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Abstract. We prove lower large deviations for geometric functionals in sparse, critical and dense
regimes. Our results are tailored for functionals with nonexisting exponential moments, for which
standard large deviation theory is not applicable. The primary tool of the proofs is a sprinkling
technique that, adapted to the considered functionals, ensures a certain boundedness. This sub-
stantially generalizes previous approaches to tackle lower tails with sprinkling. Applications include
subgraph counts, persistent Betti numbers and edge lengths based on a sparse random geomet-
ric graph, power-weighted edge lengths of a k-nearest neighbor graph as well as power-weighted
spherical contact distances in a critical regime and volumes of k-nearest neighbor balls in a dense
regime.

1. Introduction

The theory of large deviations is a central research topic in probability theory which aims to
quantify and understand large fluctuations in systems affected by randomness. As it becomes in-
creasingly important to understand the behavior of random systems not only in typical situations
but also in unlikely scenarios, large deviations theory has become a central element in a broad range
of application domains, such as telecommunications, rare-event simulations, insurance mathemat-
ics and information theory (Dembo and Zeitouni, 1998). While classical large deviations theory
predominantly investigates sequences of random variables or time-varying processes, more recently
there has been vigorous research activity in investigating large deviations properties of random
geometric and topological structures (Schreiber and Yukich, 2005).

One of the key characteristics of these spatial systems is that we frequently observe a distinctively
different behavior in the lower and in the upper large deviation tails. More precisely, for upper
large deviations, we often observe condensation. That is, the rare events are caused by a highly
pathological structure localized in a small part of the sampling window, while the rest of the system
behaves essentially as in the typical regime (Chatterjee and Harel, 2020; Hirsch and Willhalm,

Received by the editors May 8th, 2023; accepted May 17th, 2024.

2010 Mathematics Subject Classification. 60G55, 60F10, 60D05.

Key words and phrases. large deviations, sprinkling, random geometric graph, k-nearest neighbor graph.
923


http://alea.impa.br/english/index_v21.htm
https://doi.org/10.30757/ALEA.v21-38

924 Christian Hirsch and Daniel Willhalm

2024; Kerriou and Morters, 2022). In contrast, in the lower large deviations, we are typically in
a homogenization phase. That means the large deviations are caused by consistent changes away
from the typical regime throughout the sampling window.

The classical techniques to deal with large deviations are predominantly designed to deal with
situations where the lower and the upper tails are of the same nature (Schreiber and Yukich,
2005; Georgii and Zessin, 1993). Hence, it is often unclear how to apply them in the geometric
situations outlined above. On a mathematical level, the reason for this difficulty is the lack of
suitable exponential moments. In particular, Schreiber and Yukich (2005) deal only with the critical
regime for which they impose a condition (L2) that essentially requires the existence of exponential
moments of the functional of interest. Power-weighted edge lengths of k-nearest neighbor graphs
are a prominent example of a functional that only satisfies this condition if the power is strictly
less than the dimension. Furthermore, if one aimed to adapt Schreiber and Yukich (2005) to the
sparse regime, condition (L1) would not be satisfied anymore for examples such as Betti numbers, as
outlined by Hirsch and Owada (2023). Besides that, Georgii and Zessin (1993) contains a restrictive
localization requirement for functionals that does not hold in the examples we deal with in the
present paper.

To address these problems, recently Hirsch et al. (2020) proposed a sprinkling method. Loosely
speaking, this method is based on the idea that it is often possible to eliminate pathological con-
figurations through a small modification of the underlying Poisson process. On a technical level,
this sprinkling is implemented through a carefully devised coupling construction. The benefit of
this sprinkling step is that after this modification, the pathological configurations are removed and
become amenable to an analysis with classical tools.

However, while the examples described in Hirsch et al. (2020) provide a first idea of the feasibility
of the sprinkling approach, the assumptions that are imposed prevent the method from being applied
to a broad class of models. For instance, while the method in Hirsch et al. (2020) can deal with
power-weighted edge lengths of k-nearest neighbor graphs, the power is restricted to be smaller than
the dimension. In particular, it does not yield the lower-tail complement of the upper tail analysis
by Hirsch and Willhalm (2024). More generally, the approach by Hirsch et al. (2020) only deals
with the critical regime, where the number of relevant Poisson points is proportional to the size of
the sampling window. However, in the context of topological data analysis also, different regimes
characterized by either much sparser or much denser configurations of points gained substantial
interest (Kahle and Meckes, 2013; Owada and Thomas, 2020).

In the present paper, we address the shortcomings described above. More precisely:

1. In the critical regime, we describe an extension of the sprinkling approach that allows us to
deal with large deviations of distance-based functionals to a high power.

2. In the sparse regime, we describe the lower large deviations of a large class of additive
functionals, including persistent Betti numbers.

3. In the particularly challenging dense regime, we are able to deal with the lower large deviations
of large power-weighted k-nearest neighbor distances.

On a methodological level, the key contribution of our work is a substantial improvement of the
sprinkling construction from Hirsch et al. (2020). While in that work, the coupling was relatively
basic in the sense that it typically was enough to add a sparsely distributed process of sprinkled
points homogeneously throughout the window. In the present paper, we describe sprinkling strate-
gies that are far more adapted to the actual pathological configurations. In particular, in the dense
regime, we show that it is even possible to implement a desired coupling in a sequential manner
where the distribution of the sprinkling in the next step is allowed to depend on the configuration
of the sprinkling constructed so far.

The rest of the present paper is structured as follows. Section 2 begins with an introduction of
the model and an explanation of how to interpret the different regimes and distinguish them. Next,
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in Sections 2.1, 2.2 and 2.3, we give a much more detailed view into every regime, the sparse, critical
and dense one, respectively. Each of these subsections also contains requirements for the specific
regimes that allow a functional to fit within our frameworks for the lower large deviations and in
each subsection a theorem is stated. Afterwards, we give a small overview of the literature that
our results build on and identify in which way ours differ from and extend these. Sections 3.1 and
3.2 then consist of examples of functionals that fit within the frameworks of the sparse and critical
regimes. Due to the complexity of the dense regime, we restrict ourselves to the case of volumes
of large k-nearest neighbor balls. The rest of the paper is devoted to the proofs of the three main
theorems for each regime. Section 4 deals with the proof within the critical regime, Section 5 with
the proof within the sparse regime and Section 6 with the proof within the dense regime.

2. Model

For d € N, let P,, C [0, 1]¢ be a Poisson point process with intensity 7. The unit cube is equipped
with the torus distance given by

|z —y| := min ||z —y + 2|
z€Z4

for z,5 € [0,1]¢, where || - || represents the Euclidean norm in R%. For z € [0,1]¢ and = > 0,
we express the closed ball of radius r with respect to the Euclidean or toroidal metric by B, (x).
Which metric is meant will be clear from the context, and we use x4 to denote the volume of the
d-dimensional unit ball. First, we demonstrate how geometric functionals on the vertex set P,
are commonly set up and how to categorize them into one of the three regimes. In general, most
geometric functionals, such as subgraph counts of a random geometric graph or power-weighted
edge length of the k-nearest neighbor graph, can be encoded by a functional of the form

1
Ha(Pa) 1= > (X, Py), (2.1)
X€Pn
where
£n: R X N = [0, 0] (2.2)

represents the score function, i.e., the contribution of each single vertex of a set of nodes to the
whole functional, where by N, we denote the space of locally finite subsets of R%. Since P,, almost
surely contains only a finite amount of points, in most cases, it will be sufficient to only define
the score function on finite subsets of ]Rd, which we denote by Ng,. In some cases, we desire to
only consider such configurations on the torus for which we write Nf(iln) = {p € Ngn: ¢ C [0,1]%}.
Further, informally expressed, the normalizing factor s, corresponds to the expected number of
nodes in P, that admit a positive score. We call such points relevant. Throughout the paper, we
will use the expression ¢(A) for a configuration ¢ € N and a measurable set A C R? to denote the
number of points of ¢ that are located within A.

We distinguish between three regimes, the sparse, the critical, sometimes also called thermo-
dynamic, and the dense regime. From a heuristic point of view, this distinction comes from the
typical amount of Poisson points in the range that determines the score of a relevant point. Loosely
speaking, for many score functions, the score of vertices can be determined locally by only looking
at a small neighborhood around the considered point. More precisely, the regimes are distinguished
by a sequence (7y,), such that for a relevant point X € P, typically

fn(Xa Pn) = gn(X7 PnN Brn(X))' (2'3>

The simplest case are functionals that represent features of the random geometric graph, in which
ry, corresponds to (the order of) the connectivity radius. For this specific example, the asymptotic
behavior of the expected degree of a vertex in the random geometric graph characterizes the respec-
tive regime. We emphasize that for other functionals, the distinction into the regimes can be more
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complicated and refer to Sections 2.1, 2.2 and 2.3 for more details about the particular regimes.
Sticking with the heuristic explanation and (2.3), the expected number of Poisson points within
the typical range of the score function is consequently of order nrﬁ. Hence, there are three possible
scenarios for the asymptotics.

1. Sparse regime: nrd ki 0;

2. Critical regime: nr? e > 0;

. niroo
3. Dense regime: nrd % .

FIGURE 2.1. Hlustrations of a random geometric graph in a sparse, critical and
dense regime.

The next sections give details about our results in the three different regimes.

2.1. Sparse regime. In the sparse regime, we investigate functionals for the random geometric graph.
We study score functions given by
f: Nfin — [0,00)
defined on finite point configurations in R%. We also set
ko := inf{m > 0: £(p) > 0 for some ¢ C R? with #¢ = m} (2.4)

as the smallest size of a configuration that can yield a positive functional value. We are going to
plug configurations of P, into the functional that are rescaled using a sequence of connectivity radii
(rn)n € (0,00) that will tend to zero. Configurations that have vertices close to the boundary
of the torus, which we denote by 9[0, 1]¢, might lead to ambiguities if plugged into & because the
functional itself is not allowed to depend on n and therefore, carries no information about the size
of the underlying rescaled torus. For this reason, we generalize the functional to some extent and
for n € N, let
1
& N [0, 00)
be a functional such that for all configurations ¢ € Ngiln) with dist (g, 9]0, 1]9) > r,
fn(ip) = f(’l‘;lgo),
where dist(-, -) denotes the Euclidean distance between two subsets of R?.
We require (&), and ¢ to satisfy the following conditions that are related to the requirements in
Hirsch and Owada (2023, Section 3).
1. € is translation invariant. That means for all ¢ € Ny, and y € R?, a shift of the configuration
 with the vector y does not affect its value, i.e,

e +y) =¢&(p)- (INV)
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2. £ islocally determined for configurations of size kg, which means for all ¢ € Ny, with #¢p = kg
&(p) =0 if ¢ is not connected in the geometric graph with connectivity radius 1. (LOC)

3. For each m > 0 there exists b := b(m) > 0 such that for every n € N and every configuration
¢ € N | it holds that

fin ?

En(p) <b  when #¢ < m. (BND)
4. It holds that

/R(k L EQ0 a2 D (s, ) > 0, (POS)

Requiring (INV') does not exclude any common functionals that represent statistics of random
geometric graphs. (LOC) can be interpreted as a condition that validates ko as smallest size of a
connected component with positive score and is implied if £ is additive, see Remark 2.1. Condition
(BIND) yields that the score of finite-sized components is finite and (POS) is a technical condition
needed for the result in Hirsch and Owada (2023, Section 3) that we are going to invoke.

Henceforth, GG,,(¢) denotes the geometric graph with respect to |-| and with connectivity radius

(1)

rp on @ € Ng 7. Now, we consider the lower large deviations of the functional
HP = HP(Pn) = —s5— Y &n(9)sn(, Pn). (2.5)
ko ¢CPn
Here, s,(p,Py) is an indicator function, taking value 1 if ¢ is a connected component of GG, (Py,),
ie., for p C € N]Eiln) that indicator is given by
sn(p, 1) := 1{p is a connected component of GG, (1)}. (2.6)

The configuration r, ' for ¢ C P, is considered as a subset of the torus [0,7, ']/ ~ and the

normalizing factor has the form

? 7’l
ko ,.d(ko—1

pn,ko =n Orn( ’ )?

which can be interpreted as the order of the expected number of points that are part of some

connected component of size k.

Remark 2.1.

1. Note that the functional in (2.5) is stated in a more general form than suggested in (2.1) and
(2.2). We could recover the representation that sums over all nodes of P, with an indicator
that is only nonzero for one vertex of each connected component.

2. Most examples of such functionals, such as subgraph counts, Betti numbers and edge lengths,
also fulfill that &, is additive for all n € N, which means

En(p1Upa) = &nlp1) + Enlp2)

whenever the distance between ¢, € N]Em) and o € N]E}n) with respect to the toroidal metric

is larger than r,. For such functionals we could also write the functional Hy" as &,(Pp)/p.¥ ko

Next, along the lines of Hirsch and Owada (2023), we define a measure on the set (0, 00) by

1 _
.Zg(A) = k_iolAkO*l({(y% s 7yk0) € Rd(ko 1): f({oa Y2, -, yko}) € A})7

for a measurable A C (0,00), where Ag,_1 corresponds to the Lebesgue measure on R(ko—1),

Additionally, define the relative entropy of a Radon measure p on (0, 00) by

v oo [ S 108 % (@)0lds) — p((0.50)) + 72(0,00)) it p <
(p|7) = o ,

00 otherwise
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where p < Tkp denotes absolute continuity of p with respect to 7',C Note that in accordance with
Hirsch and Owada (2023, Remark 3.6), under some circumstances, some simplifications of the rate
function are possible. We refer to the examples in Section 3.2 for details.

