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Abstract. We study the cover time of random walk on dynamical percolation on the torus Zd
n in

the subcritical regime. In this model, introduced by Peres, Stauffer and Steif in Peres et al. (2015),
each edge updates at rate µ to open with probability p and closed with probability 1 − p. The
random walk jumps along each open edge with rate 1/(2d). We prove matching (up to constants)
lower and upper bounds for the cover time, which is the first time that the random walk has visited
all vertices at least once. Along the way, we also obtain a lower bound on the hitting time of an
arbitrary vertex starting from stationarity, improving on the maximum hitting time bounds from
Peres et al. (2015).

1. Introduction

In this paper, we study random walk on dynamical percolation on Zd
n, first introduced by Peres,

Stauffer and Steif in Peres et al. (2015). We denote the vertex set {0, . . . , n−1}d of Zd
n by Zd

n and the
edge set by E(Zd

n). The model is defined as follows. Each edge refreshes at rate µ = µn. It becomes
open with probability p and closed with probability 1− p. This is the dynamical percolation model.
We denote the edge set at time t by ηt ∈ {0, 1}E(Zd

n) and call it the environment. Here ηt(e) = 0
corresponds to the edge e being closed and ηt(e) = 1 means it is open. We define a continuous time
random walk X = (Xt)t≥0 that moves as follows. It chooses one of the 2d edges incident to the
walker uniformly at rate 1. If the edge is open, it jumps across this edge. If the edge is closed, the
walk stays in place. The full system is denoted by

(Mt)t≥0 := ((Xt, ηt))t≥0. (1.1)

The process M is a reversible Markov process with stationary distribution u × πp, where u is the
uniform measure on Zd

n, and πp is the product Bernoulli measure on E(Zd
n). It is important to note

that the walk process (Xt)t≥0 is itself not Markovian.
Peres, Stauffer and Steif started the investigation of the model in Peres et al. (2015). Their

analysis focused mainly on the regime p ∈ (0, pc(d)), where pc(d) is the critical value for bond
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percolation on Zd. Their main result was a bound on the mixing time

tmix(ε) = inf{t ≥ 0 : max
x,η0

∥Px,η0((Xt, ηt) = (·, ·))− u× πp∥TV ≤ ε}. (1.2)

Theorem 1.1 (Peres et al., 2015, Theorem 1.2). For all d ≥ 1 and p ∈ (0, pc(Zd
n)), there exists a

positive constant C = C(d, p) such that for all n ∈ N and µ ≤ 1, we have

tmix ≤ Cn2

µ
. (1.3)

They also obtained upper bounds on the maximum expected hitting time of the walk started
from the stationary environment. For y ∈ Zd

n, let σy be the first time that the walk visits y:

σy := inf{t ≥ 0 : Xt = y} (1.4)

and define
thit := max

x,y∈Zd
n

Ex,πp [σy]. (1.5)

Theorem 1.2 (Peres et al., 2015, Theorem 1.12). For all p ∈ (0, pc(d)), there exist positive constants
C1 = C1(d, p) and C2 = C2(d, p) such that for all n ∈ N and µ ≤ 1:

C1
n2

µ
≤ thit ≤ C2

n2

µ
, d = 1,

C1
n2 log n

µ
≤ thit ≤ C2

n2 log n

µ
, d = 2,

C1
nd

µ
≤ thit ≤ C2

nd

µ
, d ≥ 3.

(1.6)

Although sharp asymptotic bounds for the mixing and maximum hitting times have been shown
in the subcritical regime, the supercritical regime is not as well understood. A lower bound for
the mixing time of order n2 + 1

µ was shown in Peres et al. (2015) and it was conjectured that this
should also be the correct order for the upper bound. The matching upper bound was shown up to
polylogarithmic factors in part of the supercritical regime by Peres, Sousi and Steif in Peres et al.
(2018, 2020).

Hermon and Sousi (2020) studied the model for general graphs and all parameter values p. They
obtained mixing and hitting time upper bounds in terms of the corresponding quantities for the
simple random walk on the static graph.

Currently, there are no known results on the cover time, which is the first time that the walk has
visited all states at least once. This is the focus of the present paper. To define the cover time, for
s, t ≥ 0, s ≤ t, let R[s, t] be the set of vertices that the walk X has visited in the time interval [s, t],
i.e.,

R[s, t] := {y ∈ Zd
n : ∃r ∈ [s, t] such that Xr = y}. (1.7)

Let τcov be the first time that all vertices in Zd
n have been visited by X, so

τcov := inf{t ≥ 0 : R[0, t] = Zd
n}. (1.8)

We define the maximum expected cover time tcov as the expectation of τcov starting from the worst
possible vertex and environment:

tcov := max
x∈Zd

n,η0∈{0,1}E(Zdn)

Ex,η0 [τcov]. (1.9)

Here Ex,η0 denotes the expectation of the full system (Mt)t≥0 when M0 = (x, η0). We define Px,η0

analogously. More generally, if ρ and π are distributions on Zd
n and E(Zd

n) respectively, we write
Pρ,π and Eρ,π for the law and expectation of (Mt)t≥0 when M0 ∼ (ρ, π).
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Recall that pc(d) is the critical probability for bond percolation on Zd. We are now ready to
state the main theorem of this paper, which says that the order of the cover time for dynamical
percolation is the same as for the regular simple random walk with an extra factor µ−1.

Theorem 1.3 (Cover time bounds). For d ≥ 1 and p ∈ (0, pc(d)), there exist constants C1 =
C1(d, p) and C2 = C2(d, p) such that for all n ∈ N and µ ≤ 1 random walk on dynamical percolation
on Zd

n with parameters µ and p satisfies

C1n
2

µ
≤tcov ≤ C2n

2

µ
, d = 1,

C1n
2(log n)2

µ
≤tcov ≤ C2n

2(log n)2

µ
, d = 2,

C1n
d log n

µ
≤tcov ≤ C2n

d log n

µ
, d ≥ 3.

(1.10)

In order to prove the lower bound on the cover time in dimensions d ≥ 3 in Theorem 1.3, a
key step is to obtain a lower bound on the expected hitting time of any vertex when the initial
environment is very close to a stationary one as we now define. For x ∈ Zd

n, define the probability
measure πx

p on {0, 1}Zd
n to be the measure πp conditioned on η(e) = 0 for all e incident to x, i.e.

