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Abstract. In this work we propose a measure-valued stochastic process representing the dynamics
of a virus population, structured by phenotypic traits and geographical space, and where viruses
are transported between spatial locations by vectors. We first show how to use this model to infer
results on the probability of extinction of the virus population. Later, by combining various scalings
on population sizes, speed of diffusion of vectors, and other relevant model parameters, we show the
emergence of two systems of integro-differential equations (IDEs) as macroscopic descriptions of the
system. Under the existence of densities at time zero, we also show the propagation of this property
for later times, and derive the strong formulation of the limiting systems of IDEs. These strong
formulations, in a sense, correspond to spatial Lotka-Volterra competition models with mutation
and vector-borne dispersal.

1. Introduction

The selective pressure imposed on pathogens during the infection of a new type of host is one of
the well known mechanisms that drive their evolution. For plant pathogens, plant genes conferring
major or partial resistance to these pathogens are then valuable natural resources which in a context
of a plant of agricultural interest may be used in a way that maximizes the preservation of their
efficiency in conjunction with the gain of crop productivity they can ensure. To gain some insights
on the possible optimized deployment strategies, the study of adaptation of pathogens to their hosts
during repeated epidemic events is then of great importance. The understanding of such evolutionary
processes is at the heart of evolutionary epidemiology research, see for example the review Restif
(2009). In the evolutionary epidemiology literature, most models deal with either the adaptation
process with simplified epidemic process, as described in Crow and Kimura (1970), or conversely
focus on the epidemic process forgetting a proper description of the evolution processes at play. One
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of the main reasons comes from the modelling tools used to describe these two phenomena. Indeed,
selection mutation population models are often used to describe evolutionary phenomena, often
overlooking the potential spatial structuring of such epidemiological events. Conversely, epidemics
are typically modeled using Susceptible-Exposed-Infectious-Removed (SEIR) type models, wherein
the host serves as a surrogate for characterizing the epidemic dynamics, but these models often
neglect the description of the evolving pathogen population.

Modelling approaches trying to reconcile these two points of view have been recently introduced
Day and Proulx (2004); Day and Gandon (2007); Ohtsuki and Sasaki (2006); Lo Iacono et al. (2012);
Djidjou-Demasse et al. (2017); Fabre et al. (2022) where the epidemic approach considering the host
as a proxy has been adapted in order to take into account a partial description of the population
that evolves and its possible adaptation by mutation. However, whereas this approach seems well
suited for pathogens that behave like spores, it does not seems flexible enough to describe viral
populations that disseminate in a field through vectors. In addition, they do not take into account
stochastic effects due to low population densities at the beginning of the epidemic.

In the spirit of Day and Proulx (2004); Day and Gandon (2007); Ohtsuki and Sasaki (2006);
Lo Iacono et al. (2012); Djidjou-Demasse et al. (2017); Fabre et al. (2022), we propose and analyse
here new modelling tools that integrate on the same time scale the epidemic events and the adap-
tation processes. However, unlike the approach proposed in Ohtsuki and Sasaki (2006); Lo Iacono
et al. (2012); Djidjou-Demasse et al. (2017) that uses the hosts as a proxy, we fully describe the
pathogen population with all its possible interactions making the assumption that the host is an
environmental variable for the pathogen population. Our aim here is then to construct a realistic
stochastic representation of the main processes of adaptation involved during an epidemic event,
and to obtain various large population asymptotic limits depending on the choice of the scaling
parameter considered. The stochastic nature of our model gives room to incorporate demographic
stochasticity, which is an important feature to consider, since early stages affect later stages of the
epidemic. Moreover, our model permits to study both quantitative and qualitative trait scenarios.

Some of the results we present here are in the spirit of the so-called hydrodynamic limits from
the theory of interacting particle systems, for physics see for example De Masi and Presutti (1991);
Kipnis and Landim (1999); Seppäläinen (2008), and for biology Fournier and Méléard (2004); Cham-
pagnat and Méléard (2007); Champagnat et al. (2008); Bansaye and Méléard (2015). In particular,
we use the methodology introduced in Fournier and Méléard (2004), and in subsequent works
(Champagnat and Méléard (2007); Champagnat et al. (2008); Bansaye and Méléard (2015)), to
build a measure-valued stochastic model representing the dynamics of a virus population structured
by time, space, and phenotypic traits, where viruses are subject to vector-borne dispersal, and can
only reproduce in plants.

In the derivation of the scaling limits, our particular choice of re-scaling is important since it allows
us to consider different scenarios that depend on the relation between the orders of magnitude of
the total number of viruses and vectors at time zero. In particular, there are fewer vectors than
viruses, in order to obtain a sensible limit, it becomes necessary to accelerate the diffusion of vectors.
As the reader will see in Theorem 1.11 below, this acceleration has the consequence that for each
t > 0 the population of vectors is given by the solution of an elliptic system which depends only on
the current population of viruses at time t. We can interpret this as saying that the population of
vectors is at an equilibrium that only changes through the time evolution of the virus population.

The viral epidemic model. Let us consider three populations, denoted by νv(t), νc(t) and νu(t),
representing the viral population on plants, the population of vectors that are charged with a virus,
and the free vectors population, respectively. As in Fournier and Méléard (2004); Champagnat and
Méléard (2007); Champagnat et al. (2008); Bansaye and Méléard (2015), let us first introduce, for
a Polish space X, the set Mp(X) denoting the space of finite point measures on X. We define
these populations by means of point measures on the adequate Polish spaces as follows. First, we
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consider the viral population νv(t) on plants. We represent this population by a point measure over
the space E × X , where E is a finite set of positions in a bounded smooth, at least C3, domain
D ⊂ Rd and X ⊆ Rn is a compact set. The set E corresponds to the locations of the various host
plants, and X corresponds to the phenotypic trait space of viruses. Thus, for t ≥ 0,

νv(t) =

Nv(t)∑
i=1

δxi(t),zi(t), (1.1)

where Nv(t) := ⟨νv(t), 1⟩ is the total size of the virus population currently hosted by plants, and

{(x1(t), z1(t)) . . . , (xNv(t)(t), zNv(t)(t))} ∈ ENv(t) ×XNv(t)

correspond respectively to an arbitrary ordering of the positions and traits of the viruses.
Similarly, the uncharged vector population is represented by a finite point measure on D, νu(t),

taking the form

νu(t) =

Nu(t)∑
i=1

δY u
i (t),

where Nu(t) is the number of uncharged vectors and (Y u
1 (t), . . . , Y u

Nu(t)
(t)) are their positions at

time t ≥ 0. Finally, the population of vectors carrying viruses is represented by a measure νc(t) ∈
Mp(D ×X ), of the form

νc(t) =

Nc(t)∑
i=1

δY c
i (t),zi(t)

,

where, for i ∈ {1, . . . , Nc(t)}, Y c
i (t) is the position of the vector and zi(t) is the trait of the unique

virus it is carrying.
Figure 1.1 below, shows an example of the type of environment we have in mind. We have plotted

plants in different colors to convey the idea that incorporating spatial dependency of some of the
rates in this framework allows us to consider different varieties of plants. Notice that it is also
possible to consider non-homogeneous (spatial) distributions of plants.

D

E

Figure 1.1. The spatial domain D represents the space in which vectors can diffuse
(with normal reflection at the boundary). The colored dots represent the set E, i.e.
the location of plants

.

In addition to the definitions of the point measures νv(t), νc(t) and νu(t), let us now define a
specific set of biological rules that determine the way these measures evolve over time. To reflect
the adaptation process during an epidemic event, we will assume that viruses undergo reproduction,
death, mutation and transportation by vectors and that vectors move in D according to a reflected
Itô diffusion and that they can load and unload viruses on plants. This translates into the following
processes :



1148 Mario Ayala, Jerome Coville and Raphael Forien

Reproduction: viruses on plants reproduce asexually at rate b(x, z), where x ∈ E denotes
the position of the hosting plant and z ∈ X ⊂ Rn the phenotypic trait of the virus. Given a
reproductive event, with probability 1− µ the new virus inherits its parent trait, and with
probability µ undergoes mutation. In the latter case, the trait z′ of the new individual is
drawn from a probability distribution m̄(dz′) with density m(z, z′) with respect to Lebesgue
measure on X .

Death: viruses on plants die naturally at rate d(z) > 0, and due to competition at rate
cNx(t), where Nx(t) denotes the number of viruses in a plant at position x ∈ E, and c is a
positive constant. Likewise, viruses carried by a vector die at rate γ(z), where z ∈ X is the
phenotype of the virus.

Diffusion: vectors, free or charged with virus, diffuse in the spatial domain D ⊂ Rd according
to a non-degenerate (see Fournier and Printems (2010)) Itô diffusion with normal reflection
at the boundary of the domain ∂D, i.e. the diffusions have infinitesimal generator

Luϕu(y) := au(y) · ∇ϕu(y) +
σu(y)2

2
∆ϕu(y), (1.2)

Lcϕc(w, e) := ac(w) · ∇wϕc(w, e) +
σc(w)2

2
∆wϕc(w, e), (1.3)

where ϕu : D̄ → R and ϕc : D̄ × X → R are elements of their corresponding domains:

D(Lu) =
{
ϕ ∈ C2(D) : ∇ϕ(y) · n⃗(y) = 0, ∀y ∈ ∂D

}
,

D(Lc) =
{
ϕ : D ×X → R : ∀e ∈ X ;ϕ(·, e) ∈ C2(D) and ∇ϕ(y, e) · n⃗(y) = 0, ∀y ∈ ∂D

}
where ∇wϕ(w, e) denotes the operator ∇ acting on the first variable (similarly for ∆wϕ(w, e)),
and n⃗(y) denotes the inward normal at y ∈ ∂D.

Charging of vectors: a vector at position y ∈ D successfully bites a plant located at x ∈ E,
and gets charged with a virus at rate β(t, y, x,Nx(t), z), where Nx(t) is the total number
of viruses at x, and z ∈ X is the phenotype of the virus being taken. In accordance with
biological studies (see Moury et al. (2007); Gutiérrez et al. (2012)) which suggest that a
vector carries and effectively transmits a small number of viruses, we assume that a vector
can carry at most one virus at the same time.

Un-loading of vectors: a charged vector at position y ∈ D successfully discharges viruses,
to a plant located at x ∈ E, at rate η(t, y, x, z), where z ∈ X is the phenotype of the virus
being unloaded.

Furthermore, we also make the following, biologically consistent, additional assumptions:

Assumption 1. We assume that the coefficients σα, aα, α ∈ {u, c}, are Lipschitz continuous, σα > 0,
that the competition parameter c is strictly positive, and that there exist (b̄, d̄, γ̄, β̄, η̄) ∈ R5

+, such
that for all t ≥ 0 we have:

sup
(x,z)∈E×X

b(x, z) = b̄ <∞, sup
z∈X

d(z) = d̄ <∞, sup
u∈X

γ(u) = γ̄ <∞,

sup
r∈R+

sup
(y,z)∈D×X

�
E
β(t, y, x, r, z) ζE(dx) = β̄ <∞, sup

(y,z)∈D×X

�
E
η(t, y, x, z) ζE(dx) = η̄ <∞,

where ζE denotes the counting measure on E. Moreover, for all (t, y, x, z) ∈ R+ × D × E × X , we
assume β(t, y, x, ·, z) : R+ → R+ to be Lipschitz continuous with constant Lβ independent of t.

Our framework allows to incorporate the spatial extent of the plant. We can assume for example
the existence of some function βe : R+ × R× R×X → R+, and rp > 0 such that:

β(t, y, x,Nx(t), z) =

{
βe(t, |x− y|, Nx(t), z) if |x− y| ≤ rp,

0 otherwise,
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for all t ≥ 0. Analogous assumptions can be imposed over the model parameter η.

Infinitesimal generator. We are interested in the dynamics of the process

{νt : t ≥ 0} = {(νv(t), νu(t), νc(t)) : t ≥ 0}

taking values in the space of measures Mp := Mp(E×X )×Mp(D)×Mp(D×X ). Let us introduce
the set of cylindrical functions that generates the set of bounded and measurable functions from
Mp to R, necessary to describe the generator of the process.

Definition 1.1. We call an admissible triplet a set of bounded and measurable functions {ϕv, ϕu, ϕc}
such that: ϕu : D → R is in the domain of the generator Lu, ϕc : D × X → R is in the domain of
the generator Lc. Moreover, we denote by Φ(Mp) the set of all admissible triplets of this form.

Remark 1.2. For ϕ = {ϕv, ϕu, ϕc} ∈ Φ(Mp), we denote by Lαϕ the following triplets:

Luϕ = {0,Luϕu, 0}, and Lcϕ = {0, 0,Lcϕc},

where Lu and Lc denote the generators given in (1.2)-(1.3) acting on the variables y and w respec-
tively, and α ∈ {u, c}.

We now define the relevant set of cylindrical functions.

Definition 1.3. The class of cylindrical functions FC on Mp is given by functions Fϕ : Mp → R,
of the form:

Fϕ(ν) := F (⟨ϕ,ν⟩) := F (⟨νv, ϕv⟩, ⟨νu, ϕu⟩, ⟨νc, ϕc⟩)

where F ∈ C∞(R3;R), and ϕ = {ϕv, ϕu, ϕc} is an admissible triplet, and for α ∈ {v, u, c} we abused
notation by using:

⟨να, ϕα⟩ :=
�
Vα

ϕα(x) να(dx),

with Vp := E ×X ,Vu := D, and Vc := D ×X .

Remark 1.4. By Remark 1.1 in Champagnat and Méléard (2007) we know that the spaces of C2

functions vanishing at the boundary of D, and Vc, C2
0(D), and C2,0

0 (Vc) respectively, are dense in
C(D) and C(Vc), respectively, for the uniform topology.

As we did before, and whenever possible in the future, we will be consistent with our notation.
Whenever we use the functions ϕ = {ϕv, ϕu, ϕc} we will refer to functions satisfying the conditions
of this section.

The infinitesimal generator L, that corresponds to the dynamics described above, can be written
as the sum of a jump part, denoted by L1, and a diffusive part that we denote by L2. We further split
the jump part of the generator as the sum of operators, acting on cylindrical functions Fϕ ∈ FC ,
dealing with every type of jump event. The operator concerning demographics of viruses in plants
is given as follows:

LdemFϕ(ν) := (1− µ)

�
Vp

b(x, z) [Fϕ((νv + δx,z, νu, νc))− Fϕ(ν)] νv(dx, dz)

+ µ

�
Vp

b(x, z)

�
X
m(z, e) [Fϕ((νv + δx,e, νu, νc))− Fϕ(ν)] m̄(de) νv(dx, dz)

+

�
Vp

(d(z) + c⟨νxv , 1⟩) [Fϕ((νv − δx,z, νu, νc))− Fϕ(ν)] νv(dx, dz).

where for x ∈ E, the measure νxv denotes the restriction of νv to {x} × X .
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The loading and unloading of viruses on a vector is described in terms of the following operators:

LloadFϕ(ν) := LloadFϕ((νv, νu, νc))

=

�
Vp

�
D
β(t, y, x,Nx(t), z) [Fϕ((νv−δx,z, νu−δy, νc + δy,z))− Fϕ(ν)] νu(dy) νv(dx, dz),

and

LunloadFϕ(ν) := LunloadFϕ((νv, νu, νc))

=

�
Vc

�
E
η(t, w, x, e) [Fϕ((νv + δx,e, νu + δw, νc − δw,e))− Fϕ(ν)] ζE(dx) νc(dw, de).

The final type of jump event, the death of viruses on vectors, is given by:

LlosFϕ(ν) := LlosFϕ((νv, νu, νc))

=

�
Vc

γ(e) [Fϕ((νv, νu + δw, νc − δw,e))− Fϕ(ν)] νc(dw, de).

Summing up we have that the jump part is given by:

L1 := Ldem + Lload + Lunload + Llos.
For the diffusive part we need an admissible triplet ϕ = {ϕv, ϕu, ϕc} to be as in Definition 1.1.

For functions Fϕ ∈ FC the diffusive part L2 can be obtained from Itô’s formula. The L2 operator
is given by:

L2Fϕ(ν)

:=

(�
D
Luyϕu(y)νu(dy)

)
(∂uF )ϕ(ν) +

(�
Vc

Lcϕc(w, e)νc(dw, de)
)

(∂cF )ϕ(ν)

+

(�
D

(σu(y))2

2
|∇yϕu(y)|2νu(dy)

)
(∂2uF )ϕ(ν)

+

(�
Vc

(σc(w))2

2
|∇wϕc(w, e)|2νc(dw, de)

)
(∂2cF )ϕ(ν) (1.4)

where for α ∈ {u, c} we denoted by ∂αFϕ and ∂2αFϕ, the first and second partial derivatives with
respect to the first coordinate for α = u, and second coordinate for α = c.

After introducing all the operators we have:

LFϕ(ν) = L1Fϕ(ν) + L2Fϕ(ν). (1.5)

The description of our processes in terms of its infinitesimal generator is rather formal. We refer
the reader to the Appendix A of this work, where in the vein of Fournier and Méléard (2004), we
provide a rigorous definition on path-space, and a proof of the well-definedness of the processes
corresponding to the generator L.

Remark 1.5. Notice that the dynamics described above leaves invariant the total number of vectors.

Existence and uniqueness. We have just described the time-evolution of our measure-valued process
in terms of the infinitesimal generator L given by (1.5). Our first result is to rigorously prove that
under Assumption 1 the process is well defined.

Theorem 1.6. Let ν0 = (νv(0), νu(0), νc(0)) be such that for any p ≥ 2

E [⟨ν0,1⟩p] <∞, (1.6)

where
⟨ν0,1⟩ :=

�
E×X

νv(0)(dx, dz) +

�
D
νu(0)(dy) +

�
D×X

νc(0)(dy, dz).
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Then, under Assumption 1, there exists a unique solution to the martingale problem associated to
(L, D(L)), which we denote by (νt)t≥0 = (νv(t), νu(t), νc(t) : t ≥ 0). Moreover, the process satisfies:

E

[
sup
t∈[0,T ]

⟨νt,1⟩p
]
<∞. (1.7)

In particular, we also have that the process νt is well-defined.

For the proof we refer to the Appendix, where we also show that the dynamics of the process
(νt)t≥0 indeed corresponds to the one described by the infinitesimal generator L .