The first main theorem states that H;® admits lower large deviations with rate function hSP(- |
TZE)
Theorem 2.2 (Lower large deviations in the sparse regime). Assume that (INV), (LOC), (BND)
and (POS) are satisfied and assume that ko € [1,00). If nrd — 0 and pinkO — 00, then, for a € R

1
limsup —-5— logP(H? <a) < — inf A®(p| 7P 2.7
ntoo Poko 2 ) p: T*(p)<a (o1 7i) (27)
and )
liminf ——logP(H;P <a)>— inf A% T 2.8
M P, | P PR 29

where TP (p) := f(O,oo) zdp(z).

If we assume that nr,‘i ’”—"? 0, we are indeed in a sparse random geometric graph. But, also using
our characterization of the regimes, this setting deserves to be labeled sparse. To verify this, we
give a small outlook on the proof of the lower large deviations in this case. First, the typical range
to determine the score of a node corresponds to the typical size of a connected component. As it
turns out, connected components of size kg + 1 or larger do not significantly contribute to the lower
large deviations. Therefore, typically the range we have to consider to determine the score of a node
or rather the volume occupled by a typical component size is bounded by k‘om" which tends to 0.

2.2. Critical regime. For the critical regime, we let £ be a measurable function
£:RYx N = [0, 00].

Its desired properties are specified later. To turn £ into the score function we scale everything with
the factor n'/? and define

& RT XN = [0,00], (2,) = £(n*/ 2, n'/%p). (2.9)

Here, unlike the sparse regime, we give two different forms of the functional of interest.
Representation A: We can sum up the scores of each node of the Poisson point process, which is
encoded by

HS .= HY(P,,) : Z En( X, Pn) (2.10a)

Representation B: It is also possible to integrate the scores of all space points in [0, 1]d, which
can be represented by

HE = HE(P,) = / En(z, Po)da (2.10D)
0.1

Power-weighted edge lengths of k-nearest neighbor graphs is an example of a functional that can
be displayed using representation A. Spherical contact distances of space points can be encoded
with representation B. See, Section 3.1 for details.

Remark 2.3. It is possible to express every functional in representation A in terms of representation
B and treat (2.10a) as a special case of (2.10b) by using that

1
- Z &n(X, Pr) :/[0,1]d Z &n(y, Pn)da, (2.11)

XePn yEPuNB,, 1 -1/a(2)
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which can be verified by an application of Fubini’s theorem. If all our requirements for a score
function would directly translate to the sum of the score function over nodes in a small volume,
we could solely consider representation B. However, we aim to study the lower large deviations of
functionals for which some of the requirements for the score function do not translate. In particular,
the sum over scores of nodes in a small space can be excessively large if there are many nodes, even
if the individual scores are bounded. For this reason, we chose to use two different representations.

In the critical regime, the notion of stabilization plays an important role in many frameworks
that deal with limit theory for geometric functionals, see, for example, Penrose and Yukich (2003)
or Schreiber and Yukich (2005). Namely, let a function

R: Rd X Nfin — [0, OO]
be homogeneous of degree 1, which means that for all m > 0, ¢ € Ng, and = € ¢ it holds that
R(mx,mp) = mR(z,p). (2.12

)
Further, we ask for events of the form {R(z,P,) < r} to be measurable with respect to P,, N B,(x)
for each z € [0,1]% and r > 0. We call R stabilization radius for ¢ if for every n € N and = € [0, 1]¢

P(&n(2, Pn) = &n(x, Pn N Br(z,p,) (7)) = 1. (2.13)

To be able to apply sprinkling to couple two Poisson processes, for an M > 0 and each n € N,
we introduce Py M as a thinning of P, with survival probability 1 — M1, as well as P M as a
Poisson point process on [0,1]? with intensity nA/~! that is independent of P, and the thinning.

Then,
M 1-,M M
P i=Pp UPTY, (2.14)
is a Poisson point process 777]:4 on [0, 1]d with the same distribution as P,,. The goal for the applica-

tions will be to let Pp M fully cover P,, and to sprinkle in additional nodes using P, M o control
the stabilization radii while at the same time HM (PM) approximates H(P,). For this purpose,
we define an event that is supposed to be the goal of the sprinkling. Here, we need to distinguish
between the two representations (2.10a) and (2.10b) because in the former, only the nodes of the
Poisson point process need to stabilize after the sprinkling.

Representation A: In the first case, we define the event

EM .— { sup R(X, P, UPM) < M/nl/d} (2.15a)
XePn

that the maximal stabilization radius of a node of P, UP; ™ is bounded by M/n'/?.
Representation B: In the second case, we let

EM .— { sup R(z, P, UPM) < M/nl/d} (2.15b)
z€[0,1]¢

be the set that the maximal stabilization radius of a space point in [0, 1]¢ with respect to P, UP, M
is bounded by M /n'/¢. We note that here, EM might not be measurable. But this is of no concern
because we only have to deal with subsets of EM later that certainly will be measurable.

Next, for a functional £ to fit in our framework for lower large deviations in the critical regime, we
require additional conditions. Condition (STA) limits the magnitude of a score function conditioned
on a bounded stabilization radius. (IINC) makes tools such as monotone convergence available to use
in the proof. (STA) and (INC) are satisfied by most examples of score functions in the literature.
(SPR1), (SPR2) and (SPR3) are more restrictive. They make sure that it is possible to find
a strategy for sprinkling that bounds the maximal stabilization radius without creating too much
excess in the functional. Details about the specific strategies are given in Section 3.1.



930 Christian Hirsch and Daniel Willhalm

1. Let there exist a stabilization radius R for & such that for z € [0,1]¢ and M > 0 large enough
and n € N

P(R(z,Py) < M/n"?, & (2, Py) > g(M)) =0 (STA)

for some function g: (0,00) — (0, 00). In particular, R has to satisfy (2.12) and (2.13).
2. For each r > 0, there exists a functional £": R? x N — [0, oo] bounded by some r-dependent
constant such that for each ¢ € N and € R? it holds that £"(x,¢) = £"(x, o N B,(x)) and

£ (x,0) T &(w, ), (INC)

as r — 0o. In words, £" is nondecreasing with pointwise limit &.
Before the last set of requirements, for each n € N and M > 0, we introduce two cut-off versions of
the score function using the map g from (STA) by
WM (@, 0) = €Mz, (0% 0 Bap (n' ) A g(M)

and ¢M(z, ) := fé\/‘[’M(x, ¢) where z € ¢ € Ng,. Then, for representation A, we write

! ! 1 /
HMM . — gMM(p ) = - > EIM(X,P) (2.16a)
XePn

and for representation B,

HMM . — H,JLW’M(Pn) ::/

A o MM (3 P )da (2.16b)

n
as well as HM .= HY™ in both cases for the respective functionals.
3. Define the event
F Y = (P = Py M}

and for a collection of positive integers m and IM(P,), and a family of disjoint balls in
[0,1]¢/ ~ that may depend on the Poisson point process

(B (Pn))ie1,...1: (Pr)}

with volume V/n for some V > 0, we set

M
FM) = {p;—,M([()’ 19\ ( fll(P”)Br%(Pn))) =0} (2.17)
and
! (Pn)
BN = () APM(BY(P) = m). (2.18)
i=1

We assume that the functional allows for such a collection such that
a) for M sufficiently large, we have

FM.— pMQ) n pM.2) o pM3) ¢ pM. (SPR1)

b) under {H,{LW’M < a}, for a € R, there exists cs\}l) € o(1/log M) as M — oo satisfying that
almost surely

(P < cfn; (SPR2)

c) there exists 05\24) € o(1) as M — oo satisfying that under {Hé\/[/’M <a}NFM, foracR,
almost surely

2M(PM) < HMM(P,) + ) (SPR3)
if M is sufficiently large.



Lower large deviations for geometric functionals in sparse, critical and dense regimes 931

Similar to Hirsch et al. (2020), we give the rate function in its entropy-based formulation. For a
stationary point process Q defined on R%, we let Q be its law, Q,, be the law Q restricted to the
cube [0,n!/4% and P, be the law of n'/?P,. This lets us set

00 otherwise
Further, for any measure @ on N, we use @[5] to denote fN €(0, cp)d@(go). Next, we need to introduce
the Palm version of Q. As it is stated by Georgii and Zessin (1993), Q with finite intensity has a
unique finite measure on N that we denote by Q°, the Palm version, with the property that for all
measurable functions f: RY x N — [0, 00) the equation

Bo[ > flap—a)] = [ [ fla.oU (ehiQ oz
= R JN
is fulfilled.
This lets us state the theorem dealing with the lower large deviations for the critical regime.

Theorem 2.4 (Lower large deviations in the critical regime). Let a > 0.
a) Assume that & satisfies (INC). Then,

1
limsup —logP(H," < a) < —inf h*"(Q), (2.19)
ntoo T Q
where the infimum expands over {Q: Q°[¢] < a} or {Q: Q[¢] < a} for representation A and
representation B, respectively.

b) Let HS be given either in representation A or representation B. Assume that £ satisfies
(STA), (SPR1), (SPR2) and (SPR3) for the respective form of HS. Then,

1
lin%inf —logP(H <a)>— i%f hT(Q), (2.20)
nfoo 1

where the infimum expands over {Q: Q°[&] < a} or {Q: Q] < a} for representation A and
representation B, respectively.

To see that this coincides with our characterization of the critical regime, we first point out
that in order to categorize functionals in representation B into a regime, the characterization via
relevant nodes needs to be extended. When dealing with an integral instead of a sum it is sensible
to consider any space point x € [0, 1]d in terms of relevance. Assuming the integral representation
for now, we recall that the stabilization radius R is homogeneous of order 1. In particular, for any
relevant x € [0, 1]¢ we observe that

YR (z, P,) = R(nY 4z, n/4P,).

Note that n'/4P, is a Poisson point process on [O,nl/ d]d with intensity 1, and thus, for large n
typically R(n'/ %z, n'/?P,) does not depend on n anymore. Thus, typically R(z,P,) should be of
order n=/4, and therefore also the typical range that we need to consider to determine a score of
a relevant point, which justifies classifying this framework as critical. If we only consider relevant
nodes X € P,, we can repeat the same steps for representation A.

Before continuing with the dense case, we briefly elaborate on the representation of the score
function in (2.9). If a score function is homogeneous of degree 3, thus, there exists 5 € R such that
for all m > 0 and ¢ € Ng, and z € ¢ it holds that £(maz, my) = mPE(x, @), then, the rescaling by
n'/¢ in the arguments of the score function could be replaced by a different normalizing factor for
the functional. Power-weighted edge lengths of k-nearest neighbor graphs are such an example.
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2.3. Dense regime. Since the case of dense spatial networks requires much finer technical argumen-
tation, we focus only on one type of functional for a k-nearest neighbor graph for an arbitrary
k € N. In particular, we associate the k-nearest neighbor graph with the functional representing
large volumes of k-nearest neighbor balls. For z € ¢ € Ny, this is encoded in

Ry (x, ) := inf{r > 0: p(B,(z) \ {z}) = k}. (2.21)

This lets us define the according functional by

1
HY = HE(Pn) = —— Y (nkaRe(X,Pn)® = an — s0)+, (2.22)

Prk xep,

where sp € R and (ay), C R is a sequence that tends to infinity slower than n. The normalizing
factor has the form

pn k- nak ! e .
This factor is derived from the computation
k=l i
IP’(Rk(X, P, > an/(nnd)) = 7767%
i=0

for X € P, and represents the expected number of points for which the maximum in (2.22) is
nonzero.
We proceed as in Hirsch et al. (2023) and define a measure on Ej := [sg, 00) by

—x

drle(z) == mdx

and denote the relative entropy of a Radon measure p on Fy with respect to Tke by

d : de
hde(p ‘ T]ge) _ {fEO log dT;d)e (x>dp( ) (EO) + (EO) lf p << Tk

00 otherwise

This lets us state the lower large deviations for the functional in (2.22).

Theorem 2.5 (Lower large deviations in the dense regime). Let (a,), be a sequence such that
an — 00 and a, —logn — (k — 1) loglogn — —oo. Then, for a € R¢

1
lim sup — log P(HY <a)<— inf  h%(p| 70 (2.23)
ntoo Pp g p: TiE(p)<a
and
1
liminf —— log P(H%® < a) > — inf  h%(p | 77°), (2.24)
ntoo p k p: T (p)<a
where T3® = [, © — sodp(z).

