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Abstract. We study a Brownian motion with drift in a wedge of angle β which is obliquely reflected
on each edge along angles ε and δ. We assume that the classical parameter α = δ+ε−π

β is greater
than 1 and we focus on transient cases where the process can either be absorbed at the vertex or
escape to infinity. We show that α ∈ N is a necessary and sufficient condition for the absorption
probability, seen as a function of the starting point, to be written as a finite sum of terms of
exponential product form. In such cases, we give expressions for the absorption probability and
its Laplace transform. When α ∈ Z+ π

βZ we find an explicit differentially-algebraic expression for
the Laplace transform. Our results rely on Tutte’s invariant method and a recursive compensation
approach.

1. Introduction

1.1. Context. In dimension one, it is known that a standard Brownian motion with positive drift
µ > 0 started at u > 0 has probability e−2µu to reach 0. A simple way of achieving this result is
to use Girsanov’s theorem and the reflection principle. In dimension 2, we consider an obliquely
reflected Brownian motion in a cone with drift belonging to the interior of the cone and directions of
reflection strongly oriented towards the apex of the cone. A phenomenon of competition between the
reflections and the drift appears and the process is either absorbed at the vertex or escapes to infinity.
Lakner et al. (2023) studied this absorption phenomenon and showed the existence and uniqueness
of a solution to the absorbed process. Ernst et al. (2021) were able to obtain a general formula
for the probability of absorption at the vertex using Carleman’s boundary value problems theory.
In particular, they characterised the cases where this probability has an exponential product form,
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i.e. when the reflection vectors are opposite. Franceschi and Raschel (2022) then generalised this
result to higher dimensions by showing that the coplanarity of the reflection vectors was a necessary
and sufficient condition for the absorption probability to have an exponential product form. In a
sense, this condition can be seen as dual to the classical skew symmetry condition first studied in
Harrison (1978); Harrison and Williams (1987); Williams (1987) which characterises cases where
the stationary distribution is exponential. In dimension 2, when the process is recurrent, Dieker
and Moriarty (2009), preceded by Foschini (1982) in the symmetric case, determined a necessary
and sufficient condition for the stationary distribution to be a sum of exponential terms of product
form. It is therefore very natural to look for an analogous result to the one of Dieker and Moriarty.
This article aims to find, when the process is transient, a necessary and sufficient condition for the
absorption probability to be a sum-of-exponentials function of the starting point and to compute this
probability. We also identify other remarkable cases where the Laplace transform of the absorption
probability is differentially-algebraic (D-algebraic), i.e. solution of a polynomial equation in the
function, its derivatives, and the independent variables, with coefficients in R.

1.2. Key parameter and main results. To present our results in more detail, we need to introduce
a few parameters usually used to define a semimartingale reflecting Brownian motion (SRBM). We
define the cone C := {(r cos(t), r sin(t)) : r ⩾ 0 and 0 ⩽ t ⩽ β} of angle β ∈ (0, π) and consider
Z̃t an obliquely reflected standard Brownian motion with drift µ̃ ∈ R2 of angle θ ∈ (−π, π] and
reflection vectors of angles δ ∈ (0, π) and ε ∈ (0, π), see Figure 1.1 to visualize these angles. We
define

α :=
δ + ε− π

β

which is a famous key parameter in the SRBM literature. As a general rule, such a process is most
of the time studied in the literature in the case where α < 1, i.e. in the case where the process is a
semimartingale markov process, see the seminal work of Varadhan and Williams (1985); Williams
(1985). We will not give here a precise mathematical definition of the process, which can be found
in many articles, see the survey of Williams (1995). We will simply point out that it behaves like
a standard Brownian motion with drift inside the cone, it is reflected in a given direction when
it touches an edge (being pushed by the local time on the boundary) and it spends zero time at
the vertex of the cone. The famous skew symmetric condition, where the stationary distribution
has an exponential product form, corresponds to α = 0, and Dieker and Moriarty’s condition for a
sum-of-exponential stationary density corresponds to α ∈ −N∪{0}. The dual skew symmetric case
Ernst et al. (2021); Franceschi and Raschel (2022), where the escape probability has an exponential
product form, correspond to α = 1. For our purposes, in this article, we will assume that

α ⩾ 1

so that the process can be trapped at the vertex and we will consider transient cases where the drift
µ̃ belongs to the interior of the cone C, that is when θ ∈ (0, β). We define the first hitting time of
the vertex

T := inf{t > 0 : Z̃t = 0}.
The article of Lakner et al. (2023) makes a detailed study of the absorbed process, its existence, and
its uniqueness in this case. As explained in the articles Ernst et al. (2021); Franceschi and Raschel
(2022); Lakner et al. (2023), by following the results from Taylor and Williams (1993), when α ⩾ 1
the process Zt is well defined until it hits the vertex at time T , which amounts to considering the
process (Z̃t)0⩽t⩽T .