Population-level descriptions as observables. The framework of this paper allows us to directly
recover some quantities of interest as observables of the system. For example, the evolution of the
total virus population can be recovered by integrating the constant function 1 with respect to the
measures νv and νc:

Pv(t) := ⟨νv(t), 1⟩+ ⟨νc(t), 1⟩. (1.8)
In a similar way, we can also recover the total number of vectors charged with a virus and those
free from viruses:

Nu(t) := ⟨νu(t), 1⟩, and Nc(t) := ⟨νc(t), 1⟩.
Moreover, we show how this description can be used to extend known results about extinction to
the case of vector-borne dispersal.

Theorem 1.7. Suppose that the initial set of measures (νv(0), νu(0), νc(0)) is such that for some
p ≥ 2 we have

E [⟨ν(0),1⟩p] <∞.

Under Assumption 1, we further assume that

inf
z∈X

d(z) := d̂ > 0. (1.9)

Then the total-virus population process Pv(t) given by (1.8) goes extinct almost surely.

We refer to Section 2 for details on the proof of this theorem.

Deterministic limits. Our main results concern the derivation of large population-level deterministic
descriptions of our system. By introducing a scaling parameter K, we derive these descriptions in
the spirit of a law of large numbers for our processes. In this setting, the scaling parameter K has
the biological interpretation of imposing a carrying capacity on the system. We incorporate this
idea by letting the competition parameter c depend on K as follows:

cK =
c

K
.

Moreover, we consider two scenarios: one in which the populations of viruses and vectors are of the
same order, and one in which the population of vectors is of smaller order than that of viruses. We
model these two scenarios by introducing a new parameter λ ∈ (0, 1], which scales the population
of viruses and vectors, at time zero, as follows:

νv
(K)(0) =

1

K
νv(0,K), νu

(K)(0) =
1

Kλ
νu(0,K), and νc(K)(0) =

1

Kλ
νc(0,K).

where for each α ∈ {v, u, c} and K ∈ N, the random measure να(0,K) is an element of Mp(Vα).
An important ingredient needed for our results is the assumption that at time zero the sequences
{ν(K)
α (0)}K∈N converge, as K → ∞, for α ∈ {v, u, c}. The convergence of these sequences implies

that for the case λ ∈ (0, 1), the total number of vectors is of smaller order than the total population
of viruses. This lack of vectors suggests the need to let the rest of the parameters depend on K as
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well. In particular, roughly speaking, we compensate the lack of vectors by letting the processes
νu(t,K) and νc(t,K) (i.e. the time evolution of the processes with initial condition νu(0,K) and
νc(0,K)) evolve with diffusive generator given by:

Lα,accel
K = K1−λLα, (1.10)

where for α ∈ {u, c}, Lα denotes the infinitesimal generator of the Itô diffusion driving the move-
ment of the α-class of vectors. We refer to Section 3 for a full expression of the scaled generator.
Furthermore, the explicit way in which the scaled parameters ηK , βK and γK depend on K comes
from the idea of making the distance travelled by a vector between loading and unloading of order
one. Additionally, we wish the number of virus deaths (on vectors) to be of the same order one.
This means:

K1+λβK = KληK = KλγK = O(K)

or equivalently
ηK = O(K1−λ), γK = O(K1−λ), and βK = O(K−λ).

We formalize these ideas with the following assumption:

Assumption 2. There exist a Lipschitz continuous function on its x variable β : R+×D×E×R+×
X → R, continuous functions η : R+ ×D×E ×X → R and γ : X → R+, and a positive constant c
such that:

βK(t, y, x,Kn, z) = K−λβ(t, y, x, n, z), cK =
c

K
,

ηK(t, y, x, z) = K1−λη(t, y, x, z), γK(z) = K1−λγ(z),

for all t ∈ R+. Moreover, we assume the rest of the parameters to be independent of the scaling
parameter K, and all parameters together satisfy Assumption 1.

Under the above assumptions, we normalize our processes as follows:

νv
(K)(t) =

1

K
νv(t,K), νu

(K)(t) =
1

Kλ
νu(t,K), and νc(K)(t) =

1

Kλ
νc(t,K), (1.11)

where for α∈{u, c}, the process να(t,K) has dynamics with diffusive generator given by Lα,accel
K as

in (1.10).

In the two regimes described above (i.e. if λ = 1 or λ ∈ (0, 1)) we show that, as the parameter
K tends to infinity, the normalized triplet of measure-valued processes (νv

(K)(t), νu
(K)(t), νc

(K)(t))
converges in path-space to a deterministic limiting triplet (ξv(t), ξu(t), ξc(t)) characterized as the
solution of a system of non-local integro-differential equations. We refer the reader to Theorem 3.3
and Theorem 3.6 in Section 3, which make rigorous this convergence in a general setting and describe
the precise assumptions needed at time zero. In the following paragraphs, we present two simpler
versions of Theorem 3.3 and Theorem 3.6 where in particular the deaths of viruses on vectors are
neglected, i.e. in both cases we assumed γ = 0.

First regime. For simplicity let us assume that at time zero the sequences of finite point mea-
sures {νv(K)(0)}K∈N, {νu(K)(0)}K∈N and {νc(K)(0)}K∈N converge to deterministic limiting mea-
sures ξv(0), ξu(0) and ξc(0), respectively. Moreover, we assume that these limiting measures are
absolutely continuous with respect to the relevant Haar measures in their respective state spaces
(i.e., the counting measure ζE(dx) on E, the Lebesgue measure on D, etc. . . ). Let us denote the
densities of the limiting measures ξv(0), ξu(0) and ξc(0), by gv(x, z), gu(y), and gc(y, z) respectively.
In Theorem 3.5, we show that for reversible diffusions we have the propagation of absolutely conti-
nuity for later times. Let us denote by gv(t, x, z), gu(t, y), and gc(t, y, z) respectively, these densities
for later times t > 0.
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For the sake of clarity let us assume that vectors diffuse in space according to reflected Brownian
motion (i.e. the generator obtained by setting aα = 0 and σα = 1 in the generators given by
(1.2)). Then a consequence of Theorem 3.3 is the following result which resembles the so-called
Lotka-Volterra (L-V) competition system in the presence of diffusion by vectors.

Theorem 1.8. Let λ = 1, γ = 0, and let ν(K)
0 = (νv

(K)(0), νu
(K)(0), νc

(K)(0)) be such that:

sup
K∈N

E
[(

⟨νv(K)(0), 1⟩+ ⟨νu(K)(0), 1⟩+ ⟨νc(K)(0), 1⟩
)3]

<∞.

Then, the measure-valued process {ν(K)(t) : t ≥ 0} converges, as K → ∞, to a deterministic process
ξt = (ξv(t), ξu(t), ξc(t)) with densities (gv, gu, gc) solving the following system:

∂

∂t
gv(t, x, z) = (1− µ)b(x, z) gv(t, x, z) + µ

�
X
b(x, z′)m(z′, z) gv(t, x, z

′) dz′

−
[
d(z) + c

(�
X
gv(t, x, z

′)dz′
)]

gv(t, x, z)

−
[�

D
β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gu(t, y) dy

]
gv(t, x, z) +

�
D
η(y, x, z) gc(t, y, z) dy,

∂

∂t
gu(t, y) = ∆gu(t, y)−

[�
E×X

β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gv(t, x, z) ζE(dx) dz

]
gu(t, y)

+

�
E×X

η(y, x, z) gc(t, y, z) ζE(dx) dz,

∂

∂t
gc(t, y, z) = ∆ygc(t, y, z) +

[�
E
β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gv(t, x, z) ζE(dx)

]
gu(t, y)

−
(�

E
η(y, x, z) ζE(dx)

)
gc(t, y, z),

with initial data and boundary conditions given by:

gv(0, x, z) = gv(x, z), gu(0, y) = gu(y), and gc(0, y, z) = gc(y, z)

∇gu(t, y) · n⃗(y) = 0 and ∇gc(t, y, z) · n⃗(y) = 0

for all y ∈ ∂D.

Remark 1.9. Notice that this system extends the L-V competition model with mutation (see for ex-
ample Raoul (2011); Calsina and Cuadrado (2005, 2007)) by incorporating two non-local additional
terms representing vector-borne dispersal. Moreover, the system also keeps track of the uncharged
and charged vector populations simultaneously with that of the viruses. Finally, this representation
allows us to consider a continuous trait space X ⊂ Rn. This structure can be used for example to
study the adaptation of viruses to resistant genes of plants Fabre et al. (2009, 2012).

Local persistence for the first regime. As a small application of Theorem 1.8, in this section we give
sufficient conditions for the local persistence of the virus population of a specific virus trait on a
given plant, i.e., conditions that guarantee that:

lim inf
t→∞

gv(t, x, z) > 0,

for x ∈ E, and z ∈ X.

Let us introduce the following quantity:

R(x, z) = (1− µ)b(x, z)− d(z)−
�
D
β(y, x, z) dy
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we then have the following:

Proposition 1.10. Let gv(t, ·, ·) be given as in Theorem 1.8. Assume that, for some fixed x ∈ E,
and z ∈ X we have:

gv(0, x, z) > 0, R(x, z) > 0. (1.12)
Then the virus population of trait z locally persists at x.

We refer to 3.3 for the proof of this result.

Second regime. For the second regime, i.e. λ ∈ (0, 1), under the same assumptions on the sequence
of initial measures, we make the additional assumption:

Assumption 3. Assume that for all νv ∈ Mp(Vp), and all t ≥ 0, the function

β̄(t, y) =

�
Vp

β(t, y, x, ⟨νxv , 1⟩, z)νv(dx, dz) (1.13)

is in C2(D). Moreover, assume the existence of a constant β0 > 0 such that

β̄(t, y) ≥ β0 > 0, (1.14)

uniformly in y. Finally, assume γ = 0.

The following result is a consequence of Theorem 3.6. It shows how the speeding up of the diffusion
of vectors has the effect of changing the limiting evolution of the two populations of vectors to an
equilibrium state.

Theorem 1.11. Let λ ∈ (0, 1), σα = 1, aα = 0, and ν
(K)
0 = (νv

(K)(0), νu
(K)(0), νc

(K)(0)) be such
that:

sup
K∈N

E
[(

⟨νv(K)(0), 1⟩+ ⟨νu(K)(0), 1⟩+ ⟨νc(K)(0), 1⟩
)3]

<∞.

Then, under Assumption 3, the measure-valued process {ν(K)(t) : t ≥ 0} converges, as K → ∞, to a
deterministic process ξt = (ξv(t), ξu(t), ξc(t)) with densities (gv, gu, gc) solving the following system:

∂

∂t
gv(t, x, z) = (1− µ)b(x, z) gv(t, x, z) + µ

�
X
b(x, z′)m(z′, z) gv(t, x, z

′) dz′

−
[
d(z) + c

(�
X
gv(t, x, z

′)dz′
)]

gv(t, x, z)

−
[�

D
β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gu(t, y) dy

]
gv(t, x, z) +

(�
D
η(y, x, z) gc(t, y, z) dy

)
,

0 = ∆gu(t, y)−
[�

E×X
β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gv(t, x, z) ζE(dx) dz

]
gu(t, y)

+

�
E×X

η(y, x) gc(t, y, z) ζE(dx) dz,

0 = ∆ygc(t, y, z) +

[�
E
β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gv(t, x, z) ζE(dx)

]
gu(t, y)

−
(�

E
η(y, x) ζE(dx)

)
gc(t, y, z),

with the same boundary conditions as in Theorem 1.8.

Remark 1.12. Notice that this result in particular is only valid for Lu = Lc = ∆. The extension to
general reflecting diffusions is not possible with our techniques. The main difficulty comes from the
lack of applicability of our proof on existence and uniqueness to the general setting.
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Perspectives on extension to a continuous set of plants. As a final remark, we want to mention that
in Theorem 1.8 and Theorem 1.11 we have deliberately used the notation:�

E
f(x) ζE(dx),

instead of the perhaps more natural: ∑
x∈E

f(x).

Our intention with this choice was to suggest in particular the possible extension of our results to
the case in which the set of plants becomes increasingly large together with the rescaling parameter
K. To be more precise, when the locations of plants form an increasing sequence of lattices EK
approximating the whole plantation space D (and the measures ζEK

approximating the Lebesgue
measure dx) as K → ∞. We suspect that Theorems 3.3 and 3.6 can be extended to that setting.
This extension would require the use of additional techniques, in particular a type of embedding,
common to the theory of scaling limits of particle systems (i.e., as in De Masi and Presutti (1991);
Kipnis and Landim (1999)) and has been postponed for future work.

Organization of the paper. The rest of our paper is organized as follows. In Section 2 we provide the
proof of Theorem 1.7. In Section 3 we state our main theorems, namely Theorem 3.3 and Theorem
3.6, together with the details on the derivation of Theorem 1.8, and Theorem 1.11, from Theorem 3.3
and Theorem 3.6, respectively. Section 3.3 contains the details of the derivation of Proposition 1.10.
In Section 4 we prove our main theorems using the standard compactness-uniqueness approach, in
particular Section 4.1 deals with the details of the proof of Theorem 3.3, while Section 4.2 deals with
the proof of Theorem 3.6 with the help of Kurtz’ averaging principle for slow-fast systems Kurtz
(1992). Finally, in the Appendix we include the rigorous definition of the processes on path-space.
There, we also include the derivation of some standard martingale properties that are used in our
proofs. Finally, in part B of the Appendix, we include results related to existence and uniqueness
for the averaged dynamics of the vector populations. We also include a comprehensive list of all
notations used in this paper, in the last part of the Appendix, Section C.

2. Extinction probabilities

We are interested in the probability of extinction of the virus population, i.e., the probability

Pν(0)(∃s > 0, Pv(s) = 0),

where the process is initially started from the measure ν(0) = (νv(0), νu(0), νc(0)).

We first make the following remarks:

Remark 2.1. Notice that the random variable Pv(t) does not make distinction about the different
phenotypes. Moreover, it also takes into account the sub-population of viruses residing on vectors.
This is needed to properly study extinction since it avoids the possibility of re-emergence of the
virus population.

Remark 2.2. The random process {Pv(t)}t≥0 is integer valued, in fact it is (N∪ {0})-valued. More-
over, zero is an absorbing state, i.e, if for some s ≥ 0, Pv(s) = 0, then Pv(t) = 0 for all t ≥ s.

Remark 2.3. Notice that by Remark 1.5 we have:

Nu(t) +Nc(t) =: V0

for all t ≥ 0.

Before proving Theorem 1.7, we need the following lemma:



1156 Mario Ayala, Jerome Coville and Raphael Forien

Lemma 2.4. Let νv ∈ Mp(Vp), then we have:�
Vp

[�
X
1 · νvx(t)(dz′)

]
νv(t)(dx, dz) ≥

1

|E|
Nv(t)

2, (2.1)

where |E| denotes the cardinality of the finite set E, and νvx denotes the restriction of the measure
νv to the set {x}.

Proof : For νv ∈ Mp(Vp), let us denote by ν̄v ∈ Mp(E) the following measure:

ν̄v(dx) =

�
X
1 νv(dx, dz).

Notice then that we can rewrite the LHS of (2.1) as follows:�
E×X

[�
X
1 · νxv (t)(dz′)

]
νv(t)(dx, dz) =

�
E

�
E
1{x}(x

′) · ν̄v(t)(dx′) ν̄v(t)(dx)

=

Nv(t)∑
i=1

Nv(t)∑
j=1

1{xi}(xj). (2.2)

Notice that the last sum counts the sum of the squares of the total number of viruses per plant in
each of the plants in the plantation E. We conclude the proof of the lemma by using the fact that
the set E is finite, and the fundamental inequality:

n

n∑
i=1

a2i ≥

(
n∑
i=1

ai

)2

for ai ≥ 0. □

We can now proceed to the proof of Theorem 1.7.

Proof : Let us first claim:
sup
t≥0

E [Pv(t)] <∞. (2.3)

To see that this is the case, let us define f(t) as follows:

f(t) := E [Pv(t)] = E (⟨νv(t), 1⟩+ ⟨νc(t), 1⟩) .
By Proposition A.8 we have

f(t) = f(0) +

� t

0
E

[�
Vp

b(x, z)νv(s)(dx, dz)−
�
Vp

(d(z) + c⟨νxv , 1⟩) νv(s)(dx, dz)

]
ds,

−
� t

0
E
[�

Vc

γ(y) νc(s)(dy, dz)

]
ds

and as a consequence we obtain the differentiability of f . Moreover, using γ ≥ 0, we also have:

f ′(t) ≤ (b̄− d̂)f(t)− c · E

[�
Vp

⟨νxv (t), 1⟩νv(t)(dx, dz)

]
.

where b̄ is given in Assumption 1, and d̂ := infz∈X d(z).

By Jensen’s inequality we have:

f(t)2 ≤ E
[
Nv(t)

2 + 2Nc(t)Nv(t) +Nc(t)
2
]

≤ E
[
Nv(t)

2 + 2V0
(
Nv(t) +Nc(t) )]
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which can be rewritten as:
E
[
Nv(t)

2
]
≥ f(t)2 − 2V0f(t),

This, together with Lemma 2.4, implies

f ′(t) ≤
(
(b̄− d̂) +

2cV0
|E|

)
f(t)− c

|E|
f(t)2.

From the observation that the function:

y(x) =

(
(b̄− d̂) +

2cV0
|E|

)
x− c

|E|
x2

is negative for any x such that

x ≥ x0 := |E|(b̄− d̂)

c
+ 2V0,

we deduce that
f(t) ≤ f(0) ∨ x0

for all t ≥ 0. This implies (2.3).

Now we claim that:
lim
t→∞

Pv(t) ∈ {0,∞}.

Using the fact that Pv(t) is (N ∪ {0})-valued, it is enough to check that for any M ∈ N we have

P
[
lim inf
t→∞

Pv(t) =M
]
= 0.

Assume that it is not the case, and that lim inft→∞ Pv(t) = M . By definition, this implies that
Pv(t) reaches the value M infinitely often, but the value M − 1 only a finite number of times.
However, this is almost surely impossible since every time that the process Pv is at state M , the
probability of going to state (M − 1) is bounded from below by:

d̂M

b̄M + d̄M + cM2γ̄V0
> 0,

where we recall that d̂ > 0. We only have to use the fact that {0} is an absorbing state to deduce
that the limit exists and

lim
t→∞

Pv(t) ∈ {0,∞}.