πx
p (η(e) = 0) = 1 if e is incident to x and πx

p (η(e) = 0) = 1− p = 1− πx
p (η(e) = 1) otherwise. The

measure πx
p was also used in Peres et al. (2015) and it will play an important role throughout the

entire proof of the cover time lower bound in dimensions d ≥ 3.
Recall the definition of the hitting time σy from (1.4). In the following theorem we obtain a

lower bound on the expected hitting time of any vertex which is of the same order as thit (from
Theorem 1.4) when the initial environment is πx

p for some x.

Theorem 1.4 (Hitting time lower bound). For all d ≥ 3 and p ∈ (0, pc(d)), there exists a constant
C = C(d, p) > 0 such that for all n ∈ N, µ ≤ 1 and x, y ∈ Zd

n with x ̸= y,

Ex,πx
p
[σy] ≥ C

nd

µ
. (1.11)

An immediate corollary of the above is a lower bound on the expected hitting time of any vertex
when the initial environment is stationary.

Corollary 1.5. For all d ≥ 3 and p ∈ (0, pc(d)), there exists a constant C = C(d, p) > 0 such that
for all n ∈ N, µ ≤ 1 and x, y ∈ Zd

n with x ̸= y,

Ex,πp [σy] ≥ C
nd

µ
. (1.12)

1.1. Overview of the proof and outline. A key tool in the proof for dimensions d ≥ 3 are lower and
upper bounds for the cover time in terms of hitting times due to Matthews (1988), which we recall
here. For a set of vertices A ⊂ Zd

n, define

tSRWhit := max
x,y∈Zd

n

ESRW
x [σy], tSRWA := min

x,y∈A
x ̸=y

ESRW
x [σy]. (1.13)

Then Matthews’ bound states that for all A,

tSRWA

(
1 + . . .+

1

|A| − 1

)
≤ tSRWcov ≤ tSRWhit

(
1 + . . .+

1

nd

)
. (1.14)

Here ESRW
x and tSRWcov are the expectation and cover time for the simple random walk. It is straight-

forward to adapt the upper bound to the setting of dynamical percolation, since we can derive a
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hitting time upper bound for all vertices and all starting environments from Theorem 1.2 for d ≥ 2.
This is shown in Section 2.

The lower bounds are much more challenging. In Section 3, we recall the sequence of regeneration
times (τ̃k)k∈N defined in Peres et al. (2015, Section 6), which will play a crucial role throughout the
proof. The regeneration times are constructed such that at time τ̃k, the environment has distribution
πx
p conditional on Xτ̃k = x, and (Xτ̃k)k∈N is a symmetric random walk. Furthermore, the number

of vertices visited in between regeneration times has exponential tails.
We then prove Theorem 1.4 in Section 4.1. Using that the walk (Xτ̃k)k∈N is locally transient, we

show that with probability bounded away from 0, the hitting time of any vertex y ∈ Zd
n is larger

than the mixing time of X. After mixing, it takes time of order nd/µ to hit y, since X only visits
a bounded number of vertices in 1

µ steps. Since (Xτ̃k)k∈N is a symmetric random walk, we can
use standard results to control its behaviour. One of the main technical difficulties is controlling
what happens in between regeneration times. In particular, we want to lower bound the probability
that X does not hit y in between regeneration times.

In Section 4.2, we transfer the hitting time lower bound from Theorem 1.4 to a cover time lower
bound using an adaptation of Matthews’ method. In contrast to the upper bound, the adaptation is
not straightforward, because bounding by the minimum hitting time over all environments will not
yield a sharp bound. Instead, we want to lower bound the cover time in terms of the hitting time
started from the environment πx

p . We overcome this problem by choosing the set A from (1.14) to
be the set of vertices whose coordinates are multiples of ⌊

√
n⌋, so the vertices in A are a distance of

at least
√
n apart. Since the maximum number of vertices visited in between times τ̃j and τ̃j+1 is

at most of order log n, there will be a time τ̃j in between consecutive visits to distinct vertices of A
with very high probability. At that time, the environment has distribution πx

p , and we can apply
the hitting time lower bound of Theorem 1.4.

For d = 2, the random walk is not locally transient, so there is no hitting time lower bound that
is uniform over all vertices like in Theorem 1.4. Instead, we couple the walk along regeneration
times to Brownian motion using a refined strong approximation theorem. Again, we have to control
what happens in between regeneration times. We prove this in Section 5.

Finally, in Section 6, we treat the one-dimensional case.

1.2. Discussion.
Regimes. Note that the results above concern only the regimes p < pc(d) and µ ≤ 1. The super-
critical regime p > pc(d) is much more difficult to study, see Peres et al. (2020). In the subcritical
regime, the open cluster containing the random walk consists of a bounded number of vertices. In
particular, a positive fraction of the time the walk only ‘sees’ a single vertex as all edges incident to
it are closed. This is the basis of the regeneration times approach from Peres et al. (2015), which
we recall in Section 3. This useful fact is not true in the supercritical regime and necessitates the
development of different techniques. The only interesting regime for µ is µ ≪ 1, for which the walk
is slowed down by the dynamics of the environment. If µ does not tend to 0, then the walk is not
slowed down and the qualitative behaviour is the same as that of regular simple random walk, which
is obtained in the limit µ → ∞.
Other graphs. We expect that these results can be extended to more general transitive graphs. In
general one would expect that the expected cover time of random walk on dynamical percolation is
of the same order as that of simple random walk divided by µ. The proof of Matthews’ upper bound
holds for all transitive graphs. For graphs that are locally transient, similar proofs as for Zd

n with
d ≥ 3 should work for the lower bound. For two-dimensional lattices, one would first have to prove
strong approximation of two-dimensional Brownian motion. The rest of the proof then follows in a
similar fashion as for Z2

n.
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2. Upper bound

In this section, we prove the upper bounds of Theorem 1.3 for dimensions d ≥ 2 using an
adaptation of Matthews’ upper bound on cover times for Markov chains. The adaptation of the
proof to the setting of dynamical percolation is straightforward, but we include it here for the
reader’s convenience.