We point out that for a node to have a positive score within any configuration, we have to consider
a range of at least r,, := ((an + 50)/(nkq))"/®. Then, nrd diverges if a,, — co. Therefore, typically
we would expect to consider an infinite amount of points in the volume within range, and thus,
calling this regime dense is indeed sensible.
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2.4. Outline. Lower large deviations or even large deviation principles for geometric functionals
have been derived for sparse, critical and dense regimes by Hirsch and Owada (2023), Hirsch et al.
(2020) and Hirsch et al. (2023). To achieve an extension of those results, we rely on the technique
of sprinkling Aizenman et al. (1983), which was already successfully used as a main tool to prove
lower large deviations by Hirsch et al. (2020). In general, it means that we carefully perform small
changes to the underlying process at locations that we deem as not suitable in a way such that
the functional applied to the adapted configuration still approximates the one with the original
point configuration. Mathematically speaking, the idea behind it is to couple two Poisson point
processes such that conditioned on one of them, applying the functional to the other one guarantees
some additional properties of the score function that allow us to invoke general large deviations
theory. Indeed, the most important part of sprinkling is the conditioning on certain events whose
probabilistic costs are negligible. Simply expressed, we aim to "fix” the process in a way that exhibits
low cost in terms of probability and enables us to use already established theory. In the following
paragraphs, we give an overview of the extensions of the sprinkling technique derived in the present
work compared to the results from Hirsch et al. (2020), Hirsch and Owada (2023) and Hirsch et al.
(2023). Naturally we would have wanted to follow the previous order and start with the sparse
regime again as it makes sense to proceed along the increasing number of expected Poisson points
within the typical range of a score function. However, we start with the proof in the critical regime,
then proceed with the sparse regime and deal with the dense regime last. This order reflects the
increasing complexity of the arguments. Ideally, we could have used the fairly simple sprinkling
argument from the critical regime to derive the results for the sparse and dense regimes. However,
as we are going to elaborate on in the following, additional complications arise in the sparse and
dense regimes that require a significant extension of the sprinkling arguments.

1. Critical regime: For the critical case, Hirsch et al. (2020) apply sprinkling on a macroscopic
level to control the maximal stabilization radius of any node without significantly altering the
functional. A coupled Poisson point process retains all nodes from the original process and
consistently inserts additional points across the observation window. The results by Hirsch
et al. (2020) are limited to certain functionals for which the magnitude of the score function
is comparable to the dth power of the stabilization radius. For instance, power-weighted edge
lengths for a power as large as or larger than d do not meet the requirements for their results.
This restriction substantially simplifies the analysis because in that case regularly inserting
points does not alter the functional by a big margin. We will examine some functionals that
violate this condition, which requires a much finer adaption of the sprinkling to the studied
functional as we will demonstrate in Section 3.1.

2. Sparse regime: For a sparse random geometric graph, Hirsch and Owada (2023) derive a
large deviations principle for empirical measures counting potentially connected components
of a fixed size and certain statistics derived from these. Their strategy builds on weak
dependencies of scores assigned to relatively distant connected components in the sparse
setting. This lets them approximate functionals restricted to each single box with i.i.d.
Poisson random measures and apply well-established large deviations theory. However, for
their proof to work, it is necessary that considered components cannot be too big. Otherwise,
the exponential moments cannot be handled anymore. Using sprinkling, we extend their
results. The framework that we present in Section 2.1 for the sparse regime also focuses on
functionals for the random geometric graph but allows to consider connected components of
arbitrary size.

3. Dense regime: For an empirical measure counting large k-nearest neighbor distances, Hirsch
et al. (2023) provide a large deviation principle. They proceed similarly to Hirsch and Owada
(2023) by introducing a grid and by approximating the restricted functionals. In our exten-
sion, presented in Section 2.3, we aim to leave the empirical measure setting and use Hirsch
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et al. (2023, Theorem 2.1) combined with a sprinkling argument to derive lower large devi-
ations for the functional that directly represents the sum of large distances to the k-closest
point. The general way sprinkling is applied here is similar to the sparse case. However, due
to the finer dependencies between adjacent boxes that have to be resampled, the procedure
becomes much more complicated. For this reason, we go sequentially through the boxes,
deciding whether to resample them and also making sure that each box, if resampled or not,
does not affect the potential resampling of the next boxes negatively.

3. Examples

3.1. Functionals for critical spatial random networks.

3.1.1. Power-weighted edge lengths of the directed k-nearest neighbor graph. Let k € N and a > 0
be arbitrary. In the directed k-nearest neighbor graph, there is a directed edge from each node to
its k closest neighbors. We aim to represent the statistic of the power-weighted edge lengths using
representation A. To achieve that, for each n € N, we let the score function &, be given by

§(x, ) := > [l =yl

yeﬂomBRk(ac,ap) (:E)

for x € R? and ¢ € N, where we recall Ry, from (2.21) in the dense case, which simultaneously
acts as stabilization radius here. For formality reasons, we set {(z,p) := oo if #¢ < k. Note
that when we plug P, into the functional &,, we replace the Euclidean norm || - || with the toroidal
distance on [0,n'/4?/ ~. Further, the case a < d was already covered in Hirsch et al. (2020). This
functional satisfies (STA) with the choice g(m) := €™ and also (INC) is satisfied when choosing
€ (x, @) = &(x, N By(z)) Ar for r >0, 2 € R? and ¢ € N.

The sprinkling requirements (SPR1), (SPR2) and (SPR3) that we aim to verify next seem to
be very strong at first glance. After the thinning does not delete anything, the additionally inserted
points from P, M only fall within specified balls, and the number of additional points is fixed (equal
to k here), all in a way that does not alter the functional itself too much. But as we will see from
the proof of Theorem 2.4, all of this is negligible at the exponential scale as M increases because of
the choice of IM and the location of the balls. In order to show that the sprinkling requirements
hold, we denote all nodes with exceptionally large stabilization radii by

IM = gM(P,) = {X € Pp: R(X,Pn) > M,},

where we use the abbreviation M,, := M/ nt/d. We point out that the number of vertices in P,, on
the torus [0,1]?/ ~ with a stabilization radius larger than M,, is bounded, i.e.,

#IM < k2'n/(kgM?). (3.1)

This can be seen by going through a configuration from P, node by node and assigning the labels
essential and inessential to some of them. Each considered node X € P,, with stabilization radius
larger than M,, that has not been labeled yet, is labeled as essential and each of its kK — 1 closest
neighbors is labeled as inessential if it has not been labeled as essential before. After the procedure,
all essential nodes cannot have any other essential points within distance M,,. Consequently, balls
with radius M,,/2 around the essential nodes cannot intersect. The bound in (3.1) is derived by
bounding the number of these balls in [0, 1]¢ through the volume each occupies and multiplying
with k to adjust for the inessential points.

An issue that can arise when it comes to the sprinkling requirements are relatively close nodes in
JM  due to potentially not disjoint sets in the sprinkling event. To make sure that such scenarios
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cannot occur, we aim to thin out the set of these bad vertices. We say a node X € Py, is distinguished
if X is the smallest node in the lexicographic order of P, N B, -1/4(X). Then, we define

IM .= FM(P,) :={X € JM: X is distinguished}

as a subset of JM that only keeps distinguished nodes. This guarantees that the distance between

~1/d

two nodes in jrf\/[ is at least n and therefore balls with radius n~/%/2 centered in each node in

j,{w are disjoint. With this in mind, we can define the sprinkling event by setting
@)= {P:’M([Oa 1%\ UXefT{”anl/d/Q(X)) =0}

and

EM® = () APEM(B, 1/ajp(X)) = k).
XegM

Further, if we assume that M is large, it follows that each node X € JM can only have k — 1
other nodes in By, ~1/4(X). Otherwise, X would have a stabilization radius bounded by kn=1/d.
Thus, one of the nodes in By, ~1/4(X) has to be distinguished. Subsequently, after adding k points to
B,,-1/45(X) for each X € JM the stabilization radius for each X € JM is bounded by (k+1)n~1/4
and the same bound holds for the stabilization radii of the additionally inserted points. Hence,
(SPR1) is fulfilled and the bound from (3.1) with the definition of JM implies (SPR2) with
MPp) :=4#IM V=24 and m = k.

Finally, to verify (SPR3), we see that the k nodes put in B,,-1/45(X) for every X € TM each
come with an additional score that is bounded by k after the rescaling with n'/¢. All scores of
vertices that already existed can only decrease when inserting the new nodes and the same holds
for the cut-off score. This means we arrive at

log M

’ !’ 1 /
H MR < H M (Po) + —k2 47,0 < Ht M (Po) + =2

n

under FM | for large M and M’ > M, confirming (SPR3).

3.1.2. Power-weighted spherical contact distances. A basic characteristic of a point pattern is the
distribution of the spherical contact distances Illian et al. (2008, Section 4.2). Loosely speaking, it
describes the distance to the nearest point of the given point pattern measured from a space point
that is selected at random. A basic approach to estimate this quantity is the point-count method
[lian et al. (2008, Section 4.2). Here, the window is discretized, and then for each subcube, the
distance of its center to the closest point is recorded. A natural way to formulate an estimator that
is independent of the discretization, is to replace the discretization with an integral. Following this
setup, in the present example, we describe the large deviation behavior of estimators of the ath
moment of the spherical contact distances for o > d. For this, we aim to use the integral form
representation B. We define the score function by

§(x, p) = inf |y — x|,
yeEp

where, as in the previous section, we replace the Euclidean norm with the toroidal distance when
applying the score function to a configuration on a torus.
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0.3

0.2

0.1

FiGURE 3.2. Simulation of spherical contact distances based on a Poisson point
process on a two-dimensional torus. The lighter the shade, the smaller the distance
of a space point to its closest node in the configuration.

We can set the stabilization radius to be
R(z, ) :=1inf{r > 0: (B,(z)) > 1}.

With this stabilization radius and the choice g(M) := M®, (STA) is satisfied. Also, (INC) holds
with the choice £"(z, @) := &(x, 0 N By(z)) A7 for r > 0, z € R and ¢ € N.

In order to construct the sprinkling event, we divide [0,1]¢ into a grid of cubes of side length
n~Y4M /log M, denote this collection by QM and call a box Q € QM bad if it does not contain
any Poisson points, i.e., if Q NP, = 0. Let

IM .= gMp):={Qe oM. P, nQ =0}

be the set of bad boxes. If a box is bad, all points in a cube of volume n~% in the center of the
bad box must have a distance to the closest node of at least n=/4M/(log M)? for sufficiently large
M. Thus, a bad subcube contributes with a value of at least M®/(log M)?® to the total functional

after resolving the rescaling with factor n/¢. Thus, under the event {H,]TVI WM a}, for M’ > M,
such bad boxes can only occur a limited number of times. More precisely, due to our choice of g,
we find that
(1og M)?

Now, to define the sprinkling event, we introduce an additional sub grid. First, without explicitly
stating it, in the following, we will assume that M is sufficiently large for some properties to hold
and that we can manage the assignment of the subcubes without having to deal with fractions of
subcubes. A negligible adjustment of the side length of the boxes would assure the latter. Divide
Q € QM into subcubes of side length n~?log M and call this collection WM(Q). With the

observation in (3.2), the number of subcubes in bad boxes is bounded by

(log M)?* (n=Y/4M / log M)? e (log M)?(e=d)
Mo (n—l/d log M)d B Ma—d )

For Q € JM and W € WM(Q), let By C W be the ball with radius n~/¢ that is located around

the center of W. Now, we can define the sprinkling event by inserting a node in each subcube of
every bad box. Thus, accordingly to (2.17) and (2.18), we get the events

FM@ = {PFM ([0, 1]\ (Uweiwrew (): gegmyBw)) = 0}

#HW eW(Q): Qe T} <na

(3.3)
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and

IO N (P (Bu) = 1),
wWe{WewM(Q): QegM

If all bad boxes contain at least one vertex, the stabilization radius of any space point can be at
most of order n_l/dM/ log M, and is therefore, less than or equal to M/nl/d for large enough M,
verifying (SPR1). Further, since we assumed o > d, (3.3) confirms (SPR2) with IM(P,) :=
#W e WM(Q): Q € JM}, V := 1 and m := 1. For (SPR3), we point out that inserting an
additional node cannot increase the contact distance of any point. Additionally, every space point
in a good box has a contact distance of order n=/4\f /log M and, thus, cannot be affected by the
cut-off of the score in the functional and thus, also with respect to the cut-off functional the contact
distance of a space point in a good box after the sprinkling can only decrease. This observation
yields that only the added points in bad boxes have to be considered to bound the increase of the
cut-off functional under the sprinkling event. But under FTJZW ’(3), the distance to the closest node
of every space point in a bad box is of order log M and thus, bounded by (log M)? for large M.
Hence, we get that under FM N {H,Q/I,’M < a}

(IOg M)Qa IM(P ) < HM(P ) +a (IOg M)4a_2d

1y (P = )My < HYOM(P,) + - T fed

also verifying (SPR3).
3.2. Functionals for the sparse random geometric graph.

3.2.1. Subgraph counts. Let Gy := (V, E), where V represents a set of vertices and F a set of edges,
be an arbitrary fixed finite connected graph. With this, we define

Ep) =#{(¢ ) ¢ Co, E'C {{z,y} ¢l —yl <1}, (¢, E) = Go}

for a configuration ¢ € Ny, to count the occurrence of the graph Gy in the geometric graph with
connectivity radius 1 on ¢. For n € N and ¢ € N]Eiln) with dist(y, 9[0,1]%) > 7,, we define &,(p)
similar to £(r;, 1) but replace the Euclidean distance with the toroidal metric of [0, 7, 1]?/ ~. These
functionals fulfill all requirements stated in Theorem 2.2. If used as a score function, as displayed
in (2.5), it represents occurrences of Gq in a random geometric graph with connectivity radius r,
in a sparse regime.