To conclude that a.s.
lim
t→∞

Pv(t) = 0,

it is enough to show that

E
[
lim
t→∞

Pv(t)
]
<∞.

This property is a consequence of Fatou’s lemma, expression (2.3), and the following reasoning:

E
[
lim
t→∞

Pv(t)
]
= E

[
lim inf
t→∞

Pv(t)
]
≤ lim inf

t→∞
E [Pv(t)] ≤ sup

t≥0
E [Pv(t)] <∞.

□

3. IDE formulation

Let us introduce some additional notation needed to introduce the IDE formulations of Theorem
1.8 and Theorem 1.11.
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Rescaled processes. Let us denote by ΛK(t) the measure-valued process of the form:

ΛK(t) = (νv
(K)(t), νu

(K)(t), νc
(K)(t)), (3.1)

where νv(K)(t), νu
(K)(t), and νc(K)(t) are given as in (1.11). We consider ΛK(t) as a process taking

values in the product space of measures Mp given by:

Mp := Mp(Vp)×Mp(D)×Mp(Vc).

Moreover we introduced the additional notation:

MF := MF (Vp)×MF (D)×MF (Vc),

where for any Polish space X, MF (X) denotes the space of finite measures on X. Notice that with
this notation we have Mp ⊂ MF .

Under Assumption 2, the process ΛK(t) has an infinitesimal generator, that we denote by L(K),
with jump part L(K)

1 given by:

L(K)
1 Fϕ(ν) = K(1− µ)

�
Vp

b(x, z)
[
Fϕ((νv +

1
K δx,z, νu, νc))− Fϕ(ν)

]
νv(dx, dz)

+K µ

�
Vp

b(x, z)

�
X
m(z, e)

[
Fϕ((νv +

1
K δx,e, νu, νc))− Fϕ(ν)

]
νv(dx, dz) de

+K

�
Vp

(d(z) + c⟨νxv , 1⟩)
[
Fϕ((νv − 1

K δx,z, νu, νc))− Fϕ(ν)
]
νv(dx, dz)

+K

�
Vp

�
D
β(t, y, x,Nx(t), z)

[
Fϕ((νv − 1

K δx,z, νu −
1
Kλ δy, νc +

1
Kλ δy,z))− Fϕ(ν)

]
νv(dx, dz) νu(dy)

+K

�
Vc

�
E
η(t, w, x, e)

[
Fϕ((νv +

1
K δx,e, νu +

1
Kλ δw, νc − 1

Kλ δw,e))− Fϕ(ν)
]
νc(dw, de) dx

+K

�
Vc

γ(e)
[
Fϕ((νv, νu +

1
Kλ δw, νc − 1

Kλ δw,e))− Fϕ(ν)
]
νc(dw, de),

and a diffusive part:

L(K)
2 Fϕ(ν) := K1−λ

(�
D
Luyϕu(y)νu(dy)

)
(∂uF )ϕ(ν)

+K1−2λ

(�
D

(σu(y))2

2
|∇yϕu(y)|2νu(dy)

)
(∂2uF )ϕ(ν) +K1−λ

(�
Vc

Lcϕc(w, e)νc(dw, de)
)
(∂cF )ϕ(ν)

+K1−2λ

(�
Vc

(σc(w))2

2
|∇wϕc(w, e)|2νc(dw, de)

)
(∂2cF )ϕ(ν).

where the extra factors K−λ in front of the second derivative terms come from Itô’s lemma.

Population at time zero. At time zero we consider a sequence of initial measures {ΛK(0)}{k≥1} ∈ Mp

of the form:
ΛK(0) = (νv

(K)(0), νu
(K)(0), νc

(K)(0)).

We assume that this measure satisfies an estimate like the one needed in Proposition A.5, and that
a law of large numbers is satisfied by the sequence {ΛK(0)}{k≥1}. More precisely we make the
following assumption:
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Assumption 4. The sequence of measures {ΛK(0)}{K≥1} ∈ Mp ⊂ MF converges in law and for the
weak topology of MF to a deterministic finite measure ξ0 = (ξv(0), ξu(0), ξc(0)) ∈ MF . Moreover
we have the following estimate:

sup
K∈N

(
E
[
⟨νKα (0), 1⟩3

])
<∞,

for all α ∈ {v, u, c}.

Remark 3.1. Notice that the limiting measure at time zero is allowed to belong to the whole space
MF . This is with the intention to allow for the existence of densities, with respect to the relevant
Haar measure, at time zero.

The IDE formulation, given by Theorem 3.3 below, can be thought of as a law of large numbers,
for the limit of the sequence of measures {ΛK(t) : t ≥ 0}K≥1, seen as taking values in the path
space D([0, T ],MF ), for all T > 0. Obtaining such a description requires to work with martingales
associated to a Markov process and to control their quadratic variation. We will split the analysis
of the martingales into the two cases already described in Section 1.

Remark 3.2. It is possible to find combinations of scaling of parameters, different from those of
Assumption 2, such that the speeding of diffusion by vectors becomes unnecessary to derive a
limiting description for the case λ < 1. However, for such a combination, the limiting evolution
equation for the population of viruses decouples from that of the vectors (i.e. viruses do not see the
effect of vectors). This time scale is biologically irrelevant in the context of vector-borne dynamics.

3.1. IDE formulation: first case. We have the following theorem:

Theorem 3.3. Let λ = 1. Consider the sequence of measure-valued processes {ΛK}K≥1 given by
(3.1)-(1.11). Suppose Assumptions 2-4 are satisfied. Then, for all T > 0, the sequence of pro-
cesses {ΛK}K≥1 converges in law in D([0, T ],MF ) to a deterministic continuous function ξ(t) =

(ξv(t), ξu(t), ξc(t)) belonging to the path space C([0, T ],MF ), and solving the following integro-
differential equations:

⟨ξv(t), ϕv⟩ = ⟨ξv(0),ϕv⟩+
� t

0

�
Vp

b(x, z)ϕv(x, z) ξv(s)(dx, dz) ds

+ µ

� t

0

�
Vp

b(x, z)

[�
X
m(z, e)ϕv(x, e) de− ϕv(x, z)

]
ξv(s)(dx, dz) ds

−
� t

0

�
Vp

[d(z) + c⟨ξv(s)x, 1⟩]ϕv(x, z)ξv(s)(dx, dz)ds

−
� t

0

�
Vp×D

β(s, y, x, ⟨ξv(s)x, 1⟩, z)ϕv(x, z) ξv(s)(dx, dz) ξu(s)(dy) ds

+

� t

0

�
Vc×E

η(s, y, x, z)ϕv(x, z) ξc(s)(dy, dz) ζE(dx) ds, (3.2)
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⟨ξu(t), ϕu⟩ = ⟨ξu(0),ϕu⟩+
� t

0

�
D
Luϕu(y) ξu(s)(dy) ds

−
� t

0

�
Vp×D

β(s, y, x, ⟨ξv(s)x, 1⟩, z)ϕu(y)ξv(s)(dx, dz) ξu(s)(dy) ds

+

� t

0

�
Vc×E

η(s, y, x, z)ϕu(y)ξc(s)(dy, dz) ζE(dx) ds

+

� t

0

�
Vc

γ(z)ϕu(y) ξc(s)(dy, dz)ds, (3.3)

⟨ξc(t), ϕc⟩ = ⟨ξc(0),ϕc⟩+
� t

0

�
Vc

Lcϕc(y, z) ξc(s)(dy, dz) ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨ξv(s)x, 1⟩, z)ϕc(y, z)ξv(s)(dx, dz) ξu(s)(dy) ds

−
� t

0

�
Vp×E

η(s, y, x, z)ϕc(y, z)ξc(s)(dy, dz) ζE(dx) ds

−
� t

0

�
Vc

γ(z)ϕc(y, z) ξc(s)(dy, dz) ds, (3.4)

for all ϕv bounded and measurable, ϕu ∈ C2
b (D) ∩ D(Lu), and ϕc ∈ C2

b (I) ∩D(Lc).
We postpone the proof of Theorem 3.3 to Section 4 for the generalities and Section 4.1 for the

particulars.

Remark 3.4. For α ∈ {v, u}, using the functions ϕα = 1 and neglecting the negative terms, we can
obtain that there exists a positive constant C such that

max
α

(⟨ξα(t), 1⟩) ≤ max
α

(⟨ξα(0), 1⟩) + tV0 + C

� t

0
max
α

(⟨ξα(s), 1⟩) ds.

By Gronwall’s lemma we then conclude:

sup
t∈[0,T ]

max
α

(⟨ξα(t), 1⟩) ≤
(
max
α

(⟨ξα(0), 1⟩) + TV0

)
eCT ,

which by the conservation of mass in vectors, the fact that the sup is bounded can also be extended
to the case α = c.

Theorem 1.8 is the strong form of Theorem 3.3. In order to verify that we can indeed obtain such a
strong formulation, we need to verify that if we assume that at time zero the triplet (ξv(t), ξu(t), ξc(t))
has densities with respect to their respective Haar measures, indeed we have the propagation of this
property for later times.

3.2. Propagation of absolute continuity.

Theorem 3.5. Let us assume that for α ∈ {u, c} the diffusive generator Lα is self-adjoint. Let us
also assume that for α ∈ {v, u, c}, at time zero each of the limiting measures ξα(0) admits a density
of the following form:

ξv(0)(dx, dz) = gv(x, z) ζE(dx) dz, ξu(0)(dy, dz) = gu(y) dy dz, and ξc(0)(dy, dz) = gc(y, z) dy dz,

where ζE denotes the counting measure on E. Consider the solution ξ(t) = (ξv(t), ξu(t), ξc(t)) of
(3.2)-(3.4) with initial condition (ξv(0), ξu(0), ξc(0)). Then, under the assumptions of Theorem 3.3,
for each time t > 0, and each α ∈ {v, u, c}, there exist functions gα(t, ·) : Vα → R such that:

ξv(t)(dx, dz) = gv(t, x, z) dz, ξu(t)(dy, dz) = gu(t, y) dy dz, and ξc(t)(dy, dz) = gc(t, y, z) dy dz.
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In other words, we have propagation of absolute continuity.

Proof : Since the space E is finite, and ζE is the counting measure on E, any ζE-null subset of E
is empty. Hence we only analyse null sets of X and D. Let us consider a set A ⊂ X of Lebesgue
measure zero. We want to show that both measures ξXv (t) :=

�
E ξv(t)(dx, ·) and ξXc (t) :=

�
D ξc(dy, ·)

assign zero mass to A. We want to take advantage of the fact that both measures are non-negative
to only deal with the measure:

νX (t) = ξXv (t) + ξXc (t).

By Theorem 3.3, and the absolute continuity at time zero, we have

νX (t)(A) =

� t

0

�
Vp

b(x, z)1{A}(z) ξv(s)(dx, dz) ds

−
� t

0

�
Vp

[d(z) + c⟨ξv(s)x, 1⟩] 1{A}(z)ξv(s)(dx, dz)ds−
� t

0

�
Vc

γ(z)1{A}(z) ξc(s)(dy, dz) ds.

(3.5)

Let the function M(t) be given by

M(t) := νX (t)(A).

Notice that M(0) = 0, and by (3.5) M(t) is differentiable.

Moreover, by Assumption 1 and the non-negativity of ξXc (t), we have:

d

dt
M(t) ≤ b̄M(t)−

�
Vp

[d(z) + c⟨ξv(t)x, 1⟩] 1{A}(z)ξv(t)(dx, dz)

−
�
Vc

γ(z)1{A}(z) ξc(t)(dy, dz),

which implies d
dtM(t) ≤ b̄M(t), and as a consequence M(t) = 0.

We now show absolute continuity of ξu(t) with respect to Lebesgue measure on D. For simplicity
of exposition let us assume that Lu = Lc (denoted by L), and consider a measurable set D ⊂ D of
null Lebesgue measure. Here we also take advantage of the positivity of both measures ξu(t) and
ξDc (t) :=

�
X ξc(t)(·, dz), to only deal with the measure:

νD(t) = ξu(t) + ξDc (t)

We would like to plug 1{D} and obtain an expression for νD(t)(D), but the indicator function
1{D} is not an element of D(L). However we can define the following function:

ϕ(s, y) = PL(t− s)1{D}(y) ∀y ∈ D,

for a fixed t ∈ [0, T ]. By construction we have that ϕ(s, y) is a solution of the boundary problem:

∂sϕ(s, y) + Lϕ(s, y) = 0 on [0, T ]×D
∂nϕ(s, y) = 0 on [0, T ]× ∂D,

lim
s→t

ϕ(s, y) = 1{D}(y) on D.
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Notice that we can also re-write equations (3.2)-(3.4) in their weak time-space formulation. In
particular for the last two equations we obtain:

⟨ξu(t), ϕu(t, ·)⟩ = ⟨ξu(0), ϕu(0, ·)⟩+
� t

0

�
D
(Luϕu(s, y) + ∂sϕu(s, y)) ξu(s)(dy) ds

−
� t

0

�
Vp×D

β(s, y, x, ⟨ξxv (s), 1⟩, z)ϕu(s, y)ξv(s)(dx, dz) ξu(s)(dy) ds

+

� t

0

�
Vc×E

η(s, y, x, z)ϕu(s, y)ξc(s)(dy, dz) ζE(dx) ds+

� t

0

�
Vc

γ(z)ϕu(s, y) ξc(s)(dy, dz)ds, (3.6)

⟨ξc(t), ϕc(t, ·)⟩ = ⟨ξc(0), ϕc(0, ·)⟩+
� t

0

�
Vc

(Lcϕc(s, y, z) + ∂sϕc(s, y, z)) ξc(s)(dy, dz) ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨ξxv (s), 1⟩, z)ϕc(s, y, z)ξv(s)(dx, dz) ξu(s)(dy) ds

−
� t

0

�
Vc×E

η(s, y, x, z)ϕc(s, y, z)ξc(s)(dy, dz) ζE(dx) ds−
� t

0

�
Vc

γ(z)ϕc(s, y, z) ξc(s)(dy, dz) ds. (3.7)

Summing (3.6) and (3.7), and using that Lu = Lc = L, gives:

⟨νD(t),1{D}⟩ = ⟨νD(t), ϕ(0, ·)⟩

=

�
D
gu(y)PL(t)1{D}(y) dy +

�
D

(�
X
gc(y, z) dz

)
PL(t)1{D}(y) dy = 0, (3.8)

where in the last equality we used the reversibility of L.
Finally we check that the measure ξc(t) is absolutely continuous with respect to the product of

the Lebesgue measures on D and X . Let us denote by Dc a Lebesgue null-subset of D × X . As in
the previous case, we define the following function:

ϕ(s, y, z) = PLc(t− s)1{Dc}(y, z) ∀(y, z) ∈ D × X ,

for a fixed t ∈ [0, T ] which solves its corresponding boundary problem. We then conclude by noticing
that in this case, by the non-negativity of ξc we have:

ξc(t)(Dc) =

�
D×X

gc(y, z)PLc(t)1{Dc}(y, z) dy dz

−
� t

0

�
Vc×E

η(s, y, x, z)ϕc(s, y, z)ξc(s)(dy, dz) ζE(dx) ds

−
� t

0

�
Vc

γ(z)ϕc(s, y, z) ξc(s)(dy, dz) ds ≤ 0. (3.9)

□

3.3. Proof of Proposition 1.10. Let us start by giving the linearization of the system given in The-
orem 1.8 around the equilibrium point (g∗v , g

∗
u, g

∗
c ) with originally all vectors being free of viruses:

g∗v(x, z) = 0, g∗u(y) = 1, and g∗c (y, z) = 0

for all x ∈ E, y ∈ D, and z ∈ X .
Let h = (hv, hu, hc) be a perturbation around the equilibrium point (g∗v , g

∗
u, g

∗
c ). To conclude

local persistence it is enough to show that the perturbation hv is monotonically increasing with
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time locally in x and z. For this particular set of equilibrium the linearization takes the form:

∂

∂t
hv(t, x, z) =

(
(1− µ)b(x, z)− d(z)−

�
D
β(y, x, z) dy

)
hv(t, x, z)

+ µ

�
X
b(x, z′)m(z′, z)hv(t, x, z

′) dz′ +

(�
D
η(y, x, z)hc(t, y, z) dy

)
(3.10)

∂

∂t
hu(t, y) = ∆hu(t, y)−

(�
E×X

β(y, x, z)hv(t, x, z) ζE(dx) dz

)
+

�
E×X

η(y, x, z)hc(t, y, z) ζE(dx) dz (3.11)

∂

∂t
hc(t, y, z) = ∆yhc(t, y, z) +

(�
E
β(y, x, z)hv(t, x, z) ζE(dx)

)
−
(�

E
η(y, x, z) ζE(dx)

)
hc(t, y, z) (3.12)

with the same boundary conditions as before.

By Theorem 2.2 in Sato and Ueno (1965) we have that

hc(t, y, z) =

�
D
p(t, y, y′; z)hc(0, y, z) dy

′

+

� t

0

�
D
p(s, y, y′; z)

(�
E
β(y′, x, z)hv(t− s, x, z) ζE(dx)

)
dy′ds

where for every z ∈ X , p(t, y, y′; z) is solution to:

∂

∂t
p(t, y, y′; z) = ∆yp(t, y, y

′; z)−
(�

E
η(y, x, z) ζE(dx)

)
p(t, y, y′; z)

and the same boundary conditions as before.
Assuming hc(0, y, z) = 0, reduces (3.10) to:

∂

∂t
hv(t, x, z) =

(
(1− µ)b(x, z)− d(z)−

�
D
β(y, x, z) dy

)
hv(t, x, z)

+ µ

�
X
b(x, z′)m(z′, z)hv(t, x, z

′) dz′

+

�
D
η(y, x, z)

(�
E

� t

0

(�
D
p(s, y, y′; z)β(y′, x, z) dy′

)
hv(t− s, x′, z) ds ζE(dx

′)

)
dy.

(3.13)

The positivity of the RHS of (3.13), which is a consequence of (1.12), concludes the proof.