Lemma 2.1 (Matthews’ upper bound). For all d ≥ 1, p ∈ (0, 1), n ∈ N and µ > 0, random walk
on dynamical percolation on Zd

n with parameters µ and p satisfies

tcov ≤ thit

(
1 + . . .+

1

nd

)
. (2.1)

Proof : This proof follows the exposition of the proof of Matthews’ bound from Levin et al. (2009,
Theorem 11.2). We label the vertices of Zd

n as {1, . . . , nd}, and let ϕ be a uniformly random
permutation of {1, . . . , nd} that is independent of ((Xt, ηt))t≥0. Set T0 := 0 and define Tk to be
the first time that the random walk X visits the set of vertices {ϕ(1), . . . , ϕ(k)}. We let Lk = XTk

.
Note that Lk ̸= ϕ(k) if and only if the vertex ϕ(k) was already visited by X by time Tk−1, in which
case Tk = Tk−1. By symmetry and independence of ϕ from X, we have P(Lk = ϕ(k)) = 1

k and

Ex,η0 [Tk − Tk−1|Lk = ϕ(k)] ≤ max
x′,η′0

Ex′,η′0
[Ex′,η′0

[σϕ(k)]|ϕ] ≤ thit. (2.2)

Hence,

tcov ≤
nd∑
k=1

max
x,η0

{Ex,η0 [Tk − Tk−1|Lk = σ(k)]P(Lk = ϕ(k))

+Ex,η0 [Tk − Tk−1|Lk ̸= ϕ(k)]P(Lk ̸= ϕ(k))} ≤ thit

nd∑
k=1

1

k

(2.3)

and this concludes the proof. □

Proof of upper bounds in Theorem 1.3 for d ≥ 2: This follows immediately from Theorem 1.2 and
Lemma 2.1. Note that Theorem 1.2 was only stated for stationary starting environments, but the
result carries over to arbitrary starting environments since the time until every edge updates is with
high probability of order log nd/µ which is much smaller than thit. □

3. Regeneration times

In this section we recall the definition of regeneration times introduced by Peres, Stauffer and
Steif in Peres et al. (2015, Section 6). Observing the walk along the regeneration times will play
an important role in the proofs. Our goal is to define a sequence of regeneration times (τ̃k)k∈N0

such that, if we condition on Xτ̃k = x for some vertex x ∈ Zd
n, then ητ̃k ∼ πx

p and (Xτ̃k)k∈N0 is
a symmetric Markovian random walk. Furthermore, (τ̃k+1 − τ̃k)k will be an i.i.d. sequence with
expectation of order 1

µ . Using these properties, we are able to transfer classical results on random
walks on Zd

n to bounds on hitting and cover times of the random walk on dynamical percolation at
the cost of a factor 1

µ .
We first define the random process (At)t≥0 on E(Zd

n). The set At should be thought of as the
set of edges that the random walk X has information on at time t. Let A0 be the set of edges
incident to X0. If at time t, X jumps to a vertex v, then all edges incident to v are added to At− .
If at time t, an edge e ∈ At− refreshes its state and e is not incident to Xt, then e is removed
from At− . Let (F⋆

t )t≥0 be the natural filtration associated with (Xt)t≥0, (At)t≥0 and ((ηt)|At)t≥0,
where (ηt)|At is the restriction of ηt to At. So this filtration only contains knowledge of the walk’s
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position, whether an edge is in At and the state of the edges in At. The following result from Peres
et al. (2015, Proposition 6.11) states that the sets At tend to decrease in size on a time scale of
order 1

µ .

Lemma 3.1. There exist constants C = C(d, p) > 0 and CA = CA(d, p) > 0 such that for all n ∈ N,
µ ≤ 1, x ∈ Zd

n and t ≥ 0,

Ex,πx
p

[
|A

t+
CA
µ

| | F⋆
t

]
≤ |At|

4
+ C log |At|. (3.1)

We first define an increasing sequence of stopping times (τk)k∈N0 as follows. Let τ0 = 0 and for
k ≥ 1, define

τk = inf{j > τk−1 : |A jCA
µ

| = 2d and η jCA
µ

(e) = 0 for all e ∈ A jCA
µ

}, (3.2)

where CA is as in Lemma 3.1. Define

τ̃k :=
CA

µ
τk. (3.3)

So at each time τ̃k, Aτ̃k only consists of the edges incident to Xτ̃k , which at that time are all
closed. The rest of the edges have Bernoulli distribution. Thus, conditioning on Xτ̃k = x for some
x ∈ Zd

n, we have ητ̃k ∼ πx
p . Furthermore, starting the process according to δx × πx

p , the increments
(τ̃k − τ̃k−1) are i.i.d. and the process (Xτ̃k)k∈N0 is clearly a Markovian symmetric random walk on
Zd
n with uncorrelated coordinates. Also, X satisfies the strong Markov property at the stopping

times τ̃k. Note that (Xτ̃k)k∈N is not equal to the simple random walk.
The stopping times τk and τ̃k were defined in Peres et al. (2015) and several properties were

proved which we will now recall. We first state two results (Peres et al., 2015, Theorem 6.18 and
Lemma 7.4) that will be useful in the proofs. The first says that τ1 is uniformly bounded, which
implies that for each k the difference τ̃k − τ̃k−1 is typically of order 1

µ . The second says that the
number of vertices visited between times τ̃k and τ̃k+1 has exponential tails.

Lemma 3.2. For all d ≥ 1 and p ∈ (0, pc(d)), there exists a constant C = C(d, p) > 0 such that
for all n ∈ N, µ ≤ 1 and x ∈ Zd

n,
Ex,πx

p
[τ1] ≤ C. (3.4)

Lemma 3.3. For all d ≥ 1 and p ∈ (0, pc(d)), there exist constants CR,1 = CR,1(d, p), CR,2 =

CR,2(d, p) > 0 and C = C(d, p) > 0 such that for all n ∈ N, µ ≤ 1, x ∈ Zd
n and k ≥ 0,

Ex,πx
p

[
eCR,1|R[τ̃k,τ̃k+1]|

]
≤ CR,2 (3.5)

and in particular,
Ex,πx

p
[|R[τ̃k, τ̃k+1]|] ≤ C. (3.6)

Finally we recall the following result from Peres et al. (2015, Lemma 7.2). It says that the walk
(Xτ̃k)k∈N satisfies a local Central Limit Theorem that is similar up to a multiplicative constant to
that of the simple random walk.