The main results of the article are as follows. We prove that the absorption probability at the
vertex P(T < ∞) is a sum-of-exponential function of the starting point if and only if

α ∈ N := {1, 2, 3, . . . } (1.1)
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Figure 1.1. Configuration of the angles used to describe the model.

plus the condition
∀j ∈ {1, . . . , 2α− 2}, θ − 2δ + jβ ̸≡ 0 mod(π) (1.2)

which excludes cases where there are multiple poles in the Laplace transform. In fact, our results
are much more accurate than that. Assuming that (1.1) and (1.2) hold, if (u, v) is the starting point
of the process (mapped onto the quadrant, see (2.2)) the absorption probability is of the form

P(u,v)(T < ∞) =
2α−1∑
k=1

ck exp(aku+ bkv), (1.3)

where the coefficients ak, bk and ck are computed explicitly in Theorem 4.1. In the cases where
θ − 2δ + jβ ≡ 0 mod(π) for some j ∈ {1, . . . , 2α − 2}, the absorption probability has the form
P(u,v)(T < ∞) =

∑2α−1
k=1 Ak(u, v) exp(aku+ bkv), where the Ak are affine functions of the variables

u and v, see last paragraph of the article.
In Theorem 3.8 we state another more general and stronger result which explicitly determines

the Laplace transform of the absorption probability in terms of a Gauss hypergeometric function
when

α ∈ Z+
π

β
Z.

In this case, we also find the differential nature of the Laplace transform. In other words we
find sufficient conditions on α for the Laplace transform to be rational, algebraic (i.e. satisfying
a polynomial equation with coefficients in the field of rational functions over R), D-finite (i.e.
satisfying a linear differential equation with coefficients in the field of rational functions over R) or
D-algebraic (i.e. satisfying a polynomial differential equation with coefficients in the field of rational
functions over R). The differential nature of the Laplace transform reflects in various ways on the
absorption probability itself. For example, if it is rational it implies that the absorption probability
is a linear combination of exponentials multiplied by polynomials. If it is D-algebraic it will give a
recurrence relation for the moments. We refer to the introduction of Bousquet-Mélou et al. (2021)
which explains in more detail the interest of such a classification in this hierarchy of functions:

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic. (1.4)

The following table gives sufficient conditions for the Laplace transform to belong to this hierarchy.

rational algebraic D-finite D-algebraic
α ∈ N π/β ∈ Q and α ∈ Z+ π

βZ α ∈ N+ π
βZ α ∈ Z+ π

βZ

1.3. Plan and strategy of proof. Section 2 presents the preliminaries needed to prove our results. For
technical reasons, we first transfer the problem initially defined in a wedge into a quadrant thanks
to a simple linear transform. The starting point of the proof is a kernel functional equation satisfied
by the Laplace transform of the absorption probability as a function of the starting point. This
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equation is derived from a partial differential equation solved by the probability of absorption. This
functional equation leads to a boundary value problem (BVP) already studied in Ernst et al. (2021).
In Section 3, we apply successfully Tutte’s invariant method (introduced in Tutte (1995)) to this
BVP finding some decoupling functions, in a similar way to what was done in the recurrent case for
the stationary distribution in Bousquet-Mélou et al. (2021); Franceschi and Raschel (2017). We then
compute explicitly the Laplace transform, see Theorems 3.6 and 3.8. Inverting the bivariate Laplace
Transform is no easy task because of a complicated factorization of a two variable polynomial by
the kernel. In Section 4, we then offer a geometrical way to construct the solutions inspired by the
compensation approach developed with success in the discrete case for some queueing problems and
random walks by Adan et al. (1993).

1.4. Related literature and perspectives. This paper develops an original way of showing these results,
which is an alternative, although closely related, to the Dieker and Moriarty (2009) method in the
recurrent case. Another approach to show our results might have been to use an equivalence based
on time reversal and developed very recently by Harrison (2022) which shows that the hitting time
of the vertex is inherently connected to the stationary distribution of a certain dual process, and
then apply the results of Dieker and Moriarty (2009) to a certain trapezoid described in Harrison
(2022).

It is also important to mention the strong links between the results of this article and the Weil
chambers and reflection groups. For example, Biane et al. (2005) express the persistence probability,
that is the probability that a Brownian motion with drift stays forever in a Weyl chamber, as a
sum-of-exponential. We may also mention the article by Defosseux (2016) which expresses similar
results for a space-time Brownian motion.

It is also possible to interpret our problem as the study of the probability of triple collisions
for transient competing particle systems with asymmetric collisions. Indeed, a Brownian motion
reflected in a quadrant is nothing more than the gap process of such a system made of three particles,
and reaching the vertex of the quadrant is equivalent to a triple collision. A very interesting
literature is devoted to the study of the absence or presence of such collisions, and as we cannot
claim exhaustiveness in these few lines we will limit ourselves to mentioning the articles by Ichiba
et al. (2013), Bruggeman and Sarantsev (2018), and Sarantsev (2015). In stochastic finance, Banner
et al. (2005) shown strong connections between rank-based models (such as Atlas models) and the
reflected Brownian motion.

In queueing theory, the reflected Brownian motion can be thought as the (scaled) limit of the
queueing length process. Such convergence results are refered to as heavy traffic limit theorems,
see the founding article Harrison (1978) and the classic book by Whitt (2002). This is still a very
active research fields with many applications, see for example Ata and Kumar (2005); Boxma et al.
(2021).

To conclude this introduction, we must emphasise that this article is an important step towards
a more ambitious outcome. Indeed, we believe that the present results can be extended. More
precisely, we believe, as was done in the recurrent case for the stationary distribution in the article
Bousquet-Mélou et al. (2021), that it is possible to characