)
1A(x0, x1)

and therefore ΦA
1 (s) = s

∫
X r(x0, dx1)1A(x0, x1) = s(1A)r(x0).

We now want to compute ΦA
2 (ω1, s) of Davis (1993, App. A5) with ω1 = (s1, x0, x1). Setting

FA,2((s1, x0, x1), u) := Px0(S2 > u,Z2 ∈ A|S1 = s1, Z1 = (x0, x1)), we have

ΦA
2 ((s1, x0, x1), s) := −

∫
(0,s]

1

FX×X ,2((s1, x0, x1), u−)
dFA,2((s1, x0, x1), u) .
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Therefore
dΦA

2 ((s1, x0, y), s) = Px0(S2 ∈ (s, s+ ds], Z2 ∈ A |S1 = s1, Z1 = (x0, x1), S2 ≥ s)

= ds

∫
X
r(x1, dx2)1A(x1, x2)

and therefore ΦA
2 ((s1, x0, x1), s) = s(1A)r(x1).

All other functions ΦA
k can be computed similarly. It then follows that, for s ∈ (Tk−1, Tk], the

function p̃(s,A) defined in Davis (1993, page 276) equals

p̃(s,A) = S1(1A)r(X0) + S2(1A)r(XT1) + · · ·+ Sk−1(1A)r(XTk−2
) + (s− Tk−1)(1A)r(XTk−1

) .

On the other hand p(s,A) and q(s,A) in Davis (1993, App. A5) are given by

p(s,A) :=
∑

u∈(0,s]

1A(Xu−, Xu) and q(s,A) = p(s,A)− p̃(s,A).

Hence, given a measurable function α : [0,∞)×X × X → R, we have

Mα
s :=

∫
(0,s]×X×X

α(u, x, y)q(du, dx, dy) =
∑

u∈(0,s]

α(u,Xu−, Xu)−
∫ s

0
αr(u,Xu)du . (A.1)

Recall from Davis (1993, pages 270, 276) that the (deterministic) measurable function α : [0,+∞)×
X × X → R belongs to Lloc

1 (p) if there exists a non-decreasing sequence of stopping times (ξn)n≥1

such that ξn → ∞ almost surely as n→ ∞ and α1[0,ξn) is in L1(p) for all n ≥ 1, i.e.

Ex0

( ∑
u∈(0,s]

|α(u,Xu−, Xu)|1[0,ξn)(u)
)

= Ex0

( ∑
u∈(0,s]∩(0,ξn)

|α(u,Xu−, Xu)|
)
<∞

for all n ≥ 1. The space Lloc
1 (p̃) can be defined analogously by integrating with respect to p̃ rather

than p, and it is proved in Davis (1993, Proposition (A4.5) and page 276) that α ∈ Lloc
1 (p) if and

only if α ∈ Lloc
1 (p̃). Moreover, if α ∈ Lloc

1 (p) then the process Mα defined in (A.1) above is a local
martingale Davis (1993, Proposition (A5.3)).

We conclude this appendix by showing that if α : [0,∞)× X × X → R is a measurable function
satisfying (7.2), then the associated process Mα defined in (A.1) is a local martingale. To this end it
will suffice to show that α ∈ Lloc

1 (p). Indeed, define the non-decreasing sequence of stopping times
(ξn)n≥1 by setting ξn := inf{s ∈ [0,∞) :

∑
u∈(0,s] |α(u,Xu−, Xu)| ≥ n}. Then the requirement

α1[0,ξn) ∈ L1(p) is trivially satisfied, and ξn → ∞ as n → ∞ by the non-explosion assumption of
the unperturbed process in [0,∞).

When working with functions α : [0, t] × X × X → R as in the previous sections, one can apply
the above results by setting α(s, ·, ·) = 0 for s > t. As a consequence, the process (Ms)s∈[0,t] defined
by (7.3) is a local martingale.

Appendix B. Comparison with linear response when starting with the invariant dis-
tribution of the perturbed process

Trivially, our results apply also to a time-independent perturbation function g. In this case we
write the perturbed rates simply as rλ(x, dy) = r(x, dy)eλg(x,y). Due to time-independence, one
can ask whether the perturbed Markov jump process admits an invariant distribution and if this is
unique at cost of restricting to the class C of distributions which are absolutely continuous w.r.t.
the invariant distribution π of the unperturbed Markov jump process. In the case where there is
a unique invariant distribution πλ (in C), it is natural then to investigate the linear response of
the perturbed system with initial distribution given by πλ (analogously to what we have done in
Theorem 4.8 for the OSS when g is time-periodic).
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Concerning the linear response, using the same notation of Proposition 3.1, at a formal level we
would get

∂λ=0Eπλ

[
F
(
Xλ

[0,t]