Additionally, sometimes it is possible to simplify the rate function further. More precisely, assume
that we count the occurrences of a kg-clique. Then, with Mecke’s formula, it can be computed that

ntoo Ung(Go)

ol 7 i QAL EA T (3.4)
Ko!

The right-hand side is given by

vaia@o)i= [ TT o=yl < 1), (35)

{i.j}€E(Go)

where z1 := 0, E(Go) C {{i,5}: 4,5 € {1,...,ko},i # j} such that ({1,...,ko}, E(Go)) = Gy and
Vd ko (Go) == 1 if kg = 1. Intuitively, (3.5) represents the volume of all possible locations to place
ko — 1 points around a fixed point such that the generated geometric graph with connectivity radius
1 is isomorphic to Gy. Now, from our proof for the sparse regime, it follows that we can also write
& directly as an indicator that triggers for complete connected components of size kg. Then, Hirsch
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and Owada (2023, Remark 3.6) implies that

. sp Py __ : B
= i (p | 7ig) = — iuf wlog(/pany) — o+ paky
_ J—alog(a/pak,) +a— pak, if a < pa

0 otherwise

and an analogous simplification could be achieved but would require substantial additional compu-
tations and is therefore omitted.

3.2.2. Betti numbers and persistent Betti numbers. Simply expressed, Betti numbers count holes of
a certain dimension in simplicial complexes. Hirsch and Owada (2023, Section 4.1) gives a short
overview of literature dealing with the basic concepts behind Betti numbers and the more general
persistent Betti numbers. They can be built upon the Cech complex. For a set p € Ny, and r > 0,
the Cech complex is defined by

OT(@) = {¢ C p: Ny BT(«T) # Q)}
Now, we can define the kth persistent Betti number for 0 < s <t < oo by

Zk:(Cs (f))
Zi(Cs()) N Bi(Cilp))’

where ¢ € Ny, Z; is the kth cycle group of the Cech complex and Ek represents the kth boundary
group. Note that for t > 1 we need to incorporate t in r,, to achieve that (LOC) remains satisfied.
For configurations close to 9]0, 1]%, we define &, similar to £(r;;!-), using balls with respect to the
torus [0,7,,1]¢/ ~ to set up the Cech complex. The requirements for Theorem 2.2 are satisfied and
we recover the ordinary Betti numbers by setting s = ¢. As in the case of subgraph counts, also
here, a simplification of the rate function according to Hirsch and Owada (2023, Remark 3.6) is

achievable. However, to keep this section at a reasonable size, we omit the explicit computations.

5k(90a S, t) = dim

3.2.3. Edge lengths. For a point set ¢ € Ny, we define
@)=Y e —yli{lz —y| <1}

z,YE€P

and &,, for n € N, is defined analogously to the subgraph counts or Betti numbers examples, using
the toroidal metric of [0,7,1]?/ ~ instead of the Euclidean distance. Then, all requirements of
Theorem 2.2 are satisfied. Note that here, kg = 2 and thus, as the proof of Theorem 2.2 shows, only
isolated edges will be relevant for the lower large deviations.

4. Proof of Theorem 2.4 (critical)

For bounded and local score functions, Georgii and Zessin (1993) provide a large deviation princi-
ple for associated functionals. We recall that our strategy is to use a coupling consisting of a thinned
Poisson point process and another independent Poisson process. We are going to work under the
event that the thinning keeps all the points of P, while using the independent Poisson point process
to sprinkle in additional points following a specific pattern to guarantee locality and boundedness
of the score function such that the general large deviations theory becomes invokable.

First, we let P, be a Poisson point process with intensity 1 on the torus [0,n1/4)4/ ~. Note that
n/4P, and P, have the same distribution. Now, we can replicate the proof of Hirsch et al. (2020,
Theorem 1.1) to get Theorem 2.4 a), the upper bound for the lower large deviations.
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Proof of Theorem 2./ a): We recall £ from (INC). Further, for the next steps, we assume that we
are in representation A and indicate that the other case works analogously. The functional £ is
bounded and local, and thus, we can use Georgii and Zessin (1993, Theorem 3.1) (or Georgii and
Zessin (1993 Corollary 3.2) in the case of representation B) to get that

1
lim sup — logIP’(HCr < a) <limsup — logIP< Z & (nMixX n1ip,) < a)
n

n
ntoo ntoo Xep,

= limsup — logP(i Z £M(X, ,]Sn) < a> < - inf h(Q).

ntoo T xep Q: Q°[¢"]<a

By (INC), & (x, ) increases, as r grows, towards {(z, ¢) for each z € ¢ € N. Proceeding, using
monotone convergence, as in the proof of Hirsch et al. (2020, Theorem 1.1), it follows that

—limsu inf  A“(Q)< - inf A"(Q),
rtoo in Q°[¢m]<a (Q) T Q:Qefl<a (Q)

which concludes the upper bound. O
In order to prove the lower bound, it is necessary to examine the event FM from (SPR1) in

detail. For this, we denote the number of Poisson points of P, by N, := P,([0,1]¢). The next
lemma gives a lower bound for the probability of the sprinkling event.

Lemma 4.1 (Sprinkling regularizes with high probability). For n > M > 1 sufficiently large, we
get that almost surely

P(FM | Po) > (1 — M~1YNeemn/M (VD™ =V 12 (Pn)

m!

Proof of Lemma /.1: Looking at the probabilities of each single event of FM gives
PP, M =P | Pp) = (1— M),
M (P, _n
(P ([0, 0\ (U2 "B (Pa) = 0] Pr) = /M
and

M (P,)

P< () PM(BY(Py m}‘ ) (WAD™ o=v/ay I (Pr)
=1

almost surely, where we used that the survival probability of the thinning is 1—M ~! and the intensity
of PiM was assumed to be n /M. Using independence between all three events conditioned on P,
yields the desired statement. g

Now, we conclude the proof of Theorem 2.4.

Proof of Theorem 2./ b): In the following, assume that M > 0 is large and M’ > M. Because
of FM C EM wh1ch was assumed in (SPR1), it follows that under the event FM the radius of
stabilization with respect to PM of each node in PM or space point in [0, 1], depending on whether

we consider a functional given in representation A or representation B, is at most M n~1/4. Hence,
we can invoke (STA) from which follows that under FM we can replace H,,(P) by HM(PM), and
get

P(Hy(Py) < a) = P(Ho(P)) < a) > PUHY (P)) < a} 0 B 0 {H)M(P,) < a}).
Due to (SPR3) it holds that under FM N {H%/’M(Pn) < a} almost surely
HY (P < M (Pa) + €, (41)
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as M — oo and thus, since {HyI’M(an) <a- 65\24)} - {H%/’M(Pn) < a}, it follows that,
B({H (PY) <a} 0 EY 0 {HY M (Py) < a}) > PUHY Y (Py) + ) <a}n EY).
By conditioning on P, and applying Lemma 4.1 for sufficiently large n, we arrive at
E[L{HM M (P,) < a—YP(FM | P,)]
> B[L{HMM(Py) < a— e }(1 = M1 (WA o=V I (P on /i

m!

= E[R{HyI’M(Pn) <a-— cﬁ)}exp (Nn log(1 — M~ + 1M (P,) log (M _V/M)ﬂ e M,
Moreover, invoking (SPR2) and introducing a bound for N,, yields for any ¢ > 0,
E[n{H%“M(Pn) <a—cPVexp (Nn log(1— M~Y) + IM(P,) log (V20" ,V/M))}
> ]P’(H,]LW’M(PN) <a-— cgf), N, < cn)exp (enlog(l — M™1) + cgw)nlog((V/M) 7V/M)).
(1)

To convince ourselves that the exponential factors are not relevant, we recall that ¢, log M — 0 as
M — oo was assumed, which yields

1 log (exp (cnlog(l — M1+ Al )nlog((V/M)m e VIMy n/M))
n

1 MTOO

— clog(1 — M~Y) + ) (log(VAO™) _v/nr) — M- 0.

Now, for the other factor,
P(H%/’M(Pn) <a-— cSS),Nn <cn) > P(Hy,’M(P ) <a-— 05\24)) P(N, > cn),

where for large ¢, Penrose (2003, Lemma 1.2) can be used to show that the second term does not
affect the large deviations.

For the next computations, we assume that H;' has representation A. The other case works
analogously. We define ¢M"M (z, ¢) := &(x, N By () A g(M) for z € R and ¢ € N, and point
out that ¢M "M can be locally determined and is bounded by g(M). Besides that, recall that 73n is
equal in distribution to n'/¢P,,. Then, applying Ceorgii and Zessin (1993, Theorem 3.1) (or Ceorgii
and Zessin (1993, Corollary 3.2) in the case of representation B), we can proceed as in the proof of
the upper bound, and we arrive at

1 ,
liminf — log P(HM"M(P,) < a — c{?)

nfoo "N
= hmlnf—logIP’< 3" € X, 0P, 1 Bap (nY9X)) A g(M) < a—c(ﬂ?)
nfoo M n
XePy
= lim inf - log[P’( Z fMI’M(X, ﬁn) <a- 65\2/[)) > — ilnf . R (Q).
ntoo P, Q: QoM M]<a—cyy
Finally, we assert that
lim inf lim inf ( — inf hcr((@)> >— inf AT(Q),
M—00 M'—o0 Q: Qo[eM" M]<a—c?) Q: Q°[¢]<a

which yields the desired result.

To prove this assertion, let Q be an arbitrary point process that satisfies Ego[£(0,-)] < a. This
lets us find some 6 > 0 such that Ego[£(0,-)] < a —J. Next, for any M > 0, it also holds that
Ego[£(0,-) A g(M)] < a —  due to monotonicity. Further, dominated convergence yields that
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lim 1100 Ege [£(0, - N B (0)) A g(M)] = Ego[£(0,-) A g(M)] from which we deduce the existence of
My(8, M) such that for all M’' > My(8, M)

Eqeo[€(0,- N B (0)) Ag(M)] < a—d/2.
In particular, from cg\? — 0 as M — oo we get that for some My(M) > 0 and all M’ > My(M)
Eqe[£(0, N Byrr(0)) A g(M)] < a ¢}
if M is large enough. Therefore,
{Q: Q€] < a} € {Q: QM M) < a— ) for all M’ > My(M) and M large}
which implies that

lim sup lim sup ( inf hcr(@)) < inf  AT(Q).
M—o0 M'—o00 \Q: Q"[fM/’M]<a*C§é) Q: Q°[¢]<a

5. Proof of Theorem 2.2 (sparse)

For the sparse case, we would like to apply the large deviation principle for empirical measures
counting potentially connected components of a fixed size of a random geometric graph from Hirsch
and Owada (2023, Theorem 2.1). Using sprinkling, we would ideally like to create a coupled
Poisson point process that, when serving as nodes for a geometric graph, only contains fixed-sized
components. A simple replication of the procedure in the critical case for the sparse case is not
possible as we will desire for the thinning to keep most of the points, which will be with very high
probability an amount of order n, thus, resulting in costs for the thinning of magnitude e~“" for
some ¢ > 0. But the speed for the sparse regime satisfies

o = e = () ) 5 oo,

SP d(ko—1
P ko nko'rn( oh)

if kg > 1. Instead, as Hirsch and Owada (2023), we will divide [0, 1]¢ into a grid and resample an
entire box of the grid if we deem the configuration in it as not feasible and additionally bound the
inevitable error in the functional that this process creates. This then results in a coupled Poisson
process as a foundation for a geometric graph for which all significant connected components are
of a fixed size, and therefore, we can invoke the large deviation principle from Hirsch and Owada
(2023, Theorem 2.1).

Now, to give more details after this overview, as announced, we start by dividing [0,1]? into a
grid of cubes with side length (piﬁko)_l/ @ each, where to keep the notation simpler, we assume that
pfzko is a natural number and denote this collection by Q,,. We define P}, as a Poisson point process
on [0, 1]¢ with intensity n independent of P,,. Further, for all cubes Q € Q,, let X . be Bernoulli

random variables with parameter € € (0,1), independent of each other and all introduced Poisson
random measures. Using this, we define

NP, if Xg. =0’

n -

which yields a Poisson point process on @ with intensity n for each n € N. Consequently, P/ :=
UQEQnPg is a Poisson point process on [0, 1]d with intensity n. The idea is to use the Bernoulli
random variables to control P/ in such a way that we resample P,, using P}, in each box that has a
node with kg relatively close other vertices while keeping P, in all other boxes. To achieve this, let

Tn = jn(Pn) = {Q € Qn: ngg%?n Pn(BQdkorn(X» > ko + 1}
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be the boxes that contain a vertex with at least ko other vertices within distance 2%kyr,, and that
we would therefore like to resample. To further ease notation, we also denote the number of bad
boxes by

and we point out that we can consider kg as fixed from now on, which lets us write

Py = p;‘?ko-
We first make sure that these bad boxes do not occur too many times with a probability that is too
high.

Lemma 5.1 (Bad boxes are exponentially negligible). Let 6 > 0. Assume that nre — 0 and
pw — co. Then,
1
lim sup —5 log P(J,, > 6p;7) = —o0.

ntoo n
Next, we determine what happens within a box that was resampled and ignore effects of adjacent
boxes for now. Preferably we would like the sprinkled process not to create any new components
consisting of kg or more vertices within a resampled cube. The next lemma states that for each

n € N, conditioned on P,, the probability of not having kg close points within a resampled box
Q € J, is bounded from below.