3.4. IDE formulation: second case. Suppose Assumptions 2, 3, and 4 are satisfied. Then we have
the following:

Theorem 3.6. Let λ ∈ (0, 1) and assume Lu = Lc = ∆. Consider the sequence of processes{
νv

(K)(t) : t ≥ 0
}
K≥1

given by (3.1). Assume that the function η does not depend on the trait z,
and that for α ∈ {u, c}, at time zero each of the limiting measures ξα(0) admits a density of the
following form ξu(0)(dy, dz) = gu(y) dy dz and ξc(0)(dy, dz) = gc(y, z) dy dz. Then for all T > 0, the
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sequence
{
νv

(K)(t) : t ≥ 0
}
K≥1

converges in law in D([0, T ],MF (Vp)) to a deterministic continuous
function ξv belonging to the space C([0, T ],MF (Vp)), and solving the IDE:

⟨ξv(t), ϕv⟩ = ⟨ξv(0), ϕv⟩+
� t

0

�
Vp

b(x, z)ϕv(x, z) ξv(s)(dx, dz) ds

+ µ

� t

0

�
Vp

b(x, z)

[�
X
m(z, e)ϕv(x, e) de− ϕv(x, z)

]
ξv(s)(dx, dz) ds

−
� t

0

�
Vp

[d(z) + c⟨ξv(s)x, 1⟩]ϕv(x, z)ξv(s)(dx, dz)ds

−
� t

0

�
Vp

(�
MF (D)

�
D
β(s, y, x, ⟨ξv(s)x, 1⟩, z)ΠBξv(s)(ξu(dy)×MF (Vc))

)
ϕv(x, z) ξv(s)(dx, dz) ds

+

� t

0

�
E

(�
MF (Vc)

�
Vc

η(s, y, x)ΠBξv(s)(MF (D)× ξc(dy, dz))

)
ϕv(x, z) ζE(dx) ds, (3.14)

for all ϕv bounded and measurable, and where for each νv ∈ MF (Vp) the measure ΠBνv is the unique
stationary measure of the Markov process with generator Bνv : D(Bνv) → C(D × I) given by:

BνvFϕu,ϕc(νu, νc) = ∂uFϕu,ϕc(νu, νc)

�
D
∆ϕu(y) νu(dy) + ∂cFϕu,ϕc(νu, νc)

�
Vc

∆wϕc(w, e) νc(dw, de)

− ∂uFϕu,ϕc(νu, νc)

�
Vp×D

β(t, y, x,Nx(t), z)ϕu(y)νv(dx, dz) νu(dy)

+ ∂cFϕu,ϕc(νu, νc)

�
Vp×D

β(t, y, x,Nx(t), z)ϕc(y, z)νv(dx, dz) νu(dy)

+ ∂uFϕu,ϕc(νu, νc)

�
Vc×E

η(t, y, x)ϕu(y)νc(dy, dz) ζE(dx)

− ∂cFϕu,ϕc(νu, νc)

�
Vc×E

η(t, y, x)ϕc(y, z)νc(dy, dz) ζE(dx)

+ ∂uFϕu,ϕc(νu, νc)

�
Vc

γ(z)ϕu(y)νc(dy, dz)− ∂cFϕu,ϕc(νu, νc)

�
Vc

γ(z)ϕc(y, z)νc(dy, dz),

(3.15)

where for all ϕu ∈ C2(D) ∩ D(∆), and ϕc ∈ C2(Vc) ∩ D(∆w), the function Fϕu,ϕc is defined in an
analogous way to Definition 1.3:

Fϕu,ϕc(νu, νc) := F (⟨νu, ϕu⟩, ⟨νc, ϕc⟩),

where F ∈ C2(R2;R).

Remark 3.7. Notice that the presence of only first order derivatives in the defining expression of
the generator Bνv implies that it corresponds to deterministic dynamics, and as a consequence the
measure ΠBνv is a Dirac mass on the set MF (D)×MF (Vc).

3.5. Absolute continuity and stationarity of the measure ΠBνv . Theorem 3.6 seems rather abstract
due to the apparent lack of information about the measure ΠBνv . However, under Assumption 3 we
can find an explicit expression for the measure ΠBνv . The proof of Theorem 3.6 (via Proposition 4.4)
requires that the measure ΠBνv satisfy�

MF (D)×MF (Vc)
BνvFϕu,ϕc(νu, νc)Π

B
νv(dνu, dνc) = 0 (3.16)
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for all cylindrical function Fϕu,ϕc : MF (D)×MF (Vc) → R.

Equation (3.16), and the precise form (3.15), imply that the support of the measure ΠBνv is inside
the set of all measures νu, νc such that:�

D
∆ϕu(y) νu(dy)−

�
Vp×D

β(t, y, x,Nx(t), z)ϕu(y)νv(dx, dz) νu(dy)

+

�
Vc×E

η(t, y, x)ϕu(y)νc(dy, dz) ζE(dx) = 0, (3.17)

and �
Vc

∆wϕc(w, e) νc(dw, de) +

�
Vp×D

β(t, y, x,Nx(t), z)ϕc(y, z)νv(dx, dz) νu(dy)

−
�
Vc×E

η(t, y, x)ϕc(y, z)νc(dy, dz) ζE(dx) = 0, (3.18)

for all ϕu ∈ C2(D) ∩ D(∆), and ϕc ∈ C2(Vc) ∩D(∆w).

Remark 3.8. Recall that the total number of vectors V0 ̸= 0 is a conserved quantity. This is also
true for the limit and can be seen directly from the system (3.17)-(3.18). This fact discards the
trivial solution, (ξu, ξc) = (0, 0), as a potential solution for the system.

In order to apply Proposition 4.4, we want to use that the system (3.17)-(3.18) has a unique
solution (ξu, ξc) ∈ MF (D) ×MF (Vc) up to multiplicative factors. In order to see that this is the
case we proceed in two steps. First we argue that the strong formulation of it has a unique solution.
Second, we compare this unique solution to a generic (measure-valued) solution in total variation.
We refer to Appendix B for details.

From uniqueness of solutions of the system (3.17)-(3.18), we have that

Supp ΠBνv ⊆ {(ξu, ξc)}.

The fact that ΠBνv is a probability measure implies that it is of the form ΠBνv = δξu,ξc , where
ξu ∈ MF (D), and ξc ∈ MF (Vc) satisfy (3.17)-(3.18).

4. Proofs of Theorem 3.3 and Theorem 3.6

For the proofs of Theorem 3.3 and Theorem 3.6 we use the standard compactness-uniqueness
approach. The proof of both theorems uses the same type of techniques with the exception of
the part dealing with the characterization of limit points. The characterization of limit points for
Theorem 3.6 is interesting in its own. It is an application of an averaging principle due to T. Kurtz
and given originally in Kurtz (1992).

Uniqueness of mild-solutions for Theorem 3.3. Here we will combine the arguments for uniqueness
used in the proof of Theorem 5.3 from Fournier and Méléard (2004), and in the proof of Theo-
rem 4.2 in Champagnat and Méléard (2007). Let us first assume that (ξv(t), ξu(t), ξc(t))t≥0, and
(ξ̄v(t), ξ̄u(t), ξ̄c(t))t≥0 are solutions of (3.2)-(3.4). We want to show that for all α ∈ {v, u, c} we have:∥∥ξα − ξ̄α

∥∥
α
= 0,

where for ν1α and ν2α ∈ MF (Dα) their variation norm is given by:∥∥ν1α − ν2α
∥∥
α
= sup

ϕα∈L∞(Vα)
∥ϕα∥∞≤1

|⟨ν1α − ν2α, ϕα⟩|.



1166 Mario Ayala, Jerome Coville and Raphael Forien

where Vu = D.
Let us first deal with the case α = v. Let ϕv be such that ∥ϕv∥∞ ≤ 1, by (3.2) we have:

∣∣⟨ξv(t)− ξ̄v(t), ϕv⟩
∣∣ ≤ (1− µ)

� t

0

∣∣∣∣∣
�
Vp

b(x, z)ϕv(x, z)
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

] ∣∣∣∣∣ ds
+ µ

� t

0

∣∣∣∣∣
�
Vp

b(x, z)

�
X
m(z, z′)ϕv(x, z

′) dz′
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

]∣∣∣∣∣ ds
+

� t

0

∣∣∣∣∣
�
Vp

d(z)ϕv(x, z)
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

]∣∣∣∣∣ ds
+ c

� t

0

∣∣∣∣∣
�
Vp

⟨ξvx(s), 1⟩ϕv(x, z)
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

]∣∣∣∣∣ ds
+ c

� t

0

∣∣∣∣∣
�
Vp

[
⟨ξ̄xv (s), 1⟩ − ⟨ξvx(s), 1⟩

]
ϕv(x, z) ξ̄v(s)(dx, dz)

∣∣∣∣∣ ds
+

� t

0

∣∣∣∣∣
�
Vp×D

β(s, y, x, ⟨ξxv (s), 1⟩, z) ξu(s)(dy)ϕv(x, z)
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

]∣∣∣∣∣ ds
+

� t

0

∣∣∣∣∣
�
Vp×D

[
β(s, y, x, ⟨ξxv (s), 1⟩, z)− β(s, y, x, ⟨ξ̄xv (s), 1⟩, z)

]
ξu(s)(dy)ϕv(x, z) ξ̄v(s)(dx, dz)

∣∣∣∣∣ ds
+

� t

0

∣∣∣∣∣
�
Vp×D

β(s, y, x, ⟨ξ̄xv (s), 1⟩, z)
[
ξu(s)(dy)− ξ̄u(s)(dy)

]
ϕv(x, z) ξ̄v(s)(dx, dz)

∣∣∣∣∣ ds
+

� t

0

�
Vc×E

η(s, y, x, z)ϕv(x, z) ζE(dx)
[
ξc(s)(dy, dz)− ξ̄c(s)(dy, dz)

]
ds. (4.1)

Notice that the linear terms in the RHS of (4.1) can be bounded from above using ∥ϕv∥∞ ≤ 1, and
Assumption 1. For example the first term can be bounded from above as

� t

0

∣∣∣∣∣
�
Vp

b(x, z)ϕv(x, z)
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

] ∣∣∣∣∣ ds ≤ b̄

� t

0
sup
ϕ≤1

|⟨ξv(s)− ξ̄v(s), ϕ⟩| ds.

Similar bounds can be derived for the other linear terms. The main difficulty comes from the non-
linear terms. Let us first deal with the terms coming from competition among viruses, i.e. the
integrals with the competition constant c in front. First notice that we have∣∣⟨ξ̄xv (s), 1⟩ − ⟨ξvx(s), 1⟩

∣∣ = ∣∣∣∣�
X
1
[
ξxv (s)(dz)− ξ̄xv (s)(dz)

]∣∣∣∣ ≤ ∣∣∣∣�
E×X

1{x}(x
′)
(
ξv(s)− ξ̄v(s)

)
(dx′, dz)

∣∣∣∣
≤ sup

ϕ≤1
|⟨ξv(s)− ξ̄v(s), ϕ⟩|,

and by Remark 3.4:

� t

0

∣∣∣∣∣
�
Vp

[
⟨ξ̄xv (s), 1⟩ − ⟨ξvx(s), 1⟩

]
ϕv(x, z) ξ̄v(s)(dx, dz)

∣∣∣∣∣ ds
≤ eCt max

α
(⟨ξα(0), 1⟩)

� t

0
sup
ϕ≤1

|⟨ξv(s)− ξ̄v(s), ϕ⟩| ds.
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Additionally, also by Remark 3.4 we have:
� t

0

∣∣∣∣∣
�
Vp

⟨ξvx(s), 1⟩ϕv(x, z)
[
ξv(s)(dx, dz)− ξ̄v(s)(dx, dz)

]∣∣∣∣∣ ds
≤ eCt max

α
(⟨ξα(0), 1⟩)

� t

0
sup
ϕ≤1

|⟨ξv(s)− ξ̄v(s), ϕ⟩| ds.

Now we deal with the non-linear terms representing interactions with free vectors. First, by As-
sumption 1, we have:�

D
β(s, y, x, ⟨ξxv (s), 1⟩, z)

[
ξu(s)(dy)− ξ̄u(s)(dy)

]
≤ β̄ sup

ϕ≤1
|⟨ξu(s)− ξ̄u(s), ϕ⟩|,

and by Remark (3.4) we deduce:
� t

0

∣∣∣∣∣
�
Vp×D

β(s, y, x, ⟨ξxv (s), 1⟩, z)
[
ξu(s)(dy)− ξ̄u(s)(dy)

]
ϕv(x, z) ξv(s)(dx, dz)

∣∣∣∣∣ ds
≤ β̄ eCt max

α
(⟨ξα(0), 1⟩)

� t

0
sup
ϕ≤1

|⟨ξu(s)− ξ̄u(s), ϕ⟩| ds.

Analogously we also obtain:
� t

0

∣∣∣∣∣
�
Vp×D

β(s, y, x, ⟨ξ̄xv (s), 1⟩, z)
[
ξu(s)(dy)− ξ̄u(s)(dy)

]
ϕv(x, z) ξ̄v(s)(dx, dz)

∣∣∣∣∣ ds
≤ β̄ eCt max

α
(⟨ξα(0), 1⟩)

� t

0
sup
ϕ≤1

|⟨ξu(s)− ξ̄u(s), ϕ⟩| ds.

The Lipschitz continuity of β also implies the upper bound:
� t

0

∣∣∣∣∣
�
Vp×D

[
β(s, y, ⟨ξxv (s), 1⟩, z)− β(s, y, x, ⟨ξ̄xv (s), 1⟩, z)

]
ξu(s)(dy)ϕv(x, z) ξ̄v(s)(dx, dz)

∣∣∣∣∣ ds
≤ β̄ eCt

[
max
α

(⟨ξα(0), 1⟩)
]2 � t

0
sup
ϕ≤1

|⟨ξu(s)− ξ̄u(s), ϕ⟩| ds.

Altogether implies:

∣∣⟨ξv(t)− ξ̄v(t), ϕv⟩
∣∣ ≤ C

(� t

0

∑
α

sup
ϕ≤1

|⟨ξα(s)− ξ̄α(s), ϕ⟩| ds.

)
(4.2)

For α ∈ {u, c}, we cannot proceed in the same way to bound∣∣⟨ξα(t)− ξ̄α(t), ϕα⟩
∣∣ .

The reason for the additional difficulty is that for a generic measurable ϕα, the action of the generator
Lα is not necessarily well-defined. We will avoid this issue by using an approach similar to the one
given in the proof of Theorem 4.2 in Champagnat and Méléard (2007).

For α ∈ {u, c}, we consider the semi-groups Pα(t) corresponding to the diffusion process with
generator Lα. Let us fix a function ϕα ∈ L∞(Vα) with ∥ϕα∥ ≤ 1, take t ∈ [0, T ], and define the
following function:

ϕα(s, yα) = Pα(t− s)ϕα(yα) ∀yα ∈ Vα.
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By construction ϕα(s, yα) is a solution of the boundary problem:

∂sϕα(s, yα) + Lαϕα(s, yα) = 0 on [0, T ]× Vα
∇ϕα · n̄(s, yα) = 0 on [0, T ]× ∂Vα
lim
s→t

ϕα(s, yα) = ϕα(yα) on Vα

where, to save some space, we have made a slight abuse of notation by using ∂Vc = ∂D ×X .

Using the weak time-space formulation given in (3.6) and 3.7, we obtain:

⟨ξu(t), ϕu⟩ = ⟨ξu(0), Pu(t)ϕu⟩+
� t

0

�
Vc

γ(z)Pu(t− s)ϕu(y) ξc(s)(dy, dz)ds

+

� t

0

�
Vc×E

η(s, y, x, z)Pu(t− s)ϕu(y))ξc(s)(dy, dz) ζE(dx) ds

−
� t

0

�
Vp×D

β(s, y, x, ⟨ξxv (s), 1⟩, z)Pu(t− s)ϕu(y)ξv(s)(dx, dz) ξu(s)(dy) ds,

and

⟨ξc(t), ϕc⟩ = ⟨ξc(0), Pc(t)ϕc⟩ −
� t

0

�
Vc×E

η(s, y, x, z)Pc(t− s)ϕc(y, z)ξc(s)(dy, dz) ζE(dx) ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨ξxv (s), 1⟩, z)Pc(t− s)ϕc(y, z)ξv(s)(dx, dz) ξu(s)(dy) ds

−
� t

0

�
Vc

γ(z)Pc(t− s)ϕc(y, z) ξc(s)(dy, dz) ds.

Analogous estimates to those used for the case α = v, give

∣∣⟨ξu(t)− ξ̄u(t), ϕu⟩
∣∣ ≤ C

(� t

0

∑
α

sup
ϕα≤1

|⟨ξα(s)− ξ̄α(s), ϕα⟩| ds

)
and ∣∣⟨ξc(t)− ξ̄c(t), ϕc⟩

∣∣ ≤ C

(� t

0

∑
α

sup
ϕα≤1

|⟨ξα(s)− ξ̄α(s), ϕα⟩| ds

)
where we have picked the biggest constant C of all cases. Taking first the sup on the LHS of each
case, and then summation gives the inequality:∑

α

sup
ϕα≤1

∣∣⟨ξα(t)− ξ̄α(t), ϕα⟩
∣∣ ≤ C

(� t

0

∑
α

sup
ϕα≤1

|⟨ξα(s)− ξ̄α(s), ϕα⟩| ds

)
,

and by Gronwall’s lemma we conclude uniqueness of mild solutions.

Uniform estimates. Let us first remark that, under Assumption 4, we have the following estimate:

sup
K∈N

E

[
sup
t∈[0,T ]

⟨ν(K)
α (t), 1⟩3

]
< +∞, (4.3)

for every α ∈ {v, u, c}.
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To see that this is the case, notice that by replicating the procedure of the proof of Proposition
A.5, with p = 3, we can obtain an analogous expression to (A.6), namely

E

 sup
t∈[0,T∧τ (K)

n ]

⟨ν(K)
α (t), 1⟩3

 ≤ CeBT

where the constants B and C are independent of K and n and τn are defined as in (A.5). Just as in
Proposition A.5 we conclude that τ (K)

n → ∞, as K → ∞ for some well chosen n, and obtain (4.3)
as a consequence of the RHS not depending on K.

Remark 4.1. As a consequence of estimate (4.3) we have that for every α ∈ {v, u, c}

sup
K∈N

E

[
sup
t∈[0,T ]

⟨ν(K)
α (t), ϕα⟩3

]
<∞ (4.4)

for all ϕα as in Definition 1.1.

Tightness. The goal of this section is to show that, for each α ∈ {v, u, c}, the sequence of laws QKα
of the processes ν(K)

α are uniformly tight in P(D([0, T ],Mα
F )). Here we specialize to the case λ = 1.

The other case is simpler for the vector populations, and for the virus population it is virtually done
in the same way as for λ = 1. Let us first introduce the following lemma:

Lemma 4.2. Under Assumption 2 we have the following càdlàg martingales; for any admissible
triplets {ϕv, ϕu, ϕc}.

(1) For the virus population:

Mv,ϕv
K (t) = ⟨νv(K)(t), ϕv⟩ − ⟨νv(K)(0), ϕv⟩ −

� t

0

�
Vp

b(x, z)ϕv(x, z)νv
(K)(s)(dx, dz) ds

+ µ

� t

0

�
Vp

b(x, z)

[
ϕv(x, z)−

�
X
m(z, e)ϕv(x, e) de

]
νv

(K)(s)(dx, dz) ds

+

� t

0

�
Vp

(
d(z) + c ⟨(ν(K)

v )x(s), 1⟩
)
ϕv(x, z)νv

(K)(s)(dx, dz)ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x(s), 1⟩, z)ϕv(x, z)νv(K)(s)(dx, dz) νu

(K)(s)(dy)ds

−
� t

0

�
Vc×E

η(s, y, x, z)ϕv(x, z) νc
(K)(s)(dy, dz) dx ds (4.5)



1170 Mario Ayala, Jerome Coville and Raphael Forien

is a càdlàg martingale with predictable quadratic variation

⟨Mv,ϕv
K ⟩t =

(1− µ)

K

� t

0

�
Vp

b(x, z)ϕv(x, z)
2 νv

(K)(s)(dx, dz) ds

+
µ

K

� t

0

�
Vp×X

b(x, z)m(z, e)ϕv(x, e)
2 de ν(K)

v (s)(dx, dz) ds

+
1

K

� t

0

�
Vp

(
d(z) + c ⟨(νv(K))x(s), 1⟩

)
ϕv(x, z)

2 νv
(K)(s)(dx, dz)

+
1

K

� t

0

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x(s), 1⟩, z)ϕv(x, z)2 νv(K)(s)(dx, dz) νu

(K)(s)(dy)ds

+
1

K

� t

0

�
Vc×E

η(s, y, x, z)ϕv(x, z)
2 νc

(K)(s)(dy, dz) dx ds. (4.6)

(2) For the uncharged vector population:

Mu,ϕu
K (t) = ⟨νu(K)(t), ϕu⟩ − ⟨νu(K)(0), ϕu⟩ −

� t

0

�
D
Luϕu(y) νu(K)(s)(dy) ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x(s), 1⟩, z)ϕu(y)νv(K)(s)(dx, dz) νu

(K)(s)(dy) ds

−
� t

0

�
Vc×E

η(s, y, x, z)ϕu(y)νc
(K)(s)(dy, dz) dx ds−

� t

0

�
Vc

γ(z)ϕu(y) νc
(K)(s)(dy, dz)ds

(4.7)

is a càdlàg martingale with predictable quadratic variation

⟨Mu,ϕu
K ⟩t =

1

K

� t

0

�
D
σu(y)2 |∇ϕu(y)|2 νu(K)(s)(dy) ds

+
1

K

� t

0

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x(s), 1⟩, z)ϕu(y)2 νv(K)(s)(dx, dz) νu

(K)(s)(dy)ds

+
1

K

� t

0

�
Vc×E

η(s, y, x, z)ϕu(y)
2νc

(K)(s)(dy, dz) dx ds+
1

K

� t

0

�
Vc

γ(z)ϕu(y)
2 νc

(K)(s)(dy, dz) ds.

(4.8)

(3) For the charged-vector population:

M c,ϕc
K (t) = ⟨νc(K)(t), ϕc⟩ − ⟨νc(K)(0), ϕc⟩ −

� t

0

�
Vc

Lcϕc(y, z) νc(K)(s)(dy, dz) ds

−
� t

0

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x(s), 1⟩, z)ϕc(y, z)νv(K)(s)(dx, dz) νu

(K)(s)(dy) ds

+

� t

0

�
Vc×E

η(s, y, x, z)ϕc(y, z)νc
(K)(s)(dy, dz) dx ds+

� t

0

�
Vc

γ(z)ϕc(y, z) νc
(K)(s)(dy, dz)ds (4.9)
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is a càdlàg martingale with quadratic variation

⟨M c,ϕc
K ⟩t =

1

K

� t

0

�
Vc

σc(y)2|∇yϕc(y, z)|2 νc(K)(s)(dy, dz) ds

+
1

K

� t

0

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x(s), 1⟩, z)ϕc(y, z)2νv(K)(s)(dx, dz) νu

(K)(s)(dy) ds

+
1

K

� t

0

�
Vc×E

η(s, y, x, z)ϕc(y, z)
2νc

(K)(s)(dw, du) dx ds

+
1

K

� t

0

�
Vc

γ(y)ϕc(y, z)
2 νc

(K)(s)(dy, dz) ds. (4.10)

Proof : The proof of this lemma is a replica of Proposition A.8 taking into consideration the extra
powers of K appearing in the generators. □

In order to show tightness, and given the control given by Proposition A.5, it is enough (see for
example Aldous (1978) or Joffe and Métivier (1986)) to show that for each α ∈ {v, u, c}, and ε > 0
there exist δ > 0 and ρ > 0 such that:

sup
K∈N

P
(
ω(Mα,1

K , δ, T ) > ρ
)
≤ ε, and sup

K∈N
P
(
ω(⟨Mα,1

K ⟩, δ, T ) > ρ
)
≤ ε, (4.11)

where Mα,1
K are given as in Lemma 4.2 with ϕα = 1, and for δ > 0, ω(X, δ, T ) denotes the standard

modulus of continuity:
ω(X, δ, T ) = sup

t,s∈[0,T ]
|t−s|≤δ

|X(t)−X(s)|.

Let us show how to control de modulus of continuity for the predictable quadratic variation process
⟨Mα,1

K ⟩.
Fix δ > 0, and consider stopping times τK , τ ′K such that:

0 ≤ τK ≤ τ ′K ≤ τK + δ ≤ T.

By Doob’s inequality, there exists C > 0 such that:

E
[
⟨Mα,1

K ⟩τ ′K − ⟨Mα,1
K ⟩τK

]
≤
∑
α′

E
[
C

� τK+δ

τK

(
⟨ν(K)
α′ (s), 1⟩+ ⟨ν(K)

α′ (s), 1⟩2
)
ds

]
, (4.12)

where we used the fact that the quadratic variation processes are given explicitly in (4.6), (4.8) and
(4.10), together with the technique used in the proof of Proposition A.5. By (4.3), and a redefinition
of the constant C, we obtain:

E
[
⟨Mα,1

K ⟩τ ′K − ⟨Mα,1
K ⟩τK

]
≤ Cδ.

This concludes the proof of uniform tightness of the sequence QKα .

4.1. Proof of Theorem 3.3. We start by noticing that since both populations are comparable in
order, i.e. λ = 1, the time rescaling of the diffusive generators for the population of vectors reduces
to normal speed. In this section we will mainly follow the approach given in the proof of Theorem
4.2 from Champagnat and Méléard (2007). This approach requires to control the quadratic variation
of some relevant martingales and show that, as a consequence of the vanishing quadratic variation,
the martingales themselves also vanish as K → ∞. Lemma 4.2 introduced the above mentioned
martingales and their quadratic variations.
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4.1.1. Characterization of limit points for Theorem 3.3. By tightness we know that for α ∈ {v, u, c}
the sequence of measures QKα contains at least a convergent sub-sequence. Let us denote by Q the
limiting law in P(D([0, T ],MF )) of any such sub-sequence, which by an abuse of notation we still
denote by QK . We first want to argue that every process ξα with law Q is almost surely strongly
continuous. We can see that this is indeed the case from the following estimate:

sup
t∈[0,T ]

|⟨ν(K)
α (t), ϕα⟩ − ⟨ν(K)

α (t−), ϕα⟩| ≤
∥ϕα∥∞
K

(4.13)

which is true because at every jump event we either kill, create, or re-distribute one virus. In order to
show that Q only charges the continuous processes we follow the lines of Step 5, page 54 of Bansaye
and Méléard (2015). Since, for each ϕα, the mapping t 7→ supt∈[0,T ]|⟨ξα(t), ϕα⟩ − ⟨ξα(t−), ϕα⟩| is
continuous on D([0, T ],MF ) we can deduce that Q only charges continuous processes from [0, T ] to
MF endowed with the vague topology. To extend this reasoning to the case of MF being endowed
with the weak topology we can follow the lines of Step 6, page 24, in Champagnat et al. (2008).

We now show that the limits ξv, ξu and ξc indeed satisfy the system of IDE’s. To do this we
introduce the following quantities:

Mv,ϕv
t (ξv, ξu, ξc) := ⟨ξv(t), ϕv⟩ − ⟨ξv(0), ϕv⟩ −

� t

0

�
Vp

b(x, z)ϕv(x, z) ξv(s)(dx, dz) ds

+ µ

� t

0

�
Vp

b(x, z)

[
ϕv(x, z)−

�
X
m(z, e)h(x, e) de

]
ξv(s)(dx, dz) ds

+

� t

0

�
Vp

[d(z) + c⟨ξv(s)x, 1⟩]ϕv(x, z)ξv(s)(dx, dz)ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨ξv(s)x, 1⟩, z)ϕv(x, z) ξv(s)(dx, dz) ξu(s)(dy) ds

−
� t

0

�
I×E

η(s, y, x, z)ϕv(x, z) ξc(s)(dy, dz) dx ds,

Mu,ϕu
t (ξv, ξu, ξc) := ⟨ξu(t), ϕu⟩ − ⟨ξu(0), ϕu⟩ −

� t

0

�
D
Luϕu(y) ξu(s)(dy) ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨ξv(s)x, 1⟩, z)ϕu(y)ξv(s)(dx, dz) ξu(s)(dy) ds

−
� t

0

�
Vc×E

η(s, w, x, u)f(w)ξc(s)(dw, du) dx ds−
� t

0

�
Vc

γ(u)f(w) ξc(s)(dw, du)ds,

and

M c,ϕc
t (ξv, ξu, ξc) := ⟨ξc(t), ϕc⟩ − ⟨ξc(0), ϕc⟩ −

� t

0

�
Vc

Lcϕc(w, u) ξc(s)(dw, du) ds

−
� t

0

�
Vc×D

β(s, y, x, ⟨ξv(s)x, 1⟩, z)g(y, z)ξv(s)(dx, dz) ξu(s)(dy) ds

+

� t

0

�
Vc×E

η(s, w, x, u)ϕc(w, u)ξc(s)(dw, du) dx ds+

� t

0

�
Vc

γ(u)ϕc(w, u) ξc(s)(dw, du) ds.

In order to verify that the processes indeed satisfy the system of IDE’s, our goal is to show that we
have:

E
[
|Mα,ϕα

t (ξv, ξu, ξc)|
]
= 0, (4.14)
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for all α ∈ {v, u, c}, and any t ≥ 0.

Notice that the following relations hold:

Mα,ϕα
K (t) =Mα,ϕα

t (νv
(K)(t), νu

(K)(t), νc
(K)(t)), E

(
|Mϕα

K (t)|2
)
= E

[
⟨Mϕα

K ⟩t
]
,

for all α ∈ {v, u, c}. Notice that by the non-negativity of the LHS of (4.14), to prove (4.14) it is
enough to show that the expectation of its square vanishes. By Assumption 1, Proposition 4.2, and
estimates similar to the ones used in (4.12), we have:

E
[
|Mϕα

K (t)|2
]
≤
Cαϕα,t
K

,

where the constants Cαϕα,t may depend on time and the uniform norm of the functions ϕα, but do
not depend on the scaling parameter K.

To conclude we need to show:

lim
K→∞

E
[
|Mα,ϕα

t (νv
(K)(t), νu

(K)(t), νc
(K)(t)|

]
= E

[
|Mα,ϕα

t (ξv, ξu, ξc)|
]
,

along any convergent sub-sequence of {(νv(K)(t), νu
(K)(t), νc

(K)(t))}K≥1. This is true if we are able
to show uniform integrability for each collection {Mα,ϕα

t (νv
(K)(t), νu

(K)(t), νc
(K)(t))}K≥1, for all

α ∈ {v, u, c}.

In order to do so, fix α ∈ {v, u, c}, and let us show that {Mα
t (νv, νu, νc)}K≥1 is indeed uniformly

integrable. First notice, using Assumption 1 and uniform estimates over the parameters and the
test functions, that for any (ν1, ν2, ν3) we have:

|Mα,ϕα
t (ν1, ν2, ν3)| ≤ C(t, ϕv, ϕu, ϕc) sup

t∈[0,T ]

(
1 + ⟨ν1, 1⟩2 + ⟨ν2, 1⟩2 + ⟨ν3, 1⟩2

)
,

and by (4.4) we have uniform integrability. This finishes the proof.

4.2. Proof of Theorem 3.6. Given the assumptions of Theorem 3.6, it is not straightforward to adapt
the proof of the characterization of limit points of Theorem 3.3 to this case. The main difficulty is
that we cannot control the quadratic variations (4.8) and (4.10) as directly as in the case λ = 1.
However, we can make use of the averaging principle for slow-fast systems introduced in Kurtz
(1992), and avoid the need to directly control those quadratic variations. We postpone the proof
of Theorem 3.6 to Section 4.2.2. First we introduce the context of Kurtz’s averaging principle for
martingale problems.

4.2.1. Averaging for martingale problems. The proof of Theorem 3.6 is based on Theorem 2.1 from
Kurtz (1992). For the sake of readability we will now state this theorem without proof. In the
following lm(S2) denotes the space of measures µ ∈ R+×S2 such that µ([0, t]×S2) = t for all t ≥ 0.
We refer the reader to Kurtz (1992) for relevant definitions and a proof of the theorem.

Theorem 4.3 (T. Kurtz, 1992). Let S1 and S2 be complete separable metric spaces, and set S =
S1 × S2. For each K, let {(XK , YK)} be a stochastic process with sample paths in D([0,∞),S)
adapted to a filtration {FK

t }. Assume that {XK} satisfies the compact containment condition, that
is, for each ε > 0 and T > 0, there exists a compact set C ∈ S1 such that

inf
K

P [XK(t) ∈ C,∀ t ≤ T ] ≥ 1− ε, (4.15)
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and assume that {YK(t) : t ≥ 0,K ∈ N} is relatively compact (as a collection of S2-valued random
variables). Suppose the existence of an operator A : D(A) ⊂ Cb(S1) → Cb(S) such that, for every
f ∈ D(A), there exists a process ϵfK for which

f(XK(t))−
� t

0
Af(XK(s), YK(s))ds+ ϵfK(t) (4.16)

is an FK
t -martingale. Let D(A) be dense in Cb(S1) in the topology of uniform convergence on

compact sets. Suppose that for each f ∈ D(A) and each T > 0, there exists p > 1 such that

sup
K

E
[� T

0
| Af(XK(t), YK(t)) |p dt

]
<∞,

and

lim
K→∞

E

[
sup
t≤T

| ϵfK(t) |

]
= 0. (4.17)

Let ΓK be the lm(S2)-valued random variable given by

ΓK([0, t]×B) =

� t

0
1{B}(YK(s))ds.

Then {XK ,ΓK} is relatively compact in D([0,∞),S1)× lm(S2) and for any limit point (X,Γ) there
exists a filtration {Gt} such that

f(X(t))−
� t

0

�
S2

Af(X(s), y)Γ(ds× dy)

is a Gt-martingale for each f ∈ D(A).

The way we will apply this theorem in the proof Theorem 3.6 is mainly based on the following
proposition based on Example 2.3 from Kurtz (1992).

Proposition 4.4. Let B : D(B) ⊂ Cb(S2) → Cb(S) be such that there exists a countable subset
D̂ ⊂ D(B) such that:

{(g,Bg) : g ∈ D̂} = {(g,Bg) : g ∈ D(B)}, (4.18)

where both closures are taken in Cb(S2) × Cb(S1 × S2) with respect to the topology of uniform con-
vergence. Moreover, assume that there exists µK ∈ R, such that for all g ∈ D(B), the quantity

g(YK(t))−
� t

0
µKBg(XK(s), YK(s))ds+ δgK(t)

is an FK
t -martingale, µK → ∞, and for each T > 0

lim
K→∞

E

[
sup
t∈[0,T ]

1

µK
| δgK(t) |

]
= 0.

Additionally, suppose that for every s ≤ t there exists a unique measure πX(s) ∈ P(S2) such that:�
S2

Bg(X(s), y)πX(s)(dy) = 0. (4.19)

Then, under the assumptions of Theorem 4.3 the limiting process X is a solution of the martingale
problem for the generator

GAf(x) =

�
S2

Af(x, y)πx(dy). (4.20)
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Proof : By Theorem 4.3 we have: �
[0,t]×S2

Bg(X(s), y)Γ(ds× dy) (4.21)

is a martingale. But (4.21) is continuous and of bounded variation and therefore constant. As a
consequence, for each g ∈ D(B), with probability one�

[0,t]×S2

Bg(X(s), y)Γ(ds× dy) = 0 (4.22)

for all t > 0. Then by Lemma 1.4 of Kurtz (1992) there exists a P(S2)-valued process {π(o)t } such
that: �

[0,t]×S2

h(s, y)Γ(ds× dy) =

� t

0

(�
S2

h(s, y)π(o)s (dy)

)
Γ(ds× S2)

with probability one, and for all Borel-measurable h in [0,∞)× S2.

By (4.18) we have that Γ ∈ lm(S2), and as a consequence (4.22) can be written as:� t

0

(�
S2

Bg(X(s), y)π(o)s (dy)

)
ds = 0

for all t a.s., and hence �
S2

Bg(X(s), y)π(o)s (dy) = 0 (4.23)

almost everywhere Lebesgue almost surely.