Lemma 3.4 (Local Central Limit Theorem). For all d ≥ 1 and p ∈ (0, pc(d)), there exists a constant
C = C(d, p) > 0, such that for all n ∈ N0, µ ≤ 1, x, y ∈ Zd

n and k ≥ 0,

Px,πx
p
(Xτ̃k = y) ≤ C

(
1

kd/2
∨ 1

nd

)
(3.7)

and for all k ≥ n2

2 ,

Px,πx
p
(Xτ̃k = y) ≥ 1

Cnd
. (3.8)
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4. Cover time lower bound for d ≥ 3

In this section we prove the lower bound of Theorem 1.3 for d ≥ 3. An important ingredient in
the proof for d ≥ 3 is Theorem 1.4 which we prove in Section 4.1. Then using Matthews’ method,
we are able to deduce the lower bound of Theorem 1.3 for d ≥ 3 in Section 4.2.

4.1. Hitting times. We prove Theorem 1.4 in several steps. First, in Lemma 4.1 we show that with
probability bounded away from 0, the random walk reaches distance n

2 from y before hitting y itself.
In Lemma 4.2, we then show that this implies that with probability bounded away from 0, the
random walk does not visit y up until 2tmix. Finally, in Lemma 4.3, we consider times after 2tmix.

Lemma 4.1. For all d ≥ 3 and p ∈ (0, pc(d)), there exists a positive constant c = c(d, p) such that
for all n ∈ N, µ ≤ 1 and x, y ∈ Zd

n such that x ̸= y, we have

Px,πx
p
(σ̃ < σy) ≥ c, (4.1)

where σ̃ := inf{τ̃k ≥ 0 | d(Xτ̃k , y) ≥
1
2n} and d(·, ·) is the graph distance metric.

The proof of this lemma is done in a few steps. The first step consists of bounding the probability
that the walk visits y during an interval [τ̃k, τ̃k+1]. This probability is small if Xτ̃k is far away from
y, because |R[τ̃k, τ̃k+1]| is small. Furthermore, for large enough k (say k ≥ K = K(d, p)), the
probability that (Xτ̃k) is close to y is small by the local Central Limit Theorem in Lemma 3.4.
So with high probability, X will escape to distance 1

2n before hitting y after τ̃K . We also need to
control the probability of X hitting y up until time τ̃K . We show that this probability is very small
if x is at least some distance M = M(d, p) from y. If x is at distance less than M from y, we show
that with probability bounded away from 0, the random walk starting from x reaches distance M
before hitting y and it then escapes to distance 1

2n.

Proof : For k ≥ 0, we let Ek be the event that X visits y during [τ̃k, τ̃k+1]. Then

Px,πx
p
(Ek) ≤ Px,πx

p
(Ek|d(Xτ̃k , y) ≥ k

1
4d ) + Px,πx

p
(d(Xτ̃k , y) ≤ k

1
4d ). (4.2)

Firstly, by Lemma 3.3 we have

Px,πx
p
(Ek|d(Xτ̃k , y) ≥ k

1
4d ) ≤Px,πx

p
(|R[τ̃k, τ̃k+1]| ≥ k

1
4d ) ≤ CR,2 e

−CR,1k
1
4d . (4.3)

By Lemma 3.4, it follows that there exists a constant C1 = C1(d, p) > 0 such that for k ≤ n2,

Px,πx
p
(d(Xτ̃k , y) ≤ k

1
4d ) ≤ C1

k1/4

kd/2
. (4.4)

Since the estimates (4.3) and (4.4) are summable for d ≥ 3, there exists K = K(d, p) and C2 =
C2(d, p) such that

Px,πx
p

⌈ 1
2
n2⌉−1⋃
k=K

Ek

 ≤
⌈ 1
2
n2⌉−1∑
k=K

Px,πx
p
(Ek) < C2 < 1. (4.5)

By choosing K to be large, we can make C2 arbitrarily small, in particular smaller than 1
6C1

. So
with probability arbitrarily close to 1, X does not visit y during [τ̃K , τ̃⌈ 1

2
n2⌉].

Now assume d(x, y) ≥ M for some universal constant M = M(d, p) > 0. Let A be the event
that there exists k ∈ {0, . . . ,K} with d(Xτ̃k , y) ≤

M
2 . Then applying Doob’s L2 inequality to the
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martingale (Xτ̃k −X0)k we get

Px,πx
p
(A) ≤Px,πx

p

(
max

k∈{0,...,K}
∥Xτ̃k −X0∥2 ≥

M

2

)
≤
4Ex,πx

p
[∥Xτ̃K −X0∥22]

M2

4

=
16KEx,πx

p
[∥Xτ̃1 −X0∥22]
M2

,

(4.6)

where for the last equality we used the orthogonality of the increments. Now using Lemma 3.3, we
see that this last bound goes to 0 uniformly over n and µ as M → ∞.

Let B be the event that there exists k ∈ {0, . . . ,K} with |R[τ̃k, τ̃k+1]| ≥ M
2 . Then by a union

bound and Lemma 3.3 again we deduce

Px,πx
p
(B) ≤

K∑
k=0

Px,πx
p

(
|R[τ̃k, τ̃k+1]| ≥

M

2

)
≤ (K + 1)CR,2e

−CR,1
M
2 , (4.7)

which also tends to 0 uniformly over n and µ as M → ∞. Combining the estimates (4.6) and (4.7),
we obtain that the probability that X visits y up until time τ̃K can be made arbitrarily small by
choosing M large enough.

Lastly, using Lemma 3.4, we have for all k ≥ 1
2n

2

Px,πx
p
(d(Xτ̃k , y) ≥

1
2n) ≥

1

2C1
, (4.8)

which implies that

Px,πx
p

(
σ̃ ≤ ⌈1

2
n2⌉CA

µ

)
≥ 1

2C1
. (4.9)

Now define
A1 ={X does not visit y during [0, τ̃K ]}, A2 = {X does not visit y during [τ̃K , τ̃⌈ 1

2
n2⌉]},

A3 ={σ̃ ≤ ⌈1
2
n2⌉CA

µ
}.