Lemma 5.2 (With positive probability, a resampled box does not contain kg close nodes). Assume
that nrd — 0 and py¥ — oo. Then, for any M > 2&50_12’“0(‘12“)/4:]0‘70 it holds that

IP’( ﬂ { max P}, (Byip,,, (X) N Q) §k‘0—1}‘73n) Za]‘{;,

XeQnP,
Qeg, 9

where apy = 2~ M1,

One issue that we cannot prevent is that there can be large connected components between two
adjacent boxes when at least one of them is resampled. But we can show that the number of these
components will, with high enough probability, not be significant. More precisely, the next lemma
will control the number of large components that can occur between boxes when resampling. To
ease notation, for every Q) € Q,,, we let

onQ = {x € Q: dist({z},9Q) < 2%kry,}

denote the set of all points in @ within distance 2%kqr, of the boundary of Q. The factor 2%k
appears here to be able to deal with boxes that share a face, which allows for large connected
components to exist that span over multiple boxes. We also let

CCpky = {X €P!: 5,({X} U, P!) =1 for some ¢ C P! with #({X} U ) € {ko,...,2%}}

be the vertices in P/ that are part of a connected component of size between ko and 29k, where
we recall the definition of s, from (2.6).

Lemma 5.3 (The number of large connected components between boxes is negligible). Let 6 > 0.
Assume that nrd — 0 and p;y — oo. Then,

1
listup ps log P(#CCp, 1, (Uge, 0nQ) = 6p3P) = —oc.

With these lemmas and preliminaries, we can prove the lower large deviations in the sparse
regime.
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Proof of Theorem 2.2: We point out that Hirsch and Owada (2023) worked with the Euclidean
distance on [0, 1]% instead of the toroidal metric. For this reason, we need some additional notation
to deal with this subtle difference. Also, recall that H;’ = é 2o, En(@)sn(p, Pn), where s,

checks for connected components with respect to the toroidal metric. We define the restriction to
components of size kg by

1
HP =HP (P)i=—5 > &ul@)sn(e, P).
7 ’ pn PCPn,#o=ko

To also incorporate the Euclidean metric, we define GG),(¢) as the geometric graph on ¢ € Ng, with
connectivity radius r, and with respect to the Fuclidean distance. With this, for ¢ C ¢ € Ng,, we
set

sl (,1) := 1{p is a connected component of GG/, (1)}

to be the counterpart of s, in terms of the Kuclidean distance. Further, along the lines of Hirsch
and Owada (2023, Theorem 3.3), we define

~ - 1 B
H:kao = HVSkao (P”) ‘= “sp Z f(?"nl(p)tn((p,,])n),
’ ’ Pr P o=t

where
tn(o, Pn) == 1{|ly — 2|| > for all y € p and z € P, \ p}Ll{diam(p) < korp}
is the indicator assuring that ¢ is isolated and locally concentrated within P, and diam(yp) :=
max,2.c, ||y — z|| denotes the maximal Euclidean distance between points in .
Our goal is to apply Hirsch and Owada (2023, Theorem 3.3) to H :L"’ko. One main step for the

upper bound of this proof will be to show that the error between Hfzpko and H Zpko that occurs close
to the boundary is negligible. Thus, we define

1
rr, 1 _
HZ,IZO (Pn) = “sp Z f(rnl@)sg(% Pn)
Pr Py #p=ho,
diSt(@,a[O,l]d)Srn

and compute

1 _
Hzp 2 H::ko 2 “sp Z f(rnhp)sé((ﬂvpn)
" @CPn: #o=ko,
dist(,0[0,1]4) >y,

1

_ 1 _
= > meP) - Y nosme ) G
S S "GP Fo=ho,
dist(¢,8[0,1]%) <rp
~ 1
where we used that from (LOC) it follows that for all ¢ C P, with #¢ = ko
E(ra )tn (. Pa) = E(ry ') i (0. Pr). (5.2)

Further, we introduce the event
Gn = {#{X € P\ [rn,1— ] sl ({X} U, Pp) =1 for some ¢ C P,
with #({X} U) = ko} < 8p3°},

which implies that the number of connected components of size ky that are located close to the
boundary of [0, 1]¢ with respect to the Euclidean distance is negligible. To deal with the probability
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of G, note that it is possible to replace the event in Lemma 5.3 with the complement of G,, and
we still get that
lim sup 1p log P(GY,) = —o0. (5.3)
ntoo Pn
To show this, the proof of Lemma 5.3 can be repeated with only one modification that arises from
switching from the toroidal to the Euclidean metric. In (5.6) one has to consider that it is possible
that only a fraction of the ball intersects the box.
Under G,, the number of components summed over in H zr,rml is bounded by dp; and with (5.1),
we can compute

P(HP < a) <P(HP, — H3(Py) < a) S PP, < a+ Hy' o (Po), Gn) + P(GS)

n,ko n,ko

P(HF, <a+d s s(mlso),an)m((;z)

©C[0,1]4,#p=ko,
diam(p)<korn

<P(HP, <a+6b)+P(G),
where we used (INV) and (BND) to get for sufficiently large n

IN

sup  &(r, o) = sup Erale) < sup &ulp) <D
@g[0>1]d7#§0:k01 @g[oJ]d\["'n71—7'n]d7#50:k01 @2[071](17#@:]?0
diam(p)<korn diam(¢)<korn

More precisely, by (IN'V) we were able to move the configuration away from the boundary of [0, 1]
if n is large enough and apply (BND). By (5.3), the probability of the complement of G,, does
not significantly contribute to the large deviations. From this point, (INV), (LOC), (BND) and

(POS) let us apply Hirsch and Owada (2(]23 Theorem 3.3) to H npk , which yields
1
lim sup —5 log P(H;P < a) < limsup —5 logﬂFD H® <a+6db)<— inf hP(p | 72F).
oo Pn ( ) ntoo P (Hiv, ) p: T=(p) <a-+3b (01 7i,)

and therefore, the asserted upper bound, after letting 6 — 0. Note that the rate function in Hirsch
and Owada (2023, Theorem 3.3) is given as a Legendre transform. Arguing as in Hirsch and Owada
(2023, Corollary 3.2), this can be equivalently written in the relative entropy form.

For the lower bound, as a first step, with the same reasoning, we get for any § > 0 that

1 ~
lim inf —5 log P(H:P —6) > — inf h®P 5.4
lg%g ppr o8 nko < @ = p: Tspl(rﬁlﬂ<a 5 (] Tko) (5-4)

The next part of this proof is dedicated to showing that in terms of large deviations, also for the
lower bound, H," can be replaced with Hf‘lpko. For this, let

peeod . P!, (Baagyr, (X) N Q) < ko — 1}

{ max
(X,Q): QeTn, X€QNP;,
and for € > 0 serving as parameter for the Bernoulli random variables,
B, :=En () {Xge=1}n [ {Xq: =0}
QEIn QETIn
We start the computations with
P(HP < a)=P(HP(P)) <a) >P(E,, HP(P)) < a).

Next, we can divide the functional into contributions that come from components intersecting the
volume close to the boundary of a cube, denoted by

T 1
Hfi 72(737/1,) ‘= “sp E 5”(90)8%(90’737/{)7
" TP pN(Uge o, 0nQ)#D
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and those that do not. Under the event F,,, we then have that

1
H:P(P) = —5 > E(ry o) snle, Pry) + HY2(Py)
Pn eCPY: pN(UQe g, 0nQ)=0
H;Pko (P,) + HE2(P).

We were able to bound the first term by ) ko applied to P, instead of P/ because under the
sprinkling event, if we disregard the space close to the boundaries of the cubes, the coupled process
P/ replaces P, in each cube that contained at least a part of a connected component of size
ko + 1, without creating any new connected components of size kg or bigger. Thus, under E,, when
disregarding the boundary of boxes, P,/ only contains connected components of size at most kg and
every connected component of P}/ of size ky is also a connected component of the same size in P,,.
Further, we made use of (5.2) as in the proof of the upper bound. This lets us proceed with

P(Eyn, HP(P)) < a) > P(Ey, H, (Pn) + HE(P)) < a).
Further, to ease notation, let

Fy = {#CCp ke (Ugeg,0nQ) < 0p37
denote the complement of the event from Lemma 5.3 for some § > 0, which gives us

P(E,, H®

n,ko

(Pa) + HyP2(Py) < @) = B(Ey, Fo, Hyy (Pa) + HW(PY) < a).

Now, conditioned on E, and for sufficiently large n, the random geometric graph on P/ with
connectivity radius r, cannot have a connected component of more than 2%kq nodes, since in that
case if n is large, a box Q € 7, would exist that contains ko + 1 vertices of P,/ with diameter less

than or equal to Qdkorn. This contradicts E,%OOd. Note that 2% occurs here because it is the maximal
number of boxes that can share a face. Thus, due to the nonnegativity of £, under E,, N F,,, it holds
that

Hzrr,2(73;{) <4 sup &n(p) < 0D,
©C[0,1)4,#p<2%ko

where we recall that b depending only on d and kg arises from (BND). This leads to
P(E,, F, ,H®

n,ko

(Pn) + HE2(P)) < a) > P(Ep, Fy, H, (Pr) +0b < a)
> P(E,, HP, (Pn) + 6b < a) — P(FY).

Summarizing these steps and applying the tower property of the conditional expectation, we arrive
at

P(H? < a) 2 E[P(E[Py)L{HY, (Pn) < a — 6b}] - P(Fy).
Now, using Lemma 5.2 and independence of the events intersected in F,, under P,, we get that
P(E|Pa) = P(EE[Pa)e” (1 =)™/ > (ane) (1 — )"
for an arbitrary M > 2/@20_12]“0(‘12*1%30. This lets us proceed with
P(HP < a) > E[(ape)’ (1 —e)P* 11{HSP (Pn) < a— b} — P(FY)
> E[(one) " (1 — )P 1{HP, (Py) < a— 8b}1{J, < 6pP}] — P(FY)
> (ae)™ (1 — &)/ (P(HP, (Pn) < a—6b) — P(J, > 6piP)) — P(FS).
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From this inequality and Lemma 5.3, it follows that P(F) does not contribute significantly to the
lower bound for the lower large deviations. Therefore, we arrive at

1
lim inf —5 log P(H;P < a)
ntoo pn

lim inf —5 log ((anre)? (1 — )P (P(ﬁ;f’ko (Pn) < a— 8b) — P(J,, > 6pP)))

ntoo pn

AV

> 0log(anse) +log(l —e) + hm inf — log (P(ﬁ;‘jko (Pn) < a—4db) —P(J, > 5pjlp))_

nToo Pn

Now, Lemma 5.1 implies that P(.J,, > 6p;) does not affect the lower bound of the lower tails in this
situation, and thus, plugging in (5.4), we get

hII%lIlf 5 log P(HP < a) > dlog(anse) +log(l —¢) + l1m mf 1og (P(f[ipko (Pn) < a—6b)
niToo ,On ’

>4l log(1 —¢) — f h*P ).

> §log(anre) +log(1 —¢) o Tsvg)l)mf&b (| 7hy)

Letting § — 0 and then ¢ — 0 gives the lower bound

lim inf —5 log P(H;Y <a)>— inf  A%®(p]| ;p)
nfoo ,On p: T(p)<a

0

What follows are the proofs of the previously introduced lemmas. But, since we come across the
task of bounding a similar quantity in the proofs of Lemmas 5.1, 5.2 and ).3, we insert a short
lemma that helps with this first.