At this point assumption (4.19) implies that the measure π(o)s is stationary for the process with
generator BX(s) given by:

BX(s)g(y) = Bg(X(s), y)

for all g ∈ D(BX(s)). This means that we can take π(o)s = πX(s). If follows, by Theorem 4.3, that
X is the process associated to the martingale problem of the generator GA given by (4.20). □

4.2.2. Characterization of limit points for Theorem 3.6. Let us define XK(t) and YK(t) by:

XK(t) := ν(K)
v (t) ∈ MF (Vp)

YK(t) := (νu
(K)(t), νc

(K)(t)) ∈ MF (D)×MF (Vc) =: Mvec
F .

In order to be able to apply Theorem 4.3 we need to proceed as follows:

(1) Verify that {ν(K)
v (t) : t ≥ 0} satisfies the compact containment condition.

(2) Verify that {(νu(K)(t), νc
(K)(t)) : t ≥ 0,K ∈ N} is relatively compact.

(3) Identify the operator A, and related processes of Kurt’s result.

Compact containment. Fix ε > 0 and T > 0. Consider the set C(T, ε) ⊂ MF (Vp) given by:

C(T, ε) = {µ ∈ Mp(Vp) : µ(Vp) <
CT
ε

}

where CT is equal to the RHS of (A.6) for p = 1.

Remark 4.5. Notice that, as a consequence of MF (Vp) being Polish, the set C(T, ε) is sequentially
compact and hence compact.
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By Markov’s inequality we have:

P
[
ν(K)
v (t) ∈ C(T, ε) : ∀ t ∈ [0, T ]

]
= 1− P

[
∃t ∈ [0, T ] : ν(K)

v (t) /∈ C(T, ε)
]

≥ 1− P

[
sup
t∈[0,T ]

⟨ν(K)
v (t), 1⟩ ≥ CT

ε

]

≥ 1− ε

CT
E

[
sup
t∈[0,T ]

⟨ν(K)
v (t), 1⟩

]
≥ 1− ε

which shows (4.15).

Relative compactness for the fast system. We want to show that for every t ≥ 0 the sequence
{(νu(K)(t), νc

(K)(t)) : K ∈ N} is relatively compact as a sequence of Mvec
F -valued random variables.

By Corollary 1.2 in Kurtz (1992) it is enough to show that

sup
K∈N

E
[
⟨(νu(K)(t), νc

(K)(t)), 1⟩
]
<∞ (4.24)

and that for each ε > 0, there exists a compact C ⊆ D̄ × D̄ × X such that:

lim sup
K→∞

P
[
⟨(νu(K)(t), νc

(K)(t)), 1Cc⟩ > ε
]
≤ ε

where Cc denotes the complement of C and

⟨(νu(K)(t), νc
(K)(t)), 1⟩ := ⟨νu(K)(t), 1⟩+ ⟨νc(K)(t), 1⟩.

Proposition A.5 gives (4.24), and we conclude by choosing C = D̄ × D̄ × X .

Identification of the operators A and B. Before identifying the operators A and B we introduce the
following proposition.

Proposition 4.6. Under Assumption 2, for any cylindrical function Fv : Mp(Vp) → R of the form:

Fv(ν) = F (⟨ν, ϕv⟩),

with F ∈ C2(R) and ϕv measurable and bounded. We have that

MFv
K (t) = Fv(ν

(K)
v (t))−K(1− µ)

� t

0

�
Vp

b(x, z)

(
Fv(ν

(K)
v (s) +

1

K
δ(x,z))− Fv(ν

(K)
v (s))

)
ν(K)
v (s)(dx, dz) ds

−Kµ

� t

0

�
Vp×X

b(x, z)m(z, e)

(
Fv(ν

(K)
v (s) +

1

K
δ(x,e))− Fv(ν

(K)
v (s))

)
de ν(K)

v (s)(dx, dz) ds

+K

� t

0

�
Vp

(
d(z) + c ⟨(ν(K)

v )x, 1⟩
)(

Fv(ν
(K)
v (s)− 1

K
δ(x,z))− Fv(ν

(K)
v (s))

)
ν(K)
v (s)(dx, dz)ds

+K

� t

0

�

Vp×D

β(s, y, x, ⟨(ν(K)
v )x, 1⟩, z)

(
Fv(ν

(K)
v (s)− 1

K
δ(x,z))− Fv(ν

(K)
v (s))

)
ν(K)
v (s)(dx, dz) νu

(K)(s)(dy)ds

−K

� t

0

�
Vc×E

η(s, y, x)

(
Fv(ν

(K)
v (s) +

1

K
δ(x,z))− Fv(ν

(K)
v (s))

)
νc

(K)(s)(dy, dz) dx ds
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is a càdlàg martingale with predictable quadratic variation

⟨MFv
K ⟩t = K(1− µ)

� t

0

�
Vp

b(x, z)

(
Fv(ν

(K)
v (s) +

1

K
δ(x,z))− Fv(ν

(K)
v (s))

)2

νv(s)(dx, dz) ds

+Kµ

� t

0

�
Vp×X

b(x, z)m(z, e)

(
Fv(ν

(K)
v (s) +

1

K
δ(x,e))− Fv(ν

(K)
v (s))

)2

de ν(K)
v (s)(dx, dz) ds

+K

� t

0

�
Vp

(
d(z) + c ⟨(ν(K)

v )x, 1⟩
)(

Fv(ν
(K)
v (s)− 1

K
δ(x,z))− Fv(ν

(K)
v (s))

)2

ν(K)
v (s)(dx, dz)ds

+

� t

0

K

�
Vp×D

β(s, y, x, ⟨(ν(K)
v )x, 1⟩, z)

(
Fv(ν

(K)
v (s)− 1

K
δ(x,z))− Fv(ν

(K)
v (s))

)2

ν(K)
v (s)(dx, dz) νu

(K)(s)(dy)ds

+K

� t

0

�
Vc×E

η(s, y, x)

(
Fv(ν

(K)
v (s) +

1

K
δ(x,z))− Fv(ν

(K)
v (s))

)2

νc
(K)(s)(dy, dz) dx ds.

Proof : The proof of this proposition is in the same spirit than the proof of Proposition A.6. It is
an application of Dynkin’s theorem and the specific form of the generator (1.5). □

We can use Taylor’s theorem to expand F (⟨ν(K)
v (s)± 1

K δ(x,z), ϕv⟩) around ⟨νv, ϕv⟩ to obtain:(
Fv(ν

(K)
v (s)± 1

K
δ(x,z))− Fv(ν

(K)
v (s))

)
= ± 1

K
ϕv(x, z)F

′
v(⟨ν(K)

v (s), ϕv⟩) +
1

2K2
ϕ2v(x, z)F

′′
v (⟨ν(K)

v (s), ϕv⟩) + o(1/K2),

(4.25)

where o(hq) represents a function G(h) satisfying

lim
h→0

G(h)

hq
= 0

i.e., a function satisfying Peano’s form of the remainder of Taylor’s theorem.

From (4.25), we can see that the martingale for the virus population becomes:

Fv(ν
(K)
v (t))−

� t

0
AFv(ν

(K)
v (s), (νu

(K)(s), νc
(K)(s))) ds+ ϵFv

K (t)

where
AFv(νv, (νu, νc))

= F ′(⟨νv, ϕv⟩)
�
Vp

b(x, z)ϕv(x, z)νv(dx, dz) + µF ′(⟨νv, ϕv⟩)
�
Vp

ϕv(x, z)

[
ϕv(x, z)−

�
X
m(z, e)ϕv(x, e) de

]
νv(dx, dz)

+ F ′(⟨νv, ϕv⟩)
�
Vp

(d(z) + c ⟨νxv , 1⟩)ϕv(x, z)νv(dx, dz)− F ′(⟨νv, ϕv⟩)
�
E

(�
Vc

η(y, x)ϕv(x, z) νc(dy, dz)

)
dx

+ F ′(⟨νv, ϕv⟩)
�
Vp

(�
D
β(y, x, ⟨(ν(K)

v )x, 1⟩, z) νu(dy)
)
ϕv(x, z)νv(dx, dz)

with domain:

D(A) = {Fv : F ∈ C2(R), ϕv is measurable and bounded} ⊂ Cb(MF (Vp)). (4.26)

Notice that under the assumptions of Theorem 3.6, the generator A satisfies (4.16) with p = 3, and
ϵFv
K (t) satisfies (4.17).

Remark 4.7. Notice that D(A) generates the set Cb(MF (Vp)).

We now introduce the set of cylindrical functions on Mvec
F . These are functions that correspond

to triplets:
ϕuc = {ϕv = 0, ϕu = ϕu, ϕc = ϕc}. (4.27)
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i.e., functions of the form:

Fvec((νu, νc)) := Fϕuc
((νv, νu, νc)),

where F ∈ C2(R3) only depends on the last two coordinates, i.e., F (x, y, z) = G(y, z) for some
G ∈ C2(R2), and the admissible triplet ϕuc is given as in (4.27) with ϕu and ϕc given as in Definition
1.1 .

In a similar way we now present the martingale for the vector population. Notice that to apply
Theorem 4.3 and Example 2.3 from Kurtz (1992), we do not need to show that the quadratic
variation of the fast process vanishes asK goes to infinity. We first introduce the following additional
notation:

[Fvec(νu, νc)]
K,λ,c
y,z := Fvec(νu − 1

Kλ δy, νc +
1
Kλ δy,z)− Fvec(νu, νc) (4.28)

and

[Fvec(νu, νc)]
K,λ,u
y,z := Fvec(νu +

1
Kλ δy, νc − 1

Kλ δy,z)− Fvec(νu, νc). (4.29)

We then have the following proposition:

Proposition 4.8. Under Assumption 2, for the joint process (νu
(K), νc

(K)),

MFvec
K (t) = Fvec(νu

(K)(t), νc
(K)(t))−K1−λ

� t

0
∂uFvec(νu

(K)(s), νc
(K)(s))

�
D
Luϕu(y) νu(K)(s)(dy) ds

−K1−2λ

� t

0
∂2uFvec(νu

(K)(s), νc
(K)(s))

�
D
σu(y)2 |∇ϕu(y)|2 νu(K)(s)(dy) ds

−K1−λ
� t

0
∂cFvec(νu

(K)(s), νc
(K)(s))

�
Vc

Lcϕc(y, z) νc(K)(s)(dy, dz) ds

−K1−2λ

� t

0
∂2cFvec(νu

(K)(s), νc
(K)(s))

�
Vc

σc(y)2|∇yϕc(y, z)|2 νc(K)(s)(dy, dz) ds

−K

� t

0

�
Vp×D

β(s, y, x, ⟨νxv , 1⟩, z)
([
Fvec(νu

(K)(s), νc
(K)(s))

]K,λ,c
y,z

)
ν(K)
v (s)(dx, dz) νu

(K)(s)(dy) ds

−K

� t

0

�
Vc×E

η(s, y, x)

([
Fvec(νu

(K)(s), νc
(K)(s))

]K,λ,u
y,z

)
νc

(K)(s)(dy, dz) dx ds

−K

� t

0

�
Vc

γ(z)

([
Fvec(νu

(K)(s), νc
(K)(s))

]K,λ,c
y,z

)
νc

(K)(s)(dy, dz) ds

is a càdlàg martingale.

Using a Taylor expansion analogous to that in (4.25), we reveal the following form for the mar-
tingale of the fast system:

Fvec(νu
(K)(t), νc

(K)(t))−
� t

0
K1−λBFvec(νv

(K)(s), (νu
(K)(s), νc

(K)(s))) ds+ δFvec
K (t)
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where the operator BFvec(νv, (νu, νc)) is given as follows:

BFvec(νv, (νu, νc)) = ∂uFvec(νu, νc)

�
D
Luϕu(y) νu(dy) + ∂cFvec(νu, νc)

�
Vc

Lcϕc(y, z) νc(dy, dz)

− ∂uFvec(νu, νc)

�
Vp×D

β(s, y, x, ⟨νxv , 1⟩, z)ϕu(y)νv(dx, dz) νu(dy)

+ ∂cFvec(νu, νc)

�
Vp×D

β(s, y, x, ⟨νxv , 1⟩, z)ϕc(y, z)νv(dx, dz) νu(dy

+ ∂uFvec(νu, νc)

�

Vc×E

η(s, y, x)ϕu(y)νc(dy, dz) dx− ∂cFvec(νu, νc)

�

Vc×E

η(s, y, x)ϕc(y, z)νc(dy, dz) dx

+ ∂uFvec(νu, νc)

�
Vc

γ(z)ϕu(y)νc(dy, dz)− ∂cFvec(νu, νc)

�
Vc

γ(z)ϕc(y, z)νc(dy, dz) (4.30)

with domain:

D(B) := {Fvec : F ∈ C2(R), ϕu ∈ C2
0(D), ϕc ∈ C2,0

0 (Vc)} ⊂ Cb(Mvec
F )

and

δFvec
K (t) = O(K1−2λ)

Notice that, since λ > 0, indeed we have:

lim
K→∞

Kλ−1E

[
sup
t∈[0,T ]

| δFvec
K (t) |

]
= 0

for any T > 0.

As a consequence we have the following martingale:� t

0

�
MF

BFvec(ξv(s), (ξu, ξc))Γ(ds× d(ξu, ξc)) (4.31)

where {ξv, ξu, ξc} is a limit of a converging sub-sequence, and Γ is given as in Theorem 4.3.

Following Example 2.3 of Kurtz (1992) we need to find a countable subset of the domain D(B)
such that (4.18) is satisfied, and as a consequence (4.31) can be re-written as:� t

0

(�
MF

BFvec(ξv(s), (ξu, ξc))Πξv(s)(d(ξu, ξc))

)
ds = 0 (4.32)

Countable set. In order to find the desired countable set that verifies (4.18) we proceed as follows:

First, notice that by the compactness of the closure of D, denoted by D̄, and X we know that the
space Mvec

F is a locally compact separable and metrizable space (this can be found for example in
Theorem 1.14 of Li (2011)). We denote by Mvec

F the one point compactification of Mvec
F . That is:

Mvec
F = Mvec

F ∪ {µ∞}
where we have extended the weak topology by imposing µn → µ∞ if and only if µn(D̄×D̄×X ) → ∞.

Second, we have that C(Mvec
F ) is Polish, and hence separable, with the uniform norm (see for

example Kechris (1995)). As a consequence Cb,0(Mvec
F ) (bounded continuous functions vanishing

at µ∞) is separable as well (because the one point compactification of Mvec
F is metrizable by for

example Theorem 5.3 in Kechris (1995)).
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Third, we know that D(B) generates the whole Cb(Mvec
F ). As a consequence D̂(B), given by the

restriction of D(B) to the set generating only the functions vanishing at infinity, is separable as well
under the topology of uniform convergence.

Finally, by construction, the countable dense set D̂ (witnessing the separability of D̂(B)) is the
set that verifies (4.18).

Conclusion from the averaging principle. From (4.32) we conclude that�
MF

BFvec(ξv(t), (ξu, ξc))Πξv(t)(d(ξu, ξc)) = 0

for all t almost surely. By Example 2.3 from Kurtz (1992), we obtain that

Fv(ξv(t))−
� t

0
AFv(ξv(s)) ds (4.33)

is a Martingale, where
AFv(ξv)

= F ′(⟨ξv, ϕv⟩)
�
Vp

b(x, z)ϕv(x, z)νv(dx, dz) + µF ′(⟨ξv, ϕv⟩)
�
Vp

b(x, z)

[
ϕv(x, z)−

�
X
m(z, e)ϕv(x, e) de

]
νv(dx, dz)

+ F ′(⟨ξv, ϕv⟩)
�
Vp

(d(z) + c ⟨νxv , 1⟩)ϕv(x, z)νv(dx, dz)

+ F ′(⟨ξv, ϕv⟩)
�
Vp

(�
Mvec

F

�
D
β(s, y, x, ⟨νxv , 1⟩, z)ΠB

ξv(s)(νu(dy)×MF (Vc))

)
ϕv(x, z)νv(dx, dz)

− F ′(⟨ξv, ϕv⟩)
�
E

(�
Mvec

F

�
Vc

η(s, y, x)ϕv(x, z)Π
B
ξv(s)(MF (D)× νc(dy, dz))

)
dx

where ΠBξv(s) is stationary for the generator (4.30).

Remark 4.9. Notice that the presence of the function F ∈ C2(R) only through it first derivative
implies that the process {ξv} is deterministic, so that the martingale in (4.33) is equal to zero. As
a consequence of this observation we can use the special case F (x) = x, which gives an expression
that indeed corresponds to the RHS of (3.14).

To conclude the characterization of the limit points for the case λ < 1, notice that the same
arguments given for the case λ = 1 in Section 4.1.1 can be easily adapted to this case.
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Appendix A. Construction of the process

Here we provide the technical details that guarantee the well-definedness of our process. We first
present the following proposition, which is necessary to control the growth of the process and avoid
explosions:

Proposition A.1. Under Assumption 1 there exists a positive constant C such that for every
ν ∈ Mp := Mp(E ×X )×Mp(D)×Mp(D×X ) the global jump rate, i.e. the rate at which a jump
event takes place, is bounded by:

C⟨1, ν⟩ (1 + ⟨1, ν⟩) .
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Proof : For ν = (νv, νu, νc) ∈ Mp, we denote by R(ν) its total jump rate. This rate is bounded
from above by:

R(ν) ≤
�
E×X

b(x, z)νv(dx, dz) +

�
E×X

[
d(z) + c

�
X
ν(x)v (de)

]
νv(dx, dz) +

�
Vp×D

β̄ νv(dx, dz) νu(dy)

+

�
Vc×E

η̄ νc(dy, dz) ζE(dx) +

�
Vc

γ(z) νc(dy, dz), (A.1)

We conclude using Assumption 1 and setting:

C = max
{
b̄, d̄, γ̄, β̄, η̄ |E| , c

}
.

□

A.1. Path-wise construction of the process. In this section we rigorously define the Markov processes
on path space D([0,∞),MF ), with generator L given by (1.5). Following Bansaye and Méléard
(2015), we provide a specific construction in terms of Poisson point measures.