(4.10)

Then, combining all prior estimates, we obtain

Px,πx
p
(X does not visit y during [0, σ̃]) ≥Px,πx

p
(A1 ∩A2 ∩A3)

≥Px,πx
p
(A3)− Px,πx

p
(Ac

1)− Px,πx
p
(Ac

2)

≥ 1

2C1
− 1

6C1
− 1

6C1
=

1

6C1
.

(4.11)

Finally, we want to get rid of the assumption that d(x, y) ≥ M for some M . Let σ̃M = inf{τ̃k ≥ 0 :
d(Xτ̃k , y) ≥ M}. Let x ∈ Zd

n such that 0 < d(x, y) < M and let Γ = {v0, . . . , vm} ⊂ Zd
n be a path

from x = v0 to some vertex z = vm with d(z, y) ≥ M . Without loss of generality, |Γ| ≤ M + 2.
Let Aj be the event that Xτ̃j = vj and that after time τ̃j the following occur:

(1) the edge ej connecting vj and vj+1 opens up before any of the other edges incident to vj ,
(2) before any of the other edges incident to vj or vj+1 open up, the edge ej closes again, at

which time the walk X is at vertex vj+1 and
(3) all edges incident to vj refresh before any of the edges incident to vj+1 open up.

It is immediate to see that, for all j, we have Px,πx
p
(Aj) > c > 0 for some constant c = c(d, p) > 0

that is independent of µ and n. Furthermore, on the event Aj , R[τ̃j , τ̃j+1] = {vj , vj+1}. Hence,

Px,πx
p
(σ̃M < σy) ≥ Px,πx

p

m−1⋂
j=0

Aj

 ≥ cM+2. (4.12)
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For the last inequality we use the fact that, conditioning on the event that Xτ̃j = vj , the events
Aj are independent. Thus, using the strong Markov property at the stopping time σ̃M together
with (4.11) we are able to obtain our final estimate

Px,πx
p
(σ̃ < σy) ≥Px,πx

p
(σ̃ < σy | σ̃M < σy)Px,πx

p
(σ̃M < σy)

≥
∑
z∈Zd

n
d(z,y)≥M

Pz,πz
p
(σ̃ < σy)Px,πx

p
(Xσ̃M

= z|σ̃M < σy)c
M+2 ≥ 1

6C1
cM+2 > 0. (4.13)

This now concludes the proof. □

Lemma 4.2. For all d ≥ 3 and p ∈ (0, pc(d)), there exists c = c(d, p) > 0 such that for all n ∈ N,
µ ∈ (0, 1) and x, y ∈ Zd

n such that x ̸= y,

Px,πx
p
(y ∈ R[0, 2tmix]) < c < 1. (4.14)

In the proof below, we first show that, after reaching distance 1
2n from y, the probability that

the walk (Xτ̃k)k∈N0 comes within distance (log n)2 of y before time 2tmix is very small. We then
show that, between times τ̃k and τ̃k+1, the probability that the random walk travels a distance of
at least (log n)2 is very small. This shows that the probability that the walk hits y during the time
interval [σ̃, 2tmix] is small. By the previous lemma, the probability that the walk hits y during the
time interval [0, σ̃] is bounded away from 1, which completes the proof.

Proof : Let A be the event that that there exists k ∈ N such that σ̃ ≤ τ̃k ≤ 2tmix and d(Xτ̃k , y) ≤
(log n)2. Note that τ̃k ≥ kCA

µ and 2tmix ≤ C1n2

µ for some constant C1 = C1(d, p) > 0 by Theorem 1.1.
Let C2 = C2(d, p) > 0 be some constant whose value we will specify later on in the proof. Then,
using the strong Markov property at the stopping time σ̃ in the second step below, we obtain

Px,πx
p
(A) ≤ max

z∈Zd
n:d(z,y)≥ 1

2
n
Pz,πz

p
(∃ τ̃k ∈ [0, 2tmix] : d(Xτ̃k , y) ≤ (log n)2)

≤ max
z∈Zd

n:d(z,y)≥ 1
2
n
Pz,πz

p

(
∃ k ∈ {0, . . . , ⌈C1

CA
n2⌉} : d(Xτ̃k , y) ≤ (log n)2

)
≤ max

z∈Zd
n:d(z,y)≥ 1

2
n
Pz,πz

p

(
max

k∈{0,...,⌈C2n2⌉}
∥X

τ̃k
−X0∥2 >

n

4

)

+

⌈ C1
CA

n2⌉∑
k=⌈C2n2⌉+1

max
z∈Zd

n:d(z,y)≥ 1
2
n
Pz,πz

p
(d(Xτ̃k , y) ≤ (log n)2).

(4.15)

The last inequality follows from the fact that if d(z, y) ≥ 1
2n, X0 = z and d(Xτ̃k , y) ≤ (log n)2, then

∥Xτ̃k −X0∥2 > n
4 , combined with a union bound. We now apply Doob’s maximal inequality to the

martingale (Xτ̃k)k≥0 for the first part and Lemma 3.4 for the second part to obtain

Px,πx
p
(A) ≤ max

z∈Zd
n:d(z,y)≥ 1

2
n

4Ez,πz
p
[∥Xτ̃⌈C2n

2⌉
−X0∥22]

n2

16

+

⌈ C1
CA

n2⌉∑
k=⌈C2n2⌉+1

C3(log n)
2d

(
1

kd/2
∨ 1

nd

)

≤
64⌈C2n

2⌉E0,π0
p
[∥Xτ̃1 −X0∥22]

n2
+ C4

(log n)2

nd−2

(4.16)

for some constants C3 = C3(d, p) > 0 and C4 = C4(d, p, C2) > 0. By first choosing C2 small enough,
and then n large enough, the final bound may be made arbitrarily small, because d ≥ 3. The last
inequality follows from the independence of the increments of (Xτ̃k)k≥1, and we may remove the
maximum over z by symmetry.
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Furthermore, let B be the event that there exists k ∈ N such that σ̃ ≤ τ̃k ≤ 2tmix and
|R[τ̃k, τ̃k+1]| ≥ (log n)2. Then, analogously to the previous estimate, and using Lemma 3.3,

Px,πx
p
(B) ≤

⌈ C3
CA

n2⌉∑
k=0

max
z∈Zd

n:d(z,y)≥ 1
2
n
Pz,πz

p
(|R[τ̃k, τ̃k+1]| ≥ (log n)2)

≤
(
C3

CA
+ 2

)
n2CR,2e

−CR,1(logn)
2
.