Lemma 5.4 (Bound for the probability of many Poisson points in a ball). For Q C [0,1]¢ and
m,l,r € N, it holds that

E[#{X € QN Pu: Pu(Br(X)) > 1}] <mlsltr (=140

Proof of Lemma 5.1: We are going to categorize boxes to create independence and use a binomial
concentration inequality from Penrose (2003, Lemma 1.1). We use the set £ := {1, 2}¢ to label each
box in Q,, in a certain way to achieve that between two boxes of the same label, there will always
be a box with a different label. To guarantee that this is possible on the torus, we assume that the

number of boxes along each axis is divisible by 2. For [ € £, we denote the boxes of label [ by Qg).
Then,
P(Jn > 6pP) < 3 P#(QV N ) > 6pP /2%,
lel
For n large enough, the labeling guarantees that the events {Q € J,} are independent for different

Q < Qg). Thus, we are in a binomial setting and to use the mentioned binomial concentration
inequality, we first bound the probability of one box being bad by using Lemma 5.4 to get that for
an arbitrary Q) € 9,

P(Q € Jn) = P(Pn(Baag,,, (X)) > ko + 1 for some X € QN Py)

SE[ S YPuBasger, (X)) = ko + 1} (55
XGQﬁPn

< nf R (20kora) Q) = g (2%Ko) .
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Next, using Penrose (2003, Lemma 1.1) for n large, we get for every | € £ and every 6 > 0, if n is
large enough, that

oP /2d Sp /od
P(#(Qg)ﬂjn)Z5P§Lp/2d)§exp<_5pn2/ tog (2 >>

sp .k
pnpndo (2dk0)’f0dnr;f

B Spa | 0
=P\ T 541 08 (ESOQd(QdkO)kodnrg> ’

The assumption nr? — 0 yields the assertion. U

Proof of Lemma 5.2: First, we let M > 2%50712]“0(512“)%0 as well as Q € @, be arbitrary and
start by examining the probability that Ps, has some amount of close points within @ by invoking
Markov’s inequality and Lemma 5.4 to get

P(#{X € QN Pan: Pon(Baayy, (X) N Q) > ko} > M)

ZE[ S UPon(Basgyr, (X)N1Q) 2 kol
XeQQnNPa,

IN

KSO_12kO(d2+1)kISOd 1
M -2
Note that a thinning of Ps,, where we keep each point independently with probability 1/2 has the

same distribution as P,. Denote the thinned process by Pﬁgin. We proceed by deleting unwanted
points in the thinning and get

/
< —
P(Xérbar%% Pp(Badg,, (X) N Q) < ko 1)

_ IP’( max P (B, (X) N Q) < ko — 1)
XeQnpybin "

=E [(1/2)#{X6Qﬁ732n: Pz”(BQdkom (X)ﬂQ)ZkO}]

1
< 7 (2n) g (2kory) MDY Q| =

>ER2M1{X € QNP;,: PL(Baagyr, (X) N Q) > ko} < M}] > 27 ML,

Now, we can use independence of the above events when considering different boxes to get

IP’( ﬂ {Xenbarf(pr Pé(Bgdkorn(X) NQ) < ko — 1} ‘ 'pn>
Q n

n

. IP( /(B X)n <k—1)> 9=M=1yJn.
Ql;[7 s, P (Baigyr, (X) N Q) < ko > ( )

0

Proof of Lemma 5.3: For a box Q € Q,, we divide 9,0 into a grid consisting of boxes with side
length 7, and call this collection of boxes W,,(9,Q). We denote the total collection of these boxes by
Wi, :=Ugeo, Wi (0,Q). Next, we can proceed with the same strategy that was already successfully
applied in the proof of Lemma 5.1, but use more labels this time to achieve that between two boxes
Wi, Wo € W,, of the same label, there are always 2%t1ky boxes labeled differently. We choose

the label set £ := {1,2,...,29"ky + 1}¢ and we reuse the notation Wff) for the boxes of label
l € £. Again, we assume that the number of boxes along each axis is divisible by 24+ 1kq 4 1. This
construction lets us search for connected components of at most 2%ky nodes in boxes with the same
label independently. Our aim is to apply the already encountered binomial concentration bound

Penrose (2003, Lemma 1.1) to the number of subcubes of a fixed label that contain a large connected

component. This requires two things, a bound for the number of subcubes in Wﬁf) and a bound for
the probability of a subcube W € W,, containing at least one node in CC,, .
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For the latter, i.e., the probability that W € W, contains vertices that are part of a connected
component of size between ko and 2%k, we compute, using Markov’s inequality and Lemma 5.4,
that

P(W N CCpiy # 0) <E[#W NPy NCCpi)] <E[#{X € WNPL: Pl(Bior, (X)) > ko}]

< nkomsofl(korn)d(ko—l)|w| _ Hl:loflk(()ko—l)d(nrg)ko.

(5.6)

To find a bound for the number of subcubes, note that the volume of 9,Q for Q) € 9,, is of order

( ;p)—(d—l)/drn _ n—k‘o(d—l)/drr’:(ko—l)(d—l)—i-l‘

Consequently, the number of boxes in W, (9,Q) can be bounded by dividing the above by the
volume of a subcube 7“27 which yields

HWn (0,Q) < cynFold=1/dp—kold=1) — ¢\ (pd)=ko(d=1)/d (5.7)

for some ¢; := ¢1(d, ko) > 0. Thus, there are at most p;Pcy (nrd)~Fo(d=1D/d subeubes in W,.
Before we invoke Penrose (2003, Lemma 1.1), we can union over all labels and combine this with

the union bound to get

P(#CCp ko (Uges,0nQ) > p3P) < P( U {#Ccn,ko(UWEwgf)W) > 505?/(#5)})
lec

< ZP(#CCn,ko (UWGWS)W) > 5/):1,[)/(#5))
leL

At this point, let W € W,, be arbitrary. An important observation is that #CC,, x, (W) is bounded
by a constant that does not depend on n. More precisely, a connected component occupies a ball
of radius at least r, that cannot intersect any other connected component. Consequently, when
choosing 7, /2 as radius instead, that ball cannot intersect any ball of radius r,/2 that is centered
at a node that belongs to another connected component. When considering connected components
with a vertex in W, at least 1/2¢ of the volume of a ball with radius r,/2 centered at that vertex
has to be contained in W. The factor 1/2¢ adjusts for the possibility that the center of the ball is
in a corner of W. Therefore, we can bound the available space by |W| and the maximal component
size by 2%k and arrive at

24k |W|

— = — =8k
Ka(rn/2)d/2d ~ 0 T

#CCo ko (W) <
which implies that for a fixed [ € L

P (#CCp o (U ) > 6o/ (#L)) < P(#{W € W W N CCpi # 0} > 65 /cs),

—oW
wew

where co 1= ca(d, ko) = Sdnglko#ﬁ. Next, the independence guaranteed by the labeling and the
bounds derived in (5.6) and (5.7) let us apply the binomial bound Penrose (2003, Lemma 1.1) for
sufficiently large n to arrive at

P(#{W e W: W N CCppy # 0} > 6piP/c2)

oprt opF 1
eXp ( - 10g < spd d\—k (d—l)/d k‘()—l (kO*l)d ik )
pn dey (nrgd) ko kg kg (nrd)ko

IN

e ( 5p751P lo ( d ))
= €Xp - 3
D . R IR

d

n

yielding the assertion, since nré — 0. U
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Proof of Lemma 5./: If | =1, we get
E[#H{X € QN Pm: Pn(Br(X)) = 1}] = E[Pn(Q)] = m|Q|.
For [ > 1, an application of Mecke’s equation and Markov’s inequality yields

E[#{X € QN P Pr(B,(X)) > 1}] = m/QE[IL{Pm(BT(x)) > - 1}|de

= m/ P({Y1,..., Y1} C By(x) for some {Y1,...,Y;_1} C Py)dz
Q

< m/QIE[ > 1{yy,...,Y_| € BT(:C)}] dz

{Y17._.,Y'l_1}g73m

< ml/ / {y1, - o1 € Bo(@)}d(un, . ., y1)dz = mlsl =04 Q).
Q J0,1)(t-1)d

6. Proof of Theorem 2.5 (dense)

The general outline of the proof of the dense regime follows the ideas for the sparse case. Here,
we aim to apply a contraction principle using the large deviation asymptotics from Hirsch et al.
(2023). They proved the LDP for the point process associated with the volume of large k-nearest
neighbor balls. At first glance, one might think that applying a map that integrates the identity
map with respect to the point process translates the LDP from Hirsch et al. (2023, Theorem 2.1)
to our functional via a contraction principle. However, this requires that such a map would have to
be continuous with respect to the topology considered for the LDP in Hirsch et al. (2023, Theorem
2.1) — the weak topology. This condition is not immediately satisfied since the integrand of this
map, precisely the map T9¢, is not bounded. But, here we aim to apply the technique of sprinkling
to overcome this issue. We aim to show that with a sufficiently high probability, we can alter
the underlying Poisson point process in a way that introduces a bound for the score function we
consider. This then allows us to replace to unbounded integrand in the map T,fe with a bounded
one, making only a negligible error, thus yielding continuity and enabling us to apply a contraction
principle.

As in the sparse regime, we divide [0, 1]¢ into a grid of cubes with side length (pde, )=1/4

, assuming
that pr‘fk is a natural number and denote this collection by Q,,. We are going to use the same objects
that were introduced in the sparse regime. As a reminder, P/, is a Poisson point process on [0, 1]¢
with intensity n independent of P,, and for Bernoulli random variables with parameter € € (0, 1),
independent of each other and all introduced Poisson random measures, for every @) € Q,,, we

defined
po._ JQNP, if X =1
TTlQNP, if Xge=0"

Finally, we denoted the union UQeQnPrr? by P/. In the dense regime, we aim to use the Bernoulli
random variables to control P/ in such a way that we resample P, using P/, in each box that makes
it too likely that there is an X with a large edge while keeping P, in all other boxes. Mathematically
expressed, for a random configuration n € Ny,, we want to avoid boxes that foster the existence of
an X € n with

En(X,n) = (nkgR(X,m)% — apn — 50)4 > M (6.1)
for M > 0. If a box @ € Q, has no such point within Q N7, we will refer to it as (n, M)-bounded.
To achieve this goal, we need to ensure that the resampling is done in such a way that adjacent
boxes remain compatible in the sense that even after the resampling, the conditional probability



950 Christian Hirsch and Daniel Willhalm

that a box fulfills the boundedness property remains high. To that end, we fix an arbitrary ordering
of the boxes in Q,, such that Qn) denotes the ith box in 9,, and then i 1mpose conditions recursively.
More precisely, for n € {P,,, P}, }, we denote St )( )= (Qn o Nn) U (Pn\ Qn ), where outside of the
box Qn) we could have used an arbitrary Poisson point process with intensity n in the definition of
5’,(11). Next, for an arbitrary j € {1,... ,pffk}, let

1. N(j) denotes the ordering indices of the boxes adjacent to box Qg);
2. Ni(j) :=N(j)U{j} be the above unioned with {j};
3. nl) = Usgj(ng) N n) be n restricted to the first j boxes.
Then, by setting
ai1(n) = P(Q is (53" (n), M)-bounded | PV, (P)M), i € Ny (1),
we label the box Q4 as (n, M)-good if

min a >1—e M2
iEN (1) () 2

Then, we proceed step by step and for 2 < j < pde set

SU=1) .—

n

QY VP, it QY is (P, M)-bad
QY VP, it QY is (Py, M)-good
to be able to define

S () == (QF Nn) U (Us<j-1857) U (Pn \ Us<i Q).
Additionally, for ¢ € N (j), we define the conditional probabilities

a;j(n) = ]P’(Q(i) is (8Y)(n), M)-bounded | P, (P')(j))

n

and note that a; j(n) only depends on the configurations of P, P/, in Qn for s e N (4)N{1,...,5}.
We then say that the box Qn is (n, M)-good if

L) >1— D 6.2
zeI/I\lff(l @i () > g (6.2)

holds, where
(M) . o~ M2~ #eN (@7 055)

¥ (6.3)

In words, we consider a configuration n within the box Qg ) suitable if the probability of any adjacent
box QY being (S(] )(77) M)-bounded is large conditioned on the configurations in the boxes that

have already been considered in a step s < j and the configuration Qn) N n in the current box.
Next, let

IM = gM (P, PL) = {QY € Q,: QY is (P, M)-bad}
be the collection of (P,, M)-bad boxes and we abbreviate its cardinality by
=#JM,
Since k can be considered as fixed now, we can write
P = Pg?k
to ease notation. We first make sure that those bad boxes do not occur too many times with a
probability that is too high.
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Lemma 6.1 (Bad boxes are exponentially negligible). Let §, M > 0. Then,
5€M/2+So
15d23d+1k)> ’

M d p5e
P > °) < (— "] (
(J, > 0py°) < exp rdo 108

In particular,

1
lim sup lim sup — log P(JM > §pde) = —o0.
M7Too nToo pne

Furthermore, we do not desire that a resampled box is still deemed bad. To achieve this, for
je{l,...,pd%} and n equal to either P, or P/, we let
d d i) .

EEY(n) := E50(n) :={QY) is (n, M)-good} (6.4)
be the event that Qg) is (n, M)-good. In addition, let E;)ad(n) be the event’s complement and for
My > 0, let

E} = Eb, = {QY\ 9,QY is (P}, Mo)-bounded} (6.5)
be the event that P/ not close to the boundary of a box lej ) fulfills an additional boundedness
condition. Here, for every @ € Q,, we denote by

Q= {z € Q: dist({z},0Q) < t,}
the set of all points in () within distance
an + wp\1/d
o ()
nKkq

of the complement of @, where (wy,), is a sequence with w,, — oo and w,, € o(a,,) that we henceforth
fix.

The next lemma states that for each n € N, conditioned on P,, the probability that a box is
either good, or we can resample it in a beneficial way otherwise is positive.

Lemma 6.2 (Lower bound for probability of a good box or resampling a good box). For any
M, My > 0 it holds that

e
de
P( () BP0 (B4R N BRI N B | P.) 2 ol
j=1
d
where gy v =1 — 3d2kze‘50|(e_M0 4 e~ M/2! ).
Then, for € > 0 serving as parameter for the Bernoulli random variables, we define
e
* d d
E; = () (BF(Pu) N {X i . = 0}) U (B} (Pu) N EF*(PL) N B} N {X 0, = 1}).
i=1
Recalling the definition of the mixed Poisson point process P/, this means that, using the Bernoulli
random variables, we resample all boxes that are bad with respect to P,, and ask for P/ to satisfy

the goodness as in the event in (6.4) and the additional condition described in (6.5) in the boxes,
where the sprinkling triggered.