Let us introduce some additional notation. Let N∗ = N \ {0}. Let λl be the Lebesgue measure
on R+, λc the counting measure on N∗ and ζE the counting measure on E. Moreover, for all t ≥ 0,
we introduce the following notation:

A(t) = [0, t]× N∗ × R+.

Definition A.2. Let (Ω,F ,P) be a sufficiently large probability space. On this probability space
we consider the following independent random elements:

• Qinf a Poisson random measure on R+ × N∗ × N∗ × R+, with intensity λl(ds) ⊗ λc(di) ⊗
λc(dj)⊗ λ(dθ),

• Qdis a Poisson random measure on R+ × E × N∗ × R+, with intensity λl(ds) ⊗ ζE(dx) ⊗
λc(dj)⊗ λ(dθ),

• Qlos, Qd, Qcb Poisson random measures on R+ ×N∗ ×R+, with intensity λl(ds)⊗ λc(di)⊗
λ(dθ),

• Qbm, a Poisson random measure on R+ × N∗ × X × R+, with intensity λl(ds) ⊗ λc(di) ⊗
m(dz)⊗ λ(dθ).

• For α ∈ {u, c}, the set {W i,α; i ≥ 1} denotes a family of independent Brownian motions in
Rd.

Moreover, we enlarge the original probability space (Ω,F ,P) to the filtered probability space
(Ω,F ,Ft,P) , where (Ft)t≥0 is the canonical filtration generated by {Qinf , Qdis, Qd, Qcd, Qlos, Qbm}
and the families {W i,α; i ≥ 1} for α ∈ {u, c}.

Recall the notation introduced in Section 1. We then have the following representations:
• Individuals (in the virus population) born from clonal births up to time t are given by

νcb(t) =

�
A(t)

(
δxi(s−),zi(s−), 0, 0

)
1{i≤Nv(s−)}1{θ≤(1−µ)b(xi(s−),zi(s−))}Qcb(ds di dθ).

• Individuals born with mutations are given by

νbm(t) =

�
A(t)×X

(
δxi(s−),z, 0, 0

)
1{i≤Nv(s−)}1{θ≤µb(xi(s−),zi(s−))m(zi(s−),z)}Qbm(ds di dz dθ).

• Individuals who died before time t ≥ 0 are given by

νd(t) =

�
A(t)

(
δxi(s−),zi(s−), 0, 0

)
1{i≤Nv(s−)}1

{
θ≤d(zi(s−))+cNxi(s

−)(t)
}Qd(ds di dθ).
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• Viruses being charged on a vector are represented by:

νinf (t) =

�
A(t)×N∗

(
−δxi(s−),zi(s−),−δYj(s−), δYj(s−),zi(s−)

)
1{i≤Nv(s−)}1{j≤Nu(s−)}

× 1{
θ≤β(s−,Yj(s−),xi(s−),Nxi(s

−),zi(s
−))

}Qinf (ds di dj dθ).
• Viruses who have been unloaded on a host plant up to time t are given by

νdis(t) =

�

A(t)×E

(
δx,zj(s−), δYj(s−),−δYj(s−),zi(s−)

)
1{j≤Nc(s−)}1{θ≤η(s−,Yj(s−),x,zj(s−))}Qdis(ds dx dj dθ).

• Finally, viruses dying on vectors up to time t:

νlos(t) =

�
A(t)

(
0, δYi(s−),−δYi(s−),zi(s−)

)
1{i≤Nc(s−)}1{θ≤γ(zi(s−))}Qlos(ds di dθ).

Definition A.3. The process ν(t) = (νv(t), νu(t), νc(t); t ≥ 0) is defined as the Ft-adapted solution
to the equation:

⟨ϕ,ν(t)⟩ = ⟨ϕ,ν(0)⟩+ ⟨ϕ,νcb(t)⟩+ ⟨ϕ,νbm(t)⟩ − ⟨ϕ,νd(t)⟩

+ ⟨ϕ,νinf (t)⟩+ ⟨ϕ,νdis(t)⟩+ ⟨ϕ,νlos(t)⟩

+

� t

0
⟨Luϕ,ν(s)⟩ ds+

� t

0
⟨Lcϕ,ν(s)⟩ ds+

� t

0

Nu(s−)∑
i=1

σu(Y u
i (s

−))∇ϕu(Y u
i (s

−)) · dW i,u
s

+

� t

0

Nc(s−)∑
i=1

σc(Y c
i (s

−))∇y ϕc(Y
c
i (s

−), zi(s
−)) · dW i,c

s , (A.2)

for all ϕ ∈ Φ(Mp), and Lαϕ is given as in Remark 1.2.

The following proposition gives conditions to guarantee that a solution to (A.2) follows the
dynamics given by the generator L given in (1.5).

Proposition A.4. Let (νt)t≥0 = (νv(t), νu(t), νc(t); t ≥ 0) be a solution of (A.2) such that for all
T > 0 we have

E

[
sup
t≤T

< 1,νt >
2

]
<∞,

where 1 ∈ Φ(Mp) denotes the admissible triplet with all functions equal to the constant 1. Then,
under Assumption 1, the process (νt)t≥0 is Markov with infinitesimal generator L given by (1.5).

Proof : The fact that it is Markov is standard. We need to verify that the generator is the one we
claimed. We will use Itô’s lemma (see for example Theorem 5.1 in Ikeda and Watanabe (2014))
applied to (A.2) to find an expression for Fϕ(ν(t)). Let us split this into two, one part coming from
jump events, and the other one from diffusion, as follows:

Fϕ(ν(t))− Fϕ(ν(0)) = (Fϕ(ν(t))− Fϕ(ν(0)))Jump + (Fϕ(ν(t))− Fϕ(ν(0)))Diff.

The way to verify that this corresponds to the generator L is to take expectations and differentiate
with respect to time. We refer to Bansaye and Méléard (2015), Proposition 6.3 in particular, for
the same procedure in the absence of diffusion. Let us do this for the diffusive part of the generator.
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Notice that by Itô’s lemma, the diffusive part is given by:

(Fϕ(ν(t))− Fϕ(ν(0)))Diff

=

� t

0
(∂uF )ϕ(ν(s))⟨Luϕ,ν(s)⟩ ds+

� t

0
(∂uF )(ν(s))

Nu(s−)∑
i=1

σu(Y u
i (s

−))∇ϕu(Y u
i (s

−)) · dW i,u
s

+
1

2

� t

0
(∂2uF )(ν(s))

Nu(s−)∑
i=1

σu(Y u
i (s

−))2 | ∇ϕu(Y u
i (s

−)) |2 ds+
� t

0
(∂cF )(ν(s))⟨Lcϕ,ν(s)⟩ ds

+

� t

0
(∂cF )(ν(s))

Nc(s−)∑
i=1

σc(Y c
i (s

−))∇y ϕc(Y
c
i (s

−), zi(s
−)) · dW i,c

s

+
1

2

� t

0
(∂2cF )(ν(s))

Nc(s−)∑
i=1

σc(Y c
i (s

−))2 | ∇y ϕc(Y
c
i (s

−), zi(s
−)) |2 ds.

In order to verify that we get the second part of the generator L, we have to proceed as before.
Notice however, that by taking expectations the Itô integrals vanish. Differentiating what is left at
t = 0 leads to the RHS of (1.4). □

Now we show the well-definedness of the process (νt)t≥0. That is, Theorem 1.6. Moreover we
show that a control of the p-th moment at time zero can be extended to later times. More precisely,
we show the following proposition:

Proposition A.5. Let ν0 = (νv(0), νu(0), νc(0)) be such that for some p ≥ 1, we have:

E [⟨ν0,1⟩p] <∞. (A.3)

Then, under Assumption 1, the process (νt)t≥0 = (νv(t), νu(t), νc(t) : t ≥ 0) satisfies:

E

[
sup
t∈[0,T ]

⟨νt,1⟩p
]
<∞. (A.4)

In particular, if (A.3) holds for p = 1, we also have that the process νt is well defined.

Proof : To show (A.4), because the number of vectors is invariant under the dynamics, it is enough
to show:

E

[
sup
t∈[0,T ]

⟨νv(t), 1⟩p
]
<∞.

In order to do so, we use a stopping time argument. Let us define τn as follows:

τn = inf {t ≥ 0 : ⟨νv(t), 1⟩ ≥ n} . (A.5)
Hence, by (A.2) we have:

sup
s∈[0,t∧τn]

⟨νv(s), 1⟩p ≤ ⟨νv(0), 1⟩p

+

� t∧τn

0

�
N∗×R+

[(⟨νv(s−), 1⟩+ 1)p − ⟨νv(s−), 1⟩p] 1{i≤Nv(s−)}1{θ≤(1−µ)b(xi(s−),zi(s−))}Qcb(ds di dθ)

+

� t∧τn

0

�
N∗×R+×E

[(⟨νv(s−), 1⟩+ 1)p − ⟨νv(s−), 1⟩p] 1{j≤Nc(s−)}1{θ≤η(s−,Yj(s−),x,zj(s−))}Qdis(ds dx dj dθ)

+

� t∧τn

0

�
N∗×X×R+

[(⟨νv(s−), 1⟩+ 1)p − ⟨νv(s−), 1⟩p]1{i≤Nv(s−)}1{θ≤µb(xi(s−),zi(s−))m(zi(s−),z)}Qbm(ds di dz dθ).

where the diffusion terms vanished due to the presences of derivatives of the constant function 1,
and we have dropped the integral terms with a negative contribution (death terms, and loading
terms).
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Taking expectations and using the bounds given by Assumption 1 we obtain:

E

[
sup

s∈[0,t∧τn]
⟨νv(s), 1⟩p

]
≤ E [⟨νv(0), 1⟩p] + CE

[� t∧τn

0
Nv(s) [(⟨νv(s), 1⟩+ 1)p − ⟨νv(s), 1⟩p]

]
ds

+ CE
[� t∧τn

0
[(⟨νv(s), 1⟩+ 1)p − ⟨νv(s), 1⟩p]

]
ds.

≤ C

(
1 + E

[� t∧τn

0
Nv(s) [(⟨νv(s), 1⟩+ 1)p − ⟨νv(s), 1⟩p] ds

])
where the constant C changed its value incorporating the constant given by (A.3).

Using the fact that Nv(s) = ⟨νv(s), 1⟩, and the simple inequality (x + 1)p − xp ≤ Cp(1 + xp−1),
we obtain:

E

[
sup

s∈[0,t∧τn]
⟨, νv(s), 1⟩p

]
≤ Cp

(
1 + E

[� t

0
[⟨νv(s ∧ τn), 1⟩+ ⟨νv(s ∧ τn), 1⟩p] ds

])
≤ Cp

(
1 + E

[� t

0
⟨νv(s ∧ τn), 1⟩p ds

])
where again the constant Cp changed its value incorporating new constants.

By Gronwalls inequality we then have:

E

[
sup

s∈[0,t∧τn]
⟨νv(s), 1⟩p

]
≤ Cpe

Cpt (A.6)

for some constant Cp independent of n.

From (A.6) we can deduce that τn goes to infinity as n→ ∞ a.s. We then apply Fatou’s lemma
to conclude:

E

[
sup
s∈[0,t]

⟨νv(s), 1⟩p
]
≤ lim inf

n→∞
E

[
sup

s∈[0,t∧τn]
⟨νv(s), 1⟩p

]
≤ Cpe

Cpt.

To conclude the well-definedness of the process νt, following Champagnat and Méléard (2007),
one has to construct the process step by step, where the time steps are given by a sequence of jump
instants Tn exponentially distributed with law:

R(νn−1)e
−R(νn−1)t

and where the total jump rate R(ν) is given by (A.1).

It is then enough to check that the sequence Tn goes to infinity almost surely. This follows from

E

[
sup
t∈[0,T ]

⟨νt, 1⟩

]
<∞

which is a consequence of (A.4) when p = 1. □
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A.2. Relevant martingales. Now we will introduce a few martingales that are relevant when com-
puting scaling limits. Let us start from a simple application of Dynkin’s theorem:

Proposition A.6. Let ν0 = (νv(0), νu(0), νc(0)) be such that for some p ≥ 2 we have:

E [⟨νv(0), 1⟩p] <∞.

Let also F ∈ C2(R3) and ϕ ∈ Φ(Mp), be such that there exists C > 0, possibly dependent on F and
ϕ, such that:

|Fϕ(ν)|+ |LFϕ(ν)| ≤ C (1 + ⟨ν,1⟩p) (A.7)

where Fϕ is given as in Definition 1.3.

Then, under Assumption 1, we have that the process

Mt(Fϕ) = Fϕ(νt)− Fϕ(ν0)−
� t

0
LFϕ(νs) ds (A.8)

is a càdlàg martingale.

Proof : From Proposition A.4 and Dynkin’s theorem we know that Mt(Fϕ) is a local martingale.
Hence, it is enough to show that the R.H.S. of (A.8) is integrable. This is a consequence of
Assumption (A.7) and Proposition A.5. □

Remark A.7. Simple but tedious computations show that for, 1 ≤ q ≤ p − 1, ϕv ∈ C2
b (Vp), ϕu ∈

C2
b (D) ∩D(Lu) and ϕc ∈ C2

b (Vc) ∩D(Lc), the functions

F qv (νv) := (⟨νv, ϕv⟩)q , F qu(νu) := (⟨νu, ϕu⟩)q , and F qc (νc) := (⟨νc, ϕc⟩)q

satisfy (A.7).

The following result is a consequence of Proposition A.6 and Remark A.7

Proposition A.8. Let ν0 = (νv(0), νu(0), νc(0)) be such that (A.3) holds for p = 3. For every
ϕv ∈ C2

b (Vp), ϕu ∈ D(Lu) and ϕc ∈ D(Lc), under Assumption 1, we have the following càdlàg
martingales:

(1) For the virus population:

Mϕv
t = ⟨νv(t), ϕv⟩ − ⟨νv(0), ϕv⟩ −

� t

0

�
Vp

b(x, z)ϕv(x, z)νv(s)(dx, dz) ds

+ µ

� t

0

�
Vp

b(x, z)

[
ϕv(x, z)−

�
X
m(z, z′)ϕv(x, z

′) dz′
]
νv(s)(dx, dz) ds

+

� t

0

[�
Vp

(d(z) + c⟨νvx, 1⟩)ϕv(x, z)νv(s)(dx, dz) +

�
Vp×D

β(s, y, x, ⟨νvx, 1⟩, z)ϕv(x, z)νv(s)(dx, dz) νu(s)(dy)

]
ds

−
� t

0

�
Vc×E

η(s, y, x, z)ϕv(x, z) νc(s)(dy, dz) dx ds (A.9)

is a càdlàg martingale with predictable quadratic variation

⟨Mϕv ⟩t = (1− µ)

� t

0

�
Vp

b(x, z)ϕv(x, z)
2 νv(s)(dx, dz) ds+ µ

� t

0

�
Vp×X

b(x, z)m(z, z′)ϕv(x, z
′)2 dz′νv(s)(dx, dz) ds

+

� t

0

�
Vp

(d(z) + c⟨νvx, 1⟩) ϕv(x, z)
2 νv(s)(dx, dz) +

� t

0

�
Vc×E

η(s, y, x, z)ϕv(x, z)
2 νc(s)(dy, dz) dx ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨νvx, 1⟩, z)ϕv(x, z)
2 νv(s)(dx, dz) νu(s)(dy)ds. (A.10)
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(2) For the free-vector population:

Mϕu
t = ⟨νu(t), ϕu⟩ − ⟨νu(0), ϕu⟩ −

� t

0

�
D
Luϕu(y) νu(s)(dy) ds

−
� t

0

�
Vc×E

η(s, y, x, z)ϕu(y)νc(s)(dy, dz) dx ds

+

� t

0

[�
Vp×D

β(s, y, x, ⟨νvx, 1⟩, z)ϕu(y)νv(s)(dx, dz) νu(s)(dy)−
�
Vc

γ(z)ϕu(y) νc(s)(dy, dz)

]
ds

(A.11)

is a càdlàg martingale with predictable quadratic variation

⟨Mϕu⟩t =
� t

0

�
D
σu(y)2 |∇ϕu(y)|2 νu(s)(dy) ds+

� t

0

�
Vc×E

η(s, y, x, z)ϕu(y)
2νc(s)(dy, dz) dx ds

+

� t

0

�
Vp×D

β(s, y, x, ⟨νvx, 1⟩, z)ϕu(y)2 νv(s)(dx, dz) νu(s)(dy)ds

+

� t

0

�
Vc

γ(z)ϕu(y)
2 νc(s)(dy, dz) ds.

(3) For the charged-vector population:

Mϕc
t = ⟨νc(t), ϕc⟩ − ⟨νc(0), ϕc⟩ −

� t

0

�
Vc

Lcϕc(y, z) νc(s)(dy, dz) ds

+

� t

0

�
Vc×E

η(s, y, x, z)ϕc(y, z)νc(s)(dw, du) dx ds

−
� t

0

[�
Vp×D
β(s, y, x, ⟨νvx, 1⟩, z)ϕc(y, z)νv(s)(dx, dz) νu(s)(dy)−

�
Vc

γ(y)ϕc(y, z) νc(s)(dy, dz)

]
ds

(A.12)

is a càdlàg martingale with quadratic variation

⟨Mϕc⟩t =
� t

0

�
Vc

σc(y)2|∇yϕc(y, z)|2 νc(s)(dy, dz) ds+
� t

0

�
Vc×E
η(s, y, x, z)ϕc(y, z)

2νc(s)(dy, dz) dx ds

+

� t

0

[�
Vp×D
β(s, y, x, ⟨νvx, 1⟩, z)ϕc(y, z)2νv(s)(dx, dz) νu(s)(dy) +

�
Vc

γ(y)ϕc(y, z)
2 νc(s)(dy, dz)

]
ds.