(4.17)

There exists N = N(d, p) such that for all n ≥ N , both (4.16) and (4.17) are smaller than
1
4Px,πx

p
(σ̃ < σy) >

1
4c, with c = c(d, p) as in Lemma 4.1. So,

Px,πx
p
(y ̸∈ R[0, 2tmix]) ≥Px,πx

p
({σ̃ < σy} ∩Ac ∩Bc)

≥Px,πx
p
(σ̃ < σy)− Px,πx

p
(A)− Px,πx

p
(B) ≥ 1

2
c > 0,

(4.18)

which completes the proof. □

Lemma 4.3. For all d ≥ 3, p ∈ (0, pc(d)) and δ ∈ (0, 1), there exists a constant C = C(d, p, δ) > 0
such that for all n ∈ N, µ ≤ 1, x ∈ Zd

n and y ̸= x

Px,πx
p
(y ̸∈ R[2tmix, C

nd

µ
]) > 1− δ. (4.19)

Proof : Note first that

Px,πx
p
(y ∈ R[2tmix, C

nd

µ ]) ≤ 4Pu,πp(y ∈ R[0, C nd

µ − 2tmix]) =
4

nd
Eu,πp [|R[0, C nd

µ − 2tmix]|]. (4.20)

The inequality follows from the fact that (Mt)t≥0 is a time-homogeneous, reversible Markov process
combined with Levin et al. (2009, Lemma 6.17). The equality follows from the fact that (Mt)t≥0 is
vertex transitive.

To bound this final expectation we now use an argument from the proof of Peres et al. (2015,
Theorem 1.12). Since p is strictly smaller than pc(d), there exists some β = β(d, p) > 0 such that,
when η0 ∼ πp, the probability that a fixed edge e is open at some point during [0, βµ ] can be made
strictly smaller than pc(d). Let this probability be p′ = p′(β). Then the size of the set of vertices
that the random walk can visit during [0, βµ ] can be stochastically dominated by the size of the open
cluster of the origin of p′-percolation. Since p′ < pc(d) and by stationarity, there exists a positive
constant C1 = C1(d, p

′) < ∞ such that for all t ≥ 0

Eu,πp [|R[t, t+ β
µ ]|] = Eu,πp [|R[0, βµ ]|] ≤ C1. (4.21)

Now choosing C small enough we get

4

nd
Eu,πp [|R[0, C nd

µ − 2tmix]|] ≤
4

nd

⌈(Cnd−2tmix)/β⌉−1∑
j=0

Eu,πp [|R[2tmix + jβ/µ, 2tmix + (j + 1)β/µ]|]

≤ 4

nd

Cnd

β
C1 < δ,

(4.22)

which completes the proof. □

Proof of Theorem 1.4: Combining Lemmas 4.2 and 4.3, we obtain that there exist constants C =
C(d, p) > 0 and c = c(d, p) > 0 such that

Px,πx
p

(
σy ≥ C

nd

µ

)
≥ Px,πx

p

(
y ̸∈ R[2tmix, C

nd

µ
]

)
− Px,πx

p
(y ∈ R[0, 2tmix]) ≥ c > 0. (4.23)
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Hence,

Ex,πx
p
[σy] ≥ C

nd

µ
Px,πx

p

(
σy ≥ C

nd

µ

)
≥ c · Cnd

µ
, (4.24)

which finishes the proof. □

4.2. Matthews’ method. We are now ready to finish the proof of the cover time lower bounds for
d ≥ 3.

Proof of lower bound of Theorem 1.3 for d ≥ 3: To prove the theorem it suffices to show that if A
is the set of vertices in Zd

n whose coordinates are multiples of ⌊
√
n⌋, then there exists a constant

C = C(d, p) > 0 such that for all n ∈ N and µ ≤ 1,

C
nd

µ

(
1 + . . .+

1

|A| − 1

)
≤ tcov. (4.25)

Label the vertices of A as {1, . . . , |A|} and let ϕ be a uniformly random permutation of {1, . . . , |A|}
that is independent of ((Xt, ηt))t≥0. We define Tk and Lk as in the proof of the upper bound.
Then Px,πx

p
(Lk = ϕ(k)) = 1

k by independence of ϕ from X. Furthermore, the event Lk ̸= ϕ(k)

is equivalent to the event ϕ(k) ∈ R[0, Tk−1], which implies Tk = Tk−1. Let k ≥ 2 and define
J = inf{j ≥ 0: Tk−1 < τ̃j < Tk}. Note that J may be infinite. Then

Ex,πx
p
[Tk − Tk−1|Lk = ϕ(k)] ≥

∞∑
j=0

Ex,πx
p
[Tk − Tk−1|Lk = ϕ(k), J = j]Px,πx

p
(J = j|Lk = ϕ(k))

(4.26)

Observe that {Lk = ϕ(k)}, {J = j} ∈ Fτ̃j , where (Ft)t≥0 is the natural filtration of (Mt)t≥0 which
also keeps track of all the refresh times. Then, using the strong Markov property and the fact that
at time τ̃j , conditioned on Xτ̃j = z, the environment is distributed as πz

p, we obtain that the first
term can be bounded as

Ex,πx
p
[Tk − Tk−1 | Lk = ϕ(k), J = j] ≥ min

y,z∈Zd
n

y ̸=z

Ez,πz
p
[σy] ≥ C1

nd

µ (4.27)

for some constant C1 = C1(d, p) > 0 by Theorem 1.4. Equation (4.26) then becomes

Ex,πx
p
[Tk − Tk−1 | Lk = ϕ(k)] ≥ C1

nd

µ
Px,πx

p
(∃j : Tk−1 < τ̃j < Tk | Lk = ϕ(k)). (4.28)

We show that the latter probability is bounded away from zero. Using that the points in A are at
least distance

√
n apart and that τ̃0 = 0 we have

Px,πx
p
(∃j : Tk−1 < τ̃j < Tk | Lk = ϕ(k))

≥Px,πx
p

({
∃j : τ̃j ≤ 2tcov and |R[τ̃j , τ̃j+1]| ≥

1

2

√
n

}c

∩ {Tk−1 ≤ 2tcov}
)
.