Lemma 6.3 (Lower bound for probability of resampling bad boxes). For e € (0,1) and arbitrary
M, My > 0, the event E} satisfies that

E* C{QYW is (P, M)-bounded for every i < p3e}. (6.6)
Further, it holds that
P(E; | Po) > 95 (1 — &)/ (¢, — PLTM > 6p8 | Py)). (6.7)

0,
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Recalling the definition of &, in (6.1), we introduce the error terms

rr,0 1
Hoor (P) =~ > M A& (X, Py) (6.8)
P’ X ePrn(Uocondn@)
and

1
H o (P Pl PY) = — > Moy A &n(X,P") (6.9)
n XGPgﬂ(UQe‘Z’{MQ)

that will denote potential deviations introduced by the sprinkling. The following lemma is devoted
to show that these errors are insignificant.

Lemma 6.4 (Hzrﬂf(Py’L’) and HfLrR’/[JMO (P, P, Pl!) are negligible). Let § > 0. Then, for any M > 0
lim sup —- 10gIP( e”a(P”) >0) =
ntoo P
and for additionally any Mgy > 0
1
lim sup lim sup — log IP’(H;TX/[JM (Pn, Py, Py) > 6) = —
M*Too ntoo  Pn 0
These lemmas allow us to prove the main theorem.

Proof of Theorem 2.5: Let M > 0. We start by defining the functional

Hynp o= Hyi(P) = ? > (X, Po) I{nkgRi(X, Pu)? — an — s < M},
P x €Pn

where we only add up scores of vertices, for which the distance to the k-closest node satisfies an
additional bound, with the goal of applying Hirsch et al. (2023, Theorem 2.1) to it. Along these
lines, we define

1

Lok = —5 Z 5nNde(X77’n)‘i*an

Pn x €Pn
as a random Radon measure on R, which we henceforth restrict to a random Radon measure on Ejy,
denoted by Lf(;€ Next, defined on the domain of Radon measures on Ej, the map given by

Tuslp) = [ (@ =s0) n Map(a)

is continuous with respect to the weak topology and applied to LE(}C yields TM(LEOk) = Hp m.
Now, for the upper bound, note that

H, M < Hde.
From this point, Hirsch et al. (2023, Theorem 2.1) and the contraction principle yield
1 1
lim sup —- log P(H% < a) < limsup —— wlogP(Hpn <a) < —  inf hde(p | m0e)
ntoo  Pn ntoo  Pn p: Ty (p)<a

and therefore,
lim sup — log IP’(Hde <a) < —limsup inf  h%(p| T]Se).
ntoo PSe Mtoo p: Tu(p)<a

Using monotone convergence of T (p) towards T¢(p) for every Radon measure p on Ey as M — oo,
gives the assertion.
For the lower bound, with the same reasoning we get for any > 0 that

1
liminf — log P(H,, p < @ —0) > — inf hée(p | ). (6.10)
ntoo pn p: Ta(p)<a—6
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Next, as in the proof of the sparse regime, we need to show that ng can be replaced with H,, p
when it comes to the lower large deviations. We start the computations with

P(Hy® < a) = P(Hy(Py) < a) > P(E;, HYE(Py) < a).
Next, let My > 0. Then, under the event E; we assert that
H3(PR) < Haar(Po) + Hip (P) + Hy g, (P P Pr). (6.11)

n,
where we recall the definitions of the error terms HZY;/[@(R’L’) and HZIRXMO (Pn, P}, Pl) from (6.8)

and (6.9). To show this claim, we partition [0, 1]¢ into three subsets. Let

1. 81 := UQeo, 0nQ, be the space close to the boundary of each box;

2. 59 := UQGJT{\/IQ \ 0,Q, be the union of all bad boxes without the space close to their bound-
aries;

3. 53 := UQeQn\jy{WQ \ 0,Q, be the union of all good boxes without the space close to their
boundaries.

Then,

1 1 1
HEPD =2 Y. X P+ Y. &LXPH+— Y. &XP).

nk XePrns; nk XeP!’NS, nk XeP!'NSs
7 -~ 7 -~

=:(%) =:(%%) =:(kk*)

Under E;, for all X € P}/NS; it is satisfied that the box in which X is located is (P;,, M )-bounded
by Lemma 6.3, which means that &,(X,P/) < M. Thus,

(x) < HSP(P).

Further, for all boxes Q € @, \ JM, i.e., that are already (P,, M)-good, we stress that the distance
of 0,Q to the boundary of () was set to be at least ¢,, and thus, we can assume that this distance
is larger than ((M + a, + s0)/(nkq))"/?. Therefore, points in ,Q for a (P,, M)-good box Q are
not affected by the potential replacement of P, with P/, in adjacent boxes, which means that due
to the (P, M)-boundedness of @, all nodes X € (@ \ 9,Q) NP, satisfy that &,(X,P,) < M. This
yields that for large enough n

(x % %) < Hy 01 (Pr).
Finally, under E}, for all boxes @ that were initially (P,, M )-bad, the sprinkling assures that Q\9,Q
is (P, My)-bounded, which results in
(%) < H1 gy (P P Pr)
and confirms (6.11).
This lets us proceed with
P(E;, HE(P)) < a) > P(E}, Hyni(Pr) + Ho3 (PY) + H5 p (Po Pl Pl < a).

n,

Further, to ease notation, let
Ey = {5 (P) < 8} 0 {5 (P, P, Pr) < 6}
denote the complements of the events from Lemma 6.4 for some ¢ > 0, which gives us
P(E;, Hy a1 (Pr) + HS (PY) + HE  (Po P Pl < a)
>P(E,, Fn, Hy v (Pr) + 20 < a)
>P(E,, Hym(Pn) < a—26) —P(F)).

Summarizing these steps and applying the tower property of the conditional expectation, we arrive
at
P(H < a) > E[P(E}; | Po)1{H, 1 (Pn) < a — 25} — P(ES).
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Now, due to Lemma 6.3, we get that
P(H® < a)

2 E(Sp;jle(l — g)pgze (qﬁZ’MP(HnJ\J(Pn) <a-— 2(5)
(6.12)
—E[P(J = 0p3 | Pu)L{Honi (Pa) < a — 28}]) — P(Fy)

Spde ple ple M de c
> (1 =) gy P (Hp i (Pr) < a—26) —P(J," = 6py°) — P(F).

From here, Lemmas 6.1 and 6.4 assert that neither P(JM > §pd®) nor P(FS) contribute significantly
to the lower bound for the lower large deviations. Thus, we focus on the first term of the sum in
the last line of (6.12) and examine it under the assumption that M and My are large enough such
that qar,,m > 0 by computing

. . . . 1 Fy de de pde
lim inf lim inf — log (%77 (1 — €)#n at, P (Hpna (P) < a — 20))

M1Too  ntoo p%e

1
de
n

> dloge +log(l — €) + log qnry,00 + lim inf lim inf

Mtoo nfoo p

log P(Hy, 0 (Pr) < a — 26),
where quzy 00 = 1 — 392kel*0le=Mo. Now, after plugging in (6.10), we arrive at

1 e e e
lim inf lim inf — log (6‘5”% (1-— 6)p?1 qﬁ%o yP(Hp o (Pr) < a— 26))

M1Too nToo p%e

> dloge +log(l — €) + log qary,00 — limsup inf hee(p | m0e)
Mtoo Pt Tam(p)<a—26

> dloge + log(l —€) + log qnry.00 — inf he(p | 71,
p: T3 (p)<a—28

where in the last line we used that Ths(p) < T,fe(p). Letting 6 — 0, ¢ — 0 and then My — oo gives
the lower bound

han inf p;f logP(HS < a) > — ) Té?(f;) )<ahde(p | 78e).
O
What follows are the proofs of the previously introduced lemmas.
Proof of Lemma 6.1: We claim that for some ¢ := ¢(d, k) > 0
P(QY) is (P, M)-bad) < ce™M/2=%0 (6.13)

if we choose n sufficiently large. Once the claim in (6.13) is established, we conclude the proof as
follows. For each n € N, we will categorize the boxes in Q,, to create independence and use the
already encountered binomial concentration inequality from Penrose (2003, Lemma 1.1). We can
use 5¢ labels, for instance, the set £ := {1,2,3,4,5}%, to label each box in Q,, in a certain way to
achieve that between two boxes of the same label, there will always be four boxes with different
labels. Here, we assumed that the number of boxes along each axis is divisible by 5. For [ € L, we

denote the boxes of label | by Qg). Then,

P(IY > 6p3) <> PH#(QP N TM) > pie/57).
lel

For n large enough, the labeling guarantees that the events {Q € J} are independent for different

Q € Qﬁf’. Thus, we are in a binomial setting and can invoke Penrose (2003, Lemma 1.1) with
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success probability given by the bound in (6.13), to get for every [ € £ and delta § > 0 that

§ de/5d 5 de/5d
) My > 5 de/edy ~ _ 9Py Pn
BHQ 0T > a5 < exp (= 5T o ()

§pde deM/2+so0
_eXp< 5o 108 ( 5dc ))

if n is large enough. From this point, we see that

1 o de 5 SeM/2+s0
KlogP(Jn > 0py°) < —%log (T)v

and the right-hand side does not depend on n anymore. Furthermore, it satisfies that

n

B) | §eM/2H50\ pr1og
—_) —
T 502 Og( Bic )

It remains to show (6.13). For this, let 5 < pd¢ and i € N, (j) be arbitrary. Then, the tower
property yields

(Q(Z 1s( o (Pn) )bounded) Elai ;(Pn)]

= Ela; ;(P >1{au< a) > 1= b0 4 Elag (Pa) 1ai;(Pa) < 1- 531

< P(aij(Pn) > 1-08) + (1~ bE%IP(ai,j(Pn) <100y =102 P(a;(Pa) <1612
and therefore,

P(aij(Pn) <1-— bz('g'/l)) < P(Qﬁf) not (S,(Zj) (Pn),M)—bounded)/bEy)
< P(Q,(f) not (S'g)(Pn),M)—bounded)eM/Q.
Whether Qg) is (ST(Lj )(Pn), M)-bounded depends only on the configurations in boxes ng) for s €

N4 (i). For each of them, QY ﬂ«S_}(Lj)(Pn) € {Q,(f) NP, QL) NP}, ie., there are less than 2#N+(0) <
237 possibilities. With the union bound, this leads to

P(QW is not (SY)(P,), M)-bounded) < 25’ P(Q% is not (P,, M)-bounded). (6.14)

From here, we can continue by using Markov’s inequality and Mecke’s formula. To simplify the
notation we set m,, := M + a,, + sg and get

P(QY is not (P,, M)-bounded) = IP’( min P, (B(M)l/d(X)) < k)

n

xeQWnp, nrg
< E[ Z(; 1{Pu(B(znya(X)) < k}] = n/g) E[1{Pn(B(zaya(@)) <k —1}]dz 615
XeQn NPy
k—1 mi
B n‘Q ’ i! - p ’Q ’k(l + M/an + So/an)kfle*M*SO < 2ke M—%0
— il

for large enough n. With this, for the jth box of the arbitrary ordering, Q,g), we compute that

- M M
P(QY is (P,, M)-bad) = IP’( U {aig(Pn) <100 >}) < 3 Plaig(Pa) <1-0")
1ENG(5) 1ENL(5)
< 3d93%+1 M/2p —M—so _ gd939+1p—M/2—s0

and thus, choosing ¢ := 34237 +1 suffices for the claim to hold. O
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Proof of Lemma 6.2: First, we recall the events EJgOOd(n), EfOOd( ) and Eb from (6.4) and (6.5) for
n equal to either P, or P). Then, as a first step, we point out that by the tower property

")

o5
]P’( ﬂ Efo"d(m) U (EP(P,) N E]gmd(m) N EY)

j=1
de_1
= E l:(]lEi;geod(,Pn) + ]]-E;);;(P")E[]l /g);ood(P, )ﬂEb } Pn, Pl )(P )]) (616)
=1
H (]].E]good( ) + :H.Ebad(fp ) Egood(,P, )ﬂEb) ‘ Pn:|,
j=1

where we recall from the enumeration after (6.1) that (P;L)(p%efl) denotes P, restricted to the first
pde — 1 boxes of the ordering. This gives an indication of the recursive approach to this proof. We
start by working towards a bound of the inner conditional expectation after the equals sign of (6.16).