Proof : Assume p ≥ 3. By Theorem A.6 and Remark A.7 with q = 1, we have that (A.9), (A.11),
and (A.12) are càdlàg martingales. For the predictable quadratic variation we just use Remark
A.7 with q = 2, and Itô formula together with the Doob-Meyer decomposition. See Bansaye and
Méléard (2015) for examples on a similar context. □

Appendix B. Existence and uniqueness of the averaged stationary solutions

This section deals with the issue of existence and uniqueness for the evolution system (3.14) -
(3.15). and subsequently establishes the uniqueness of the measure defined by equations (3.17)-
(3.18).
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B.1. Construction of the triplet solution (gv, gu, gc). Recall that in this setting η is assumed to be
independent of the virus phenotype, so the strong formulation of (3.14)-(3.15) then reads

∂tgv(t, x, z) = G (t, x, z, gv, gu) gv(t, x, z) +M[ gv ](t, x, z) +

�
D
η(t, y, x) gc(t, y, z) dy, for t > 0, x ∈ E, z ∈ X

∆gu(t, y)−
[�

X
A(t, y, z, gv) dz

]
gu(y) +B(t, y)

�
X
gc(y, z) dz = 0, for t > 0, y ∈ D

∆ygc(t, y, z) +A(t, y, z, gv) gu(y)−B(t, y) gc(y, z) = 0, for t > 0, y ∈ D, z ∈ X
∇gu(t, y) · n⃗(y) = 0 for t > 0, y ∈ ∂D

∇ygc(t, y, z) · n⃗(y) = 0 for t > 0, (y, z) ∈ ∂D ×X
gv(0, x, z) = g0(x, z) for (x, z) ∈ E ×X�

D

(
gu(t, y) +

�
X
gc(t, y, z) dz

)
dy = V0 for t > 0,

where the operator M is defined by :

∀φ ∈ C (R+, L2(E ×X )), M[φ ](t, x, z) := µ

�
X
b(x, z′)m(z′, z)φ(t, x, z′) dz′,

and the functions G, A and B stand for

G(t, x, z, gv, gu) := (1− µ)b(x, z)−
[
d(z) + κ

�
X
gv(t, x, z

′)dz′
]
−
[�

D
β

(
y, x,

�
X
gv(t, x, z

′)dz′, z

)
gu(t, y) dy

]
A(t, y, z, gv) :=

[�
E

β

(
y, x,

�
X
gv, z

)
gv(t, x, z)ζE(dx),

]
,

B(t, y) =

(�
E

η(t, y, x) ζE(dx)

)
.

Note that the above system is degenerate in multiple ways.
First let us make some straightforward observations that will simplify the proof of existence and

uniqueness of a solution of the above system. Let us first observe that the following function

g(t, y) := gu(t, y) +

�
X
gc(t, y, z) dz

is a L1(D) harmonic function with homogeneous Neumann boundary condition, i.e. g satisfies{
∆g(t, y) = 0, y ∈ D,
∇g(t, y) · n⃗(y) = 0, y ∈ ∂D

By the strong maximum principle, we deduce that for all t g is a constant, i.e. for all t it
holds g(t, ·) ≡ C0 = V0

|D| . Going back to the equation satisfied by gu, gc, and using now that�
X
gc(t, y, z) dz = C0 − gu(t, y), we get the following set of equations to solve,

∂tgv(t, x, z) = G (t, x, z, gv, gu) gv(t, x, z) +M[ gv ](t, x, z) +

(�
D
η(t, y, x) gc(t, y, z) dy

)
, for t > 0, x ∈ E, z ∈ X

∆gu(t, y)−
[�

X
A(t, y, z, gv) dz +B(t, y)

]
gu(t, y) = −C0B(t, y) for t > 0, y ∈ D

∆ygc(t, y, z)−B(t, y)gc(t, y, z) = −A(t, y, z, gv) gu(t, y) for t > 0, (y, z) ∈ D × X
gv(0, x, z) = g0(x, z) for (x, z) ∈ E ×X
∇gu(t, y) · n⃗(y) = 0, for t > 0, y ∈ ∂D.
∇ygc(t, y, z) · n⃗(y) = 0, for t > 0, y ∈ ∂D ×X

From the above system, we can see that the elliptic PDE satisfied by gu is coupled to the system
only through the coefficient A(t, y, z, gv) and as soon as this coefficient is known, since for all
t ≥ 0, B(t, ·) ∈ L∞(D) is a given non degenerate non negative function, from standard elliptic
theory (see for example Brezis (2011); Wu et al. (2006)), there exists a unique smooth positive
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solution to this elliptic problem. Similarly, the function gc can be deduced from the knowledge of
A and gu. The main difficulty in the construction of a solution (gv, gu, gc) of the above system is
then the construction of a positive function gv.

To do so, let us first introduce the following auxiliary elliptic equation: For a given φ ∈ C (R+ ×
D̄, L2(X̄ )), φ ≥ 0, let us consider

∆u(t, y)−
[�

X
φ(t, y, z) dz +B(t, y)

]
u(t, y) = −C0B(t, y) for t > 0, y ∈ D (B.1)

∇u(t, y) · n⃗(y) = 0, for t > 0, y ∈ ∂D. (B.2)

Next, let us introduce the following degenerate elliptic problem. For a given pair (φ,ψ) such that
φ ∈ C (R+ × D̄, L2(X̄ )), ψ ∈ C (R+,C 0,α(D) ∩ L∞(D)) and φ,ψ ≥ 0, let us consider

∆yv(t, y, z)−B(t, y)v(t, y, z) = −φ(t, y, z)ψ(t, y) for t > 0, (y, z) ∈ D × X (B.3)
∇yv(t, y, z) · n⃗(y) = 0, for t > 0, y ∈ ∂D ×X (B.4)

Note that by making the coupling ψ = u, we recover the weakly coupled system satisfied by
gu, gc. From standard elliptic theory (see for example Brezis (2011); Wu et al. (2006)), since for
all t ≥ 0, B(t, ·) ∈ L∞(D) is a given non degenerate non negative function, we can check that
there exists a unique smooth positive solution u to the elliptic problem (B.1)-(B.2). Indeed, since

for all t ≥ 0 fixed, φ(t, ·, ·) ∈ C (D̄, L2(X )) we have
�
X
φ(t, ·, z) dz ∈ L∞(D) ≥ 0 and then for

all fixed t, say t = t0, there exists a unique positive solution to (B.1) -(B.2), u(t0, ·), such that
u(t0, ·) ∈ L∞(D̄)∩C 0,α(D) for all α ∈ (0, 1). In addition, by a straightforward use of the maximum
principle, we see that for all t ≥ 0, ∥u(t, ·)∥∞ ≤ C0.
The regularity of u(t0, ·) with respect to the variable t0 can be deduced from the regularity of
the functions φ and B in these variable. This can be seen by observing that the function h(·) =
u(t0, ·)− u(t1, ·) satisfies

∆h(y)−
�
X
φ(t1, y, z) dzh(y) = −C0(B(t0, y)−B(t1, y))

−
�
X
[φ(t0, y, z)− φ(t1, y, z)] dzu(t0, y) for y ∈ D,

which by using elliptic regularity and u ≤ C0 then implies that for all p > 1

∥h∥W 1,p(D) ≤ Cp(D)C0

[
∥B(t0, ·)−B(t1, ·)∥p +

∥∥∥∥(�
X
(φ(t0, ·, z)− φ(t1, ·, z)) dz

)∥∥∥∥
p

]
.

For p > d, using Sobolev embedding, Brezis (2011), the latter inequality yields

∥h∥L∞(D) ≤ C0C(D, p)

[
∥B(t0, ·)−B(t1, ·)∥p +

∥∥∥∥(�
X
(φ(t0, ·, z)− φ(t1, ·, z)) dz

)∥∥∥∥
p

]
.

So u is continuous in t uniformly with respect to y as soon as the functions B and φ are continuous
in time uniformly with respect to y.

Similarly, we can check that a positive solution v ∈ C (R+ × D̄, L1(X )) ∩ C (R+, L2(D × X )) to
(B.3)-(B.4) exists. Indeed, for any t fixed, says t = t0, since B(t0, y) ≱≡ 0, φ(t, ·, ·) ∈ C (D, L2(X ))
and ψ ∈ L∞ then for almost every z0 ∈ X, from standard theory (Lax-Milgram theorem and linear
elliptic regularity Brezis (2011); Wu et al. (2006)) there exists a unique positive smooth solution
v(t0, ·, z0) to (B.3)-(B.4), v(t0, ·, z0) ∈ L∞(D̄) ∩ C 0,α(D) for all α ∈ (0, 1). In addition, since B is
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such that λp(∆ +B(t, ·)) > 0, we get the following L2(D) estimate

∥v(t0, ·, z0)∥2 ≤
∥ψ(t0, ·)∥∞
λp(t0)

∥φ(t0, ·, z0)∥2. (B.5)

Indeed, by multiplying by v the equation satisfied by v and integrating over D, we get after inte-
grating by parts,�

D
|∇v(t0, y, z0)|2 +

�
D
B(t0, y)v(t0, y, z0)

2 dy =

�
D
φ(t0, y, z0)ψ(t0, y)v(t0, y, z0) dy.

By using the H1 variationnal characterisation of λp and the Cauchy-Schwartz inequality we get,

λp(t0)

�
D
v(t0, y, z0)

2 dy ≤ ∥v(t0, ·, z0)∥2∥φ(t0, ·, z0)ψ(t0, y)∥2,

which prove the above estimate.
Now, as for u, the regularity of v(·, y, ·) with respect to the variables t0, z0 can be obtained through

the regularity of the coefficients of the PDE, that is the regularity in t, z of the function φ and ψ.

Namely, observe that from (B.5), by setting C2(t0) :=
(
∥ψ(t0,·)∥∞
λp(t0)

)2
we get

∥v(t0, ·, z0)∥22 ≤ C2(t0)∥φ(t0, ·, z0)∥22
and thus by integrating with respect to z and using Fubini’s theorem, we get for all t > 0�

D

(�
X
v2(t, y, z) dz

)
dy ≤ C2(t)

�
D×X

φ2(t, y, z) dydz < +∞.

To obtain v ∈ C (R+, L2(D × X )), we estimate h(·, ·) = v(t0, ·, ·) − v(t1, ·, ·). A straightforward
computation yields

∆h(y)−B(t0, y)h(y) = −v(t1, y, z)(B(t0, y)−B(t1, y))− φ(t0, y, z)ψ(t0, y) + φ(t1, y, z)ψ(t1, y)

for y ∈ D, z ∈ X , and by a standard argument we get

∥h∥22 ≤ 1

λ2p(t0)
[∥v(t1, ·, z)(B(t0, ·)−B(t1, ·))∥2 + ∥φ(t0, ·, z)ψ(t0, ·)− φ(t1, ·, z)ψ(t1, ·) ∥2]

2

which after using Young’s inequality and integrating over X gives

∥h∥22 ≤ 2

λ2
p(t0)

[�
X×D

v2(t1, y, z)(B(t0, y)−B(t1, y))
2 dy dz +

�
X×D

(φ(t0, y, z)ψ(t0, y)− φ(t1, y, z)ψ(t1, y) )
2 dy dz

]
The first integral of the right hand side can be estimated as follows�
X×D

v2(t1, y, z)(B(t0, y)−B(t1, y))
2 dy dz ≤ ∥(B(t0, ·)−B(t1, ·))2∥∞

�
X×D

v2(t1, y, z) dy dz

≤ C2(t1)∥(B(t0, ·)−B(t1, ·))2∥∞
�
X×D

φ2(t1, y, z) dy dz

≤ C̄2Cφ∥(B(t0, ·)−B(t1, ·))2∥∞,

where C̄2 := sup
t∈[t0,t1]

C2(t) and Cφ := sup
t∈[t0,t1]

�
X×D

φ2(t, y, z) dy dz. As for the second integral, it is

estimated as follows. Using Young’s inequality we have
�
X×D

(φ(t0, y, z)ψ(t0, y)− φ(t1, y, z)ψ(t1, y) )
2 dy dz ≤ 2

[�
X×D

(φ(t0, y, z)− φ(t1, y, z))
2ψ2(t0, y)

+

�
X×D

φ2(t1, y, z)(ψ(t0, y)− ψ(t1, y) )
2 dy dz

]
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Then by estimating both integrals, it comes�
X×D

(φ(t0, y, z)u(t0, y)− φ(t1, y, z)u(t1, y) )
2 dy dz

≤ 2
[
∥ψ(t0, ·)∥2∞∥φ(t0, ·, ·)− φ(t1, ·, ·)∥2 + Cφ∥(ψ(t0, ·)− ψ(t1, ·) )2∥∞

]
.

Hence, we have

∥h∥22 ≤
2

λ2p(t0)

[
C̄2Cφ∥(B(t0, ·)−B(t1, ·))2∥∞ + 2∥ψ(t0, ·)∥2∞∥φ(t0, ·, ·)− φ(t1, ·, ·)∥2

]
+

2

λ2p(t0)

[
2Cφ∥(ψ(t0, ·)− ψ(t1, ·) )2∥∞

]
,

showing that v ∈ C (R+, L2(D ×X )).
Let us denote K+,K+

1 and K+
2 respectively the positive cone of C (R+×D, L2(X )), C (R+,C 0,α(D)

and C (R+, L2(D × X )) then from the above existence results, we can see that the following maps
T1 and T2 are well defined:

T1 : K+ → C (R+,C 0,α(D) ∩ L∞(D̄)) ∩ K+
1

φ 7→ T1[φ] := u

T2 : K+ ×K+
1 → C (R+, L2(D ×X )) ∩ K+

2
(φ,ψ) 7→ T2[φ,ψ] := v

where u and v are respectively the unique solution given by (B.2)-(B.2) and the unique solution to
(B.3)–(B.4). Observe that by definition, T1 is bounded, in the sense that ∥T1[φ]∥∞ ≤ C0 for all φ.
In addition, arguing as above we can see that for a fixed ψ we get a Lipschitz estimate on the map
T2. More precisely, let φ1, φ2 be two functions of K+, then�

D

�
X
(T2(φ1, ψ)− T2(φ2, ψ))

2 dydz ≤ 2∥ψ(t0, ·)∥2∞
�
X

�
D
(φ1(t, ·, ·)− φ2(t, ·, ·))2 dydz.

Let us also define Tβ and Tη the following maps:

Tβ : C (R+ × E, L2(X )) → C (R+ ×D, L2(X ))

Ψ 7→ Tβ[ψ] :=
�
E
β

(
y, x,

�
X
Ψ, z

)
Ψ(t, x, z)ζE(dx)

Tη : C (R+ ×D, L2(X )) → C (R+ × E, L2(X ))

Ψ 7→ Tη[ψ] :=
�
E
η (t, y, x)Ψ(t, y, z) dy

Equipped with these maps, for w ∈ C (R+,C (E,L2(X )), w ≥ 0 let us defined the following positive
operator

Ξ[w] := Tη
[
T2
[
Tβ[w], T1

[
Tβ[w]

]]]
.

Then, the construction of the solution of gv can be redefined as finding w ∈ C 1(R+,C (E,L2(X ))),
w ≥ 0 such that

∂tw(t, x, z) = G (t, x, z, w, T1[Tβ [w]])w(t, x, z) +M[w ](t, x, z) + Ξ[w](t, x, z) , for t > 0, x ∈ E, z ∈ X
w(0, x, z) = g0(x, z) for (x, z) ∈ E ×X ,

The existence of a positive solution of such a problem is rather classical as it reduces to solving
a nonlinear ODE problem in an abstract space using Cauchy-Lipschitz like approach coupled with
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the search of a fixed point of a compact map. We only sketch the argument. We first freeze
T1[Tβ[w]] =: ψ and solve the following problem:

∂tw(t, x, z) = G (t, x, z, w, ψ)w(t, x, z) +M[w ](t, x, z)

+ Tη
[
T2
[
Tβ [w], ψ

]]]
(t, x, z), for t > 0, (x, z) ∈ E ×X ,

w(0, x, z) = g0(x, z), for (x, z) ∈ E ×X .

Thanks to properties of Tη, Tβ,G and the Lipschitz continuous property of T2[w,ψ], we can construct
a unique positive solution to the above system wψ. The existence of gv is then obtained by looking
for the fixed point of the bounded compact map T1[Tβ[wψ]] = ψ. The uniqueness of the triplet
(gv, gu, gc) is obtained by a standard argument using Grownall’s inequality.

B.2. Consequence on the measure Π. Let us now consider a pair of generic (measure-valued) solu-
tions to the system (3.17)-(3.18). By Lebesgue’s decomposition we can write it as

ξu(t)(dy) = gu(t, y) dy + ξu
(sd)(t)(dy) + ξu

(sc)(t)(dy), (B.6)

and
ξc(t)(dy, dz) = gc(t, y, z) dy dz + ξc

(sd)(t)(dy, dz) + ξc
(sc)(t)(dy, dz), (B.7)

where gu and gc are the unique strong solutions that we just found for (3.17)-(3.18), and the
superscripts sd and sc indicate that the measures are the singular discrete and singular continuous
parts to their respective Haar measure. However, from the assumptions of Theorem 3.6 we know
that at time zero the discrete and continuous singular parts are zero. In particular this implies that
for these measures the total population of vectors V0 equals zero and as a consequence the measures
remain zero for later times.

Appendix C. Summary of most commonly used mathematical notation

X ,D: A compact subset of Rn, resp. a bounded C3 domain in Rd
E: A finite subset of D.
Vp,Vu,Vc: The set E ×X , reps. D, resp. D ×X
MF (X),Mp(X): Set of finite measures on a space X, respectively Set of finite point measures

on a space X
MF : The set of measures given by MF (Vp)×MF (Vu)×MF (Vc)
Mp: The set of measures given by Mp(Vp)×Mp(Vu)×Mp(Vc)
lm(X): The space of measures µ ∈ R+ ×X such that µ([0, t]×X) = t for all t ≥ 0.
Lp, L∞: functional space of 1 ≤ p < +∞ integrable function, the space bounded function.
Ck,C k: Function space of k continuously differentiable functions.
C k,α: Hölder Function space of order α ∈ (0, 1) of k continuously differentiable functions .
C k(A,B): functional space of maps from A into B that are Ck, B = Lp, L∞,C k or C k,α .
ζE: Counting measure on the discrete set E.
Lα: Infinitesimal generator of Ito diffusion corresponding to α ∈ {u, c}. See expression (1.2).
ϕ: An admissible triplet {ϕv, ϕu, ϕc} in the sense of Definition 1.1 .
[F (νu, νc)]

K,λ,α
y,z : Discrete gradient wrt the α variable. See display (4.28) .

D([0, T ], X): Skorokhod space of X-valued trajectories.
C([0, T ], X): Space of X-valued continuous trajectories.
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