(4.29)

By Markov’s inequality we now deduce

Px,πx
p
(∃j : Tk−1 < τ̃j < Tk | Lk = ϕ(k)) ≥ 1

2
− Px,πx

p
(∃j : τ̃j ≤ 2tcov and |R[τ̃j , τ̃j+1]| ≥

1

2

√
n)

≥1

2
−

⌈ 2µtcov
CA

⌉∑
j=0

Px,πx
p
(|R[τ̃j , τ̃j+1]| ≥

1

2

√
n) ≥ 1

2
− 2C2

CA
nd(log n)CR,2e

− 1
2
CR,1

√
n ≥ c3 > 0

(4.30)
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for all n large enough and some constants C2 = C2(d, p) > 0 and c3 = c3(d, p) > 0, where for the
second inequality we used that τ̃j+1 − τ̃j ≥ CA

µ and a union bound. For the third inequality, we use
the upper bound for tcov that was already proven, and Lemma 3.3.

Combining the bounds above, we obtain that there exists c4 = c4(d, p) > 0 such that

Ex,πx
p
[Tk − Tk−1 | Lk = ϕ(k)] ≥ c4

nd

µ
. (4.31)

Furthermore, we have ϕ(1) = x with probability 1
|A| , in which case T1 = 0. If ϕ(1) ̸= x, then the

same bound as above also holds for k = 1. The rest of the proof now follows as for the upper bound.
We conclude that

tcov ≥Ex,πx
p
[σcov] ≥ Ex,πx

p
[T|A|] = Ex,πx

p
[T1] +

|A|∑
k=2

Ex,πx
p
[Tk − Tk−1]

=Ex,πx
p
[T1|ϕ(1) = x]P(ϕ(1) = x) + Ex,πx

p
[T1|σ(1) ̸= x]P(ϕ(1) ̸= x)

+

|A|∑
k=2

Ex,πx
p
[Tk − Tk−1|Lk = ϕ(k)]P(Lk = σ(k))

≥C4
nd

µ

(
1− 1

|A|

)
+

A∑
k=2

1

k
C4

nd

µ
= C4

nd

µ

(
1 + . . .+

1

|A| − 1

)
.

(4.32)

This concludes the proof of (4.25) and thus the proof of the theorem. □

5. Lower bound for d = 2

In dimension 2, the walk X is no longer transient. Instead, we first prove strong approximation
of X by Brownian motion. We can then transfer known results for cover times of Brownian motion in
two dimensions to cover times for the random walk. Note that weak convergence of X to Brownian
motion was already shown in Peres et al. (2015, Theorem 3.1), but that we need a stronger result
for our purposes. The proof follows the strategy of Dembo et al. (2004, Section 4).

Proof of the lower bound in Theorem 1.3, d = 2: Consider random walk on dynamical percolation
on Z2 with parameters µ > 0 and p ∈ (0, 1) started from δ0 × πx

p . Recall the definition of the
regeneration times from Section 3. Note that τk, τ̃k and CA were originally defined only for the
process on Zd

n, but all the definitions and results carry over to the setting of Zd with no changes.
Let σ2 be the variance of the first coordinate of Xτ̃1 . Recall that the process (σ−1Xτ̃k)k∈N is
a symmetric Markov process with covariance matrix being the identity matrix. Furthermore, by
Lemma 3.3, there exists α that is independent of µ such that

α · E0,π0
p

[
|σ−1Xτ̃1 |e

α|σ−1Xτ̃1
|
]
≤ 1. (5.1)

Hence, by Einmahl (1989, Theorem 12), we may construct (Xτ̃k)k∈N and a Brownian motion W on
the same probability space such that for all n and x ≥ 0,

P
(

max
1≤k≤n

∣∣σ−1Xτ̃k −Wk

∣∣ ≥ x

)
≤ c1n

[
e−c2αx + e

−c2
(

x
c3

)1/2
]
, (5.2)

where c1, c2 and c3 are independent of µ.
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Let δ > 0, γ ∈ (0, 1) and let C1 be some positive constant that we will specify later. By scale
invariance of Brownian motion we obtain

P0,π0
p

(
max

k≤C1n2(logn)2
sup

τ̃k−1≤t≤τ̃k

∣∣∣∣Wσ2k
n2

− 1

n
Xt

∣∣∣∣ ≥ σnγ−1

)

≤P0,π0
p

(
max

k≤C1n2(logn)2

∣∣Wk − σ−1Xτ̃k

∣∣ ≥ 1

2
nγ

)
+ P0,π0

p

(
max

k≤C1n2(logn)2
sup

τ̃k−1≤t≤τ̃k

∣∣σ−1Xτ̃k − σ−1Xt

∣∣ ≥ 1

2
nγ

)

≤c1C1n
2(log n)2

[
e−c2αnγ

+ e
−c2

(
nγ

c3

)1/2
]
+ C1n

2(log n)2CR,2e
−CR,1σn

γ
< δ

(5.3)

for all n large enough, where for the last bound we used (5.2) and Lemma 3.3 as in (4.3).
Let Cε be the expected cover time of the Wiener sausage of radius ε on the unit torus in 2

dimensions, i.e.,

Cε := sup
x∈(R/Z)2

inf{t ≥ 0: ∥Wt − x∥ ≤ ε}. (5.4)

It was shown in Dembo et al. (2004) that

lim
ε↓0

Cε
(log ε)2

=
2

π
(5.5)

in probability. Hence, for every η ∈ (0, 1),

P
(
Cε >

2

π
(1− η)(log ε)2

)
≥ 1− δ (5.6)

for ε small enough. So with probability 1− δ, some disc of radius ε is missed by the set{
Wt mod Z2 : t ≤ 2

π
(1− η)(log ε)2

}
(5.7)

for all ε small enough. Choosing ε = εn = 2σnγ−1 and η = 1
2 , we obtain that with probability 1− δ,

the set {
Wσ2k

n2
mod Z2 : k ≤ 1

π
(log(2σn1−γ))2σ−2n2

}
(5.8)

misses a disc of radius εn for all n large enough. By (5.3), choosing C1 small enough that
C1n

2(log n)2 < 1
π log(2σn1−γ))2σ−2n2, we conclude that with probability 1− 2δ, the set{

1

n
Xt mod Z2 : t ≤ τ̃C1n2(logn)2

}
(5.9)

misses a disc of radius 1
2εn = σnγ−1 for all n large enough. Since τ̃k ≥ k · CA/µ for all k, we get{

1

n
Xt mod Z2 : t ≤ τ̃C1n2(logn)2

}
⊆
{
1

n
Xt mod Z2 : t ≤ CAC1n

2(log n)2

µ

}
(5.10)

and this now completes the proof. □

Remark 5.1. We note that the above method of proof would not yield sharp bounds in higher
dimensions. Indeed, for dimensions d ≥ 3, it was proved in Dembo et al. (2003) that

lim
ε↓0

Cε
ε2−d log 1

ε

= κd, (5.11)
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with κd some constant depending only on d. Using the same strategy as in the proof above, this
would only give

tcov ≳γ
nd+γ(2−d) log n

µ
. (5.12)

for all γ ∈ (0, 1).