Fixing an arbitrary j € {1,...,pd}, note that the (P!, M)-goodness of Q%j) does not depend on
usszﬁf) N P,, and therefore

B(ES™(PL), B | Po, (P)V70) = P(EF™(Py), By | P, (PL)UY). (6.17)
Now, we can use the definition of goodness to arrive at
B(BF (L), B | PEY, (P)UY)
= P(Niew, ) {aig(PL) = 1— b3 0 B2 | PUD, (P))6~D)
>1- Y (1—P(aiy(Py) > 1 -0} BY | PEY (PL)UD)).
€N ()

Subsequently, the key step is to show that under Ng<;j—1 (EgOOd (P) U (EP2d(P,) N E§O°d(73;l))) for
sufficiently large n

. d
P(a; ;(P)) > 1— bff LEBY | PUTD (PL)UT) > 1 — 2keltol (e Mo — e M2, (6.19)

Once (6.19) is established, we conclude the proof as follows. Continuing at (6.17) and (6.18), using
that #N (j) = 3¢, yields that

. . d
P(ESY(PL), EY | PYY, (PL)U) > 1 — 3%2kelol(e=Mo — M2y = gy o

This lets us proceed at (6.16) to arrive at

(6.18)

]P’< h (Ejg"‘)d(m) U (EX(P,) N EEY(PL) E;?)) ‘ Pn>

j=1
P -1
> K |:<1E§§:d(pn) + ﬂEsjed(Pn)qMo,M> 1_‘[1 (]]'E]gOOd(Pn) + ﬂE]t-’ad(Pn)]lEfOOd(P{L)ﬂEé?) ‘ P”:|
=1 ]
Z QMO,M]E|: H (].E]good(Pn) + ﬂE‘;‘Dad(,Pn)ﬂEngOd('Pil)mEan) Pn:| 2 qﬁmM’
j=1

where the last inequality follows from repeating the previous steps pd® times.
It remains to prove the assertion stated in (6.19). In order to do so, let i € N1 (j) be ﬁxed It

{1,...,7 =1} NNL(i) # 0, we can denote the largest index of an adjacent box of the box QY that
comes before j in the ordering by jo := max({1,...,7—1}NAN;(7)). Note that Q N (Sr SY )(73’) can
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either be equal to ngo) NP, or QUO) NP, , resulting in two options that we can include in a similar
way as was done in (6.14). Then, we have that under Ns<;_1 (EgOOd(Pn) U(EP2(P,)N E§O°d(737’1)))

(Q(Z is (SV(P), )—bounded,Eg | PU—Y (pryU—b)y

>P(EY | PYY, (P)UY) — P(QWY is not (SY)(P,), M)-bounded | PY~Y, (P})0~1)
=P(E?) — P(QY is not (SY)(P},), M)-bounded | PY), (P},)150)) (6.20)
(Eb) — 2P(Q is not (SYO)(P!), M)-bounded | PO, (P! )lo))

b (M) _ b (M)
>P(E)—2b”0 = (E)—Qb” 1-
In the other case, i.e., if {1,...,7 — 1} NNy (i) =0, we get

P(QY is (8 (Py,), M)-bounded, E} | PYY, (P;)V 1) (6.21)
=P(Q" is (P}, M)-bounded, E?) > P(E?) — 2ke~ M0 '

for large n, where the last inequality follows from (6.15). For completeness, note that we viewed
PO and (P)© as (). Additionally, with the tower property, it follows that

P(QW is (SY)(Py,), M)-bounded, E? | PY~, (P;,)U~1)
=E[P(QW is (S7)(P;,), M)-bounded | P, (P) ) L{E}} | PV, (P)0 Y]
=E[P(QY is (S(j)(P’) M)-bounded | PV, (P! )(j))]l{El-’}

(L{as;(PL) > }+1{a”<7>’><1 b | PyY <P’>“ Y]
< E[L{E2} (Haiy(Py) = 1 — "0} 4+ (1 - v >ﬂ{aij<7>'><1— M) | PYY, (Pl U]
< (1= bP(EY) + b3 Plaiy (Ph) > 1 - bEJ JEY | YD ()0~ 1>>

Note that similar to (6.15), we can also show that IP(E;’) > 1 — 2ke~Mo=%0, Using this, (6.20) and
(6.21) as well as the definition of b(-M) from (6.3), we arrive at
P(asg(Pr) > 1= b3 Eb [P, () Y)

i,j
CMe—s M M M) s
B - max{260%) |, 2ke M0} — (1 - b)B(EY) N bAP(ED) — 2kbM elsol

1] — 1’
= (A1) = (M)
0] b; ,J
b0 (1 — 2keMo—s0) — 21 elool
i.j — 1 — 2ke Mo—s0 _ opp(M) Ll
> o — 11— 2ke 2kb, /oY
27‘7

9 1m(HLENT(): sSI} 1) _g=1-#{sENL ()2 055}y g

=1 — 2ke Mo=s0 _ gfe=M(
=1 — 2ke M50 oppMDelsol > 1 ope=Mo—s0 oke M2 clsol
> 1 — 2kelsol(e=Mo e*M/24d).

0

Proof of Lemma 0.5: For the first part, note that given Ej; the events {a; ,(P)) > 1— bgﬂp@} occur
for all i € Ny (pd). Thus, for sufficiently large M and every i € N (pd®)

0 <1 =0 < a0 (P) =P(Q is (SY)(P)), M)-bounded | L), (P})¢))

de— lp

, (6.22)
= 1{Q® is (S¥")(P"), M)-bounded} = 1{Q is (P, M)-bounded}
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by measurability with respect to Pl %e), (’P;L)(pfle) and therefore, Qg) is (P//, M)-bounded. Next,
repeating this argument, it follows that Qg/) is (P, M)-bounded for all i’ € Ny (pde — 1)\ NV (pde).
Note that i’ & Ny (pd®) is an important requirement to be able to replicate the last two equalities
in (6.22) in this case. Afterwards, we consider i € Ny (p3¢ — 2)\ (Ny(pe — 1) UNL(pde —1)). We
can repeat this until all boxes have been dealt with and we conclude the first part of the proof of
Lemma 6.3 by deducing from this that given E, the event that Q%] ) is (P)!, M')-bounded holds for
all j € {1,..., pde}.
For the second part, the tower property yields

I
P(E! | P,) = E[H (ﬂ{E]good(Pn)}ﬂ{XQ(j) =0y T ]]-{E;?ad(Pn)}]'{Ejg.OOd(P;l)ﬂE;?}]l{XQ(j) fl}) ‘ P”]
=1 t o

o
= E |: H E |:1{E]gOOd(Pn)}1{XQ(]) EZO}
j=1 n

/
+ ]].{E;)ad(fpn)}]].{E?ood(.P;l)mE;,}:H.{XQ’(HJ_)’EZI} ‘ Pn, Pn:| ‘ Pn:| .
(6.23)
From this point, using the independence of (XQU') E)
ability of E]gOOd(?n)7 E]gOOd(P;L) and E;? with respect to o(Py,P)), we can compute that it almost
surely holds that

; of all Poisson point processes and the measur-

/
E[]‘{EfOOd(Pn)}]l{XQg)’EZO} + H{E?ad(m)}1{E§°°d(7>;b)mE§}I{XQ%;-),fl} ’ Pmpn}

_ El{EngOd(Pn)} (1 Jl{E;?a‘?‘(m)}]l{E]%‘)‘)d(7:,'1)m~;]b.} (]l

— E) {E]good(.Pn)} + ]l{E;)ad(Pn)}ﬂ{EJgOOd(P;I)mE?})

1 ood
{EE°°%(Pn)}
>€e (1- 5)(1{E§00d(7>n)} + ﬂ{E;’ad(Pn)}ﬂ{Ejgood(p;L)mEé?})‘

Next, we revisit (6.23) and continue with

P(E, | Pn)

v

P
JM e
]E|:€ (1 _ 5)/’ H (:H.{Ejg;ood(Pn)} + ]]'{E}jad(lpn)}]]'{E?OOd('P,fl)ﬂEg}) ' Pn:|
j=1

e
Spde o
zE[e =L oy [T (Lpseonip, )y + Lmmaay L ipseo o) ‘P]
J=1

P
Fy de de
Z g Pn (1 — E)pn <E|:H (1{E§00d(Pn)} + ]]-{E;)ad(,Pn)}]]-{E‘;s-OOd(,P%)ﬂE?}) ‘ Pn:|
j=1

SR 2 P).
Here, Lemma 6.2 yields

P(E" | P,) > 277 (1 — )P (q;@j;f),M —P(JM > 5p2 | P)). (6.24)
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Proof of Lemma 6./: For a box Q € Q,, we divide 9,0 into a grid consisting of boxes with side
length u, := (%)1/ 4 and call this collection of boxes W, (9,Q). We denote the total collection
of these boxes by W,, := Ugeg, Wn(9,Q). The volume of 9,Q for Q € Q, can be bounded by
5d(pde)~(d=1/d¢, for large n and therefore,

n

10,Q/1Q1 < 5(pe) ™=/, e = 52/, = e/ a0 a4 w,) X 0. (6.25)

Next, we can proceed with the same strategy that was previously employed to prove Lemma 6.1.
We use the label set £ := {1, 2, S}d to achieve that between two boxes of the same label, there are
always two boxes labeled differently, where for simplicity, we assume that the number of boxes along

each axis is divisible by 3. We reuse the notation Wﬁf) for the boxes of label [ € L. Let M,é > 0.
Now, we can union over all labels and combine this with the union bound to arrive at

IP< > M A &n(X,Pn) 2 5,0?f>

X€PnN(UQeg,nQ)

< ZIP’< > M A&E(X,Py) > 5p$'f/3d>.

lel n —
S XeP, Q(UWGW(Z)W)

n

For each W ¢ W,ff), we assert that the maximal number of Poisson points in X € W NP, with
Ri(X,Pn) > uy, is bounded by some ¢ := ¢(d,k) > 0. This follows similarly as in (3.1). We
go through nodes W N P, one by one and label some of them in the same manner as in Section
3.1.1. The only difference is that we can only argue that a fraction of 1/2¢ of the volume of each
constructed disjoint ball is in W, to account for vertices close to the boundary of W. This means
the bound is computed by

kW]
Ka(un/2)*/2¢
Using this, for each [ € £, we compute

= k4d/l€d =:!cC.

IP< > M A &n (X, Pn) > 6p28/3d>

XGP”Q(UWEW%) W)

< ]P’(M Z {Ri(X,Ppn) > up} > 5pie/3d>
XePa(U _omW)

<p(( X 1 RGP 2 ud > o/ )

WGWS)
With the goal of using the spatial independence to invoke a binomial concentration bound, we
combine Markov’s inequality and Mecke’s equation, which yields for each W € W(l)

» and n large

P( max Ry(X,Pa) 2 u) <1 /W P(Ry(z, Po U {z}) > un)dz = n /W P(Py (B, (x)) < k)dz

k—1 d i

nulk

= n/ g e_”“g”d%dx < n/ ke_(a"+5°)(an + so)k_ldx
Wi L w

= n|W ke~ (@ 50) (a,, + 50)F 7" = [W]p8ke ™0 (1 + s0/an)" .
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With the binomial bound from Penrose (2003, Lemma 1.2) and the computations from (6.25) we

arrive at

> > de d
IP’( 3 1 max Re(X,P) = un} > 9p5/(3 cM))

WEWS)

< exp < Opiy 1 g( Opit/(3"eM) ))
N 372¢ W | pdeke=s0 (1 + so/an)*—1p2e|0, Q5| /|W|

. ( e ( 5/(3%M) ))
342¢M k6*30(1 + So/an)kfl |anQ511)|/|Q$zl)|
N—_— —————

e

Thus, lim sup,,, de log P(H elrra(P”) >9) =
For the second part we proceed roughly in the same fashion. But first, we note that for addi-

tionally MO,S > 0,

P(H; 5 vy Py Py Prt) = 6)
< P(Hy 7 vy (P P Pr) 2 8,057 < 5p5) + PO > 5p5e).

In the following computations, we will use the upper bound for the binomial coefficient (‘bl) < (ea/b)?,
see Knuth (1997, Section 1.2.6 Exercise 67), Applied here, it yields

de N x4
(f)n ) < (eple/(5ple))oP = (¢/3)07,

where we assume that 6 < 1 /2 and that the pair of numbers occurring in the binomial coefficient
are both positive integers. Now, we continue with

P (P, Pl Pl > 6, JM < §pe)

<f( U { Y mnaxenzan))

ACQ,, #A<bpde ~ XEPN(UgeaQ)

Spe

<y ¥ u»( S MOA5n<X7P:{)26p2?k)
i=1 ACQn #A=i > XePIN(UgeaQ)

< Spge(e/é)gpffp< > Mo A &n(X,Py) > 5/)%?/%)'

XePrn(Ur QW)

Next, we cover U, 0} ’1 Qn with cubes of side length Uy, and COHSlstently with prior convention, denote

this collection by W,. Then, #W, = 5pde|Qn |u_d = 5u , which we assume to be an integer.
Next, we can simply 1ntroduce the same labeling as for the ﬁrst part of this proof and by the same
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calculations as in the first part, we get

IP< > Mo N &n(X,Py) = 5p2‘fk>
xePynUi Qi)
de

de d
SZ@(p(_ dépn log( opnt/(3%cMo) d>>
ez 3%2eMo = MW pieke==0(1 + so/an)*~1dun

_ 6'026 lo ( 0 ))
3%2cMy - ° \§3dcMoke—=0 (1 + s0/an)F 1

< 3%exp (

for large n. When choosing §=10 /log M, this yields

1 err T de
e los P(H S g (P Py PR > 6,5 < 6pe)

1 pde3dy  dlog(e(log M) /6 5 log M
< Klog< P )+ og(e(log M)/6) ! 10g< ! log k_l)
P log M log M 392¢ My 3deMoke=%0(1 + sg/an)
ntoo 0log(e(log M)/0) J ( log M ) Mtoo
- log M 392cMy e \3dcMoke—0) ¥

On the other hand, from Lemma 6.1, for § = § /log M, we can deduce that
_0/log M <5eM/2/logM>

1 .
— log P(Jy > 6pf) <
Pn

542 154237
:—M/Q—HoglogMi_é/longo ( 4] )MToo_
log M 542 542 154237
and conclude the assertion. O
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