)]
= ∂λ=0Eπλ

[
F
(
X[0,t]

)]
+ ∂λ=0Eπ

[
F
(
Xλ

[0,t]

)]
. (B.1)

Our results in Section 3.2 give information on the term ∂λ=0Eπ

[
F
(
Xλ

[0,t]

)]
in the r.h.s.. Proving

existence and uniqueness of πλ and analyzing the term ∂λ=0Eπλ

[
F
(
X[0,t]

)]
in the r.h.s. is usually

hard (cf. e.g. Faggionato et al., 2019; Gantert et al., 2017, 2012; Hairer and Majda, 2010; Komorowski
and Olla, 2005; Lebowitz and Rost, 1994; Mathieu and Piatnitski, 2018). The analysis simplifies
when one can use perturbation theory, e.g. when the unperturbed process is an irreducible Markov
chain with finite state space X . This case is indeed covered by Section 4 as a degenerate case,
since any time-independent function g is also T–periodic (for any T > 0) and in this case the OSS
coincide with the stationary state. In particular, Theorems 4.5 and 4.8 give the linear response of
the perturbed system with initial distribution given by πλ.

We now sketch a direct analysis of term ∂λ=0Eπλ

[
F
(
X[0,t]

)]
for this particular case (i.e. irreducible

Markov chain with finite state space), without passing through time-periodic systems. As well as
giving a more natural derivation, this will also explain why the decomposition (B.1) leads indeed
to the same formulas appearing in Theorems 4.5 and 4.8.

Recall the definition of the operator L∗ and its rates r∗(x, y) given in Section 4. Since rλ(x, y) > 0
if and only if r(x, y) > 0, the perturbed Markov chain remains irreducible and therefore it has a
unique invariant distribution πλ (since π(x) > 0 for all x ∈ X , trivially πλ ≪ π). The time-invariance
of πλ corresponds to the system∑

y

(
πλ(y)r

λ(y, x)− πλ(x)r
λ(x, y)

)
= 0 ∀x ∈ X . (B.2)

If we see πλ as a row vector and the infinitesimal generator Lλ of the perturbed Markov chain as a
matrix, the identity (B.2) corresponds to πλLλ = 0. By matrix perturbation theory (Kato, 1982),
we get that πλ is differentiable at λ = 0. Therefore, setting π̇(x) := ∂λ=0πλ(x), from (B.2) we get∑

y

(
π̇(y)r(y, x)− π̇(x)r(x, y)

)
=

∑
y

(
π(x)r(x, y)g(x, y)− π(y)r(y, x)g(y, x)

)
, ∀x ∈ X . (B.3)

Dividing by π(x), using the intertwining relation π(a)r(a, b) = π(b)r∗(b, a) and that
∑

y r(x, y) =∑
y r

∗(x, y) (which can be derived from
∑

y π(x)r(x, y) =
∑

y π(y)r(y, x) and the above intertwining
relation), we get that (B.3) is equivalent to

L∗ π̇

π
= −ψ , π̇

π
(x) :=

π̇(x)

π(x)
, ψ(x) =

∑
y

(
r∗(x, y)g(y, x)− r(x, y)g(x, y)

)
. (B.4)

Note that ψ(x) = ψt(x) for all t ≥ 0, with ψt defined as in (3.15) and (4.6). Since L∗ is an
isomorphism when restricted to L2

0(π) (see Section 4) and π̇
π , ψ ∈ L2

0(π) (as can be easily checked),
with the notation introduced in (4.2) and due to Lemma 4.2 we get π̇

π = −(L∗)−1ψ =
∫∞
0 esL∗ψds.

Note that this last identity coincides with that of Lemma 4.3. In the same context of Proposition
3.1 we then get that

∂λ=0Eπλ

[
F
(
X[0,t]

)]
= Eπ

[
−(L−1)∗ψ(X0)F

(
X[0,t]

)]
=

∫ ∞

0
Eπ

[
esL

∗
ψ(X0)F

(
X[0,t]

)]
ds .

(B.5)

If e.g. one takes F
(
ξ[0,t]

)
= v(ξt), the rightmost term in (B.5) equals∫ ∞

0
Eπ

[
ψ(X0)v(Xt+s)

]
ds =

∫ ∞

t
Eπ[ψ(X0)v(Xs)]ds .
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Hence, due to decomposition (B.1) and the first formula in Theorem 3.6, we obtain (4.8) in Theorem
4.5. The same analysis can be carried out also for (4.9) and (4.10).

We stress that the above derivation is based on matrix perturbation theory, while for more
general stochastic systems more sophisticated approaches are necessary (cf. Hairer and Majda,
2010; Komorowski and Olla, 2005; Mathieu and Piatnitski, 2018).
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