6. The case d = 1

Proof of Theorem 1.3 for d = 1: The lower bound follows immediately from the lower bound on the
maximum expected hitting time, see Peres et al. (2015, Theorem 1.12).

We now turn to the upper bound. Without loss of generality, assume that n is even. Assume for
the moment that the walk starts from δ0 × π0

p. Define ζi and ξi as follows. We let ζ0 = 0 and for
i ≥ 1,

ζi :=min{τ̃k > ξi−1 : Xτ̃k =
n

2
},

ξi :=min{τ̃k > ζi : Xτ̃k = 0}.
(6.1)

Note that in each of the time intervals [ξi−1, ζi] and [ζi, ξi], X must have visited all of the vertices
in one of the sets {0, . . . , n2 } and {n

2 , . . . , n − 1}. Let Ai be the event that X has visited all of the
vertices in {0, . . . , n2 } during the interval [ξi−1, ζi], and let Bi be the event that X has visited all
of the vertices in {n

2 , . . . , n− 1} during the interval [ζi, ξi]. By the strong Markov property for the
stopping times ζi and ξi, all of the events Ai and Bi are independent. Furthermore, by symmetry,
P0,π0

p
(Ai) = P0,π0

p
(Bi) ≥ 1

2 , so P0,π0
p
(Ai ∩Bi) ≥ 1

4 .
Define

N := min{i ≥ 1 : Ai ∩Bi occurs}. (6.2)
Then by the previous remarks, starting from δ0 × π0

p, N is stochastically dominated by a geometric
random variable with success probability 1

4 . Also, by Peres et al. (2015, Lemma 7.2) together with
Lemma 3.2 and (3.3), there exists a constant C1 = C1(d, p) > 0 such that for all i ≥ 1,

E0,π0
p
[ζi − ξi−1] = E0,π0

p
[ξi − ζi] ≤ C1

n2

µ
. (6.3)

By symmetry and the strong Markov property at τ̃1,
max
x,η0

Ex,η0 [τcov] ≤ max
x,η0

Ex,η0 [τ̃1] + E0,π0
p
[τcov]. (6.4)

In Peres et al. (2015, Proposition 6.14), it is shown that there exists a constant C2 = C2(d, p) > 0
such that

E0,η0 [τ̃1] ≤ C2
log n

µ
. (6.5)

Furthermore, by Wald’s identity,

E0,π0
p
[σcov] ≤E0,π0

p

[
N∑
i=1

(ξi − ξi−1)

]
≤ E0,π0

p
[N ]2C1

n2

µ
≤ 4C1

n2

µ
. (6.6)

Combining (6.4)–(6.6), we conclude the proof. □

Acknowledgements

This work was initiated as a Part III essay at the University of Cambridge under the supervision
of Perla Sousi. The author thanks her for her guidance, the many mathematical discussions and
her helpful comments on this paper. The author also thanks two anonymous referees for their
comments.



Cover times for random walk on dynamical percolation 921

References

Dembo, A., Peres, Y., and Rosen, J. Brownian motion on compact manifolds: cover time and late
points. Electron. J. Probab., 8, no. 15, 14 (2003). MR1998762.

Dembo, A., Peres, Y., Rosen, J., and Zeitouni, O. Cover times for Brownian motion and random
walks in two dimensions. Ann. of Math. (2), 160 (2), 433–464 (2004). MR2123929.

Einmahl, U. Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J.
Multivariate Anal., 28 (1), 20–68 (1989). MR996984.

Hermon, J. and Sousi, P. A comparison principle for random walk on dynamical percolation. Ann.
Probab., 48 (6), 2952–2987 (2020). MR4164458.

Levin, D. A., Peres, Y., and Wilmer, E. L. Markov chains and mixing times. American Mathematical
Society, Providence, RI (2009). ISBN 978-0-8218-4739-8. MR2466937.

Matthews, P. Covering problems for Markov chains. Ann. Probab., 16 (3), 1215–1228 (1988).
MR942764.

Peres, Y., Sousi, P., and Steif, J. E. Quenched exit times for random walk on dynamical percolation.
Markov Process. Related Fields, 24 (5), 715–731 (2018). MR4246022.

Peres, Y., Sousi, P., and Steif, J. E. Mixing time for random walk on supercritical dynamical
percolation. Probab. Theory Related Fields, 176 (3-4), 809–849 (2020). MR4087484.

Peres, Y., Stauffer, A., and Steif, J. E. Random walks on dynamical percolation: mixing times,
mean squared displacement and hitting times. Probab. Theory Related Fields, 162 (3-4), 487–530
(2015). MR3383336.

http://www.ams.org/mathscinet-getitem?mr=MR1998762
http://www.ams.org/mathscinet-getitem?mr=MR2123929
http://www.ams.org/mathscinet-getitem?mr=MR996984
http://www.ams.org/mathscinet-getitem?mr=MR4164458
http://www.ams.org/mathscinet-getitem?mr=MR2466937
http://www.ams.org/mathscinet-getitem?mr=MR942764
http://www.ams.org/mathscinet-getitem?mr=MR4246022
http://www.ams.org/mathscinet-getitem?mr=MR4087484
http://www.ams.org/mathscinet-getitem?mr=MR3383336

	1. Introduction
	1.1. Overview of the proof and outline
	1.2. Discussion

	2. Upper bound
	3. Regeneration times
	4. Cover time lower bound for d >= 3
	4.1. Hitting times
	4.2. Matthews' method

	5. Lower bound for d=2
	6. The case d=1
	Acknowledgements
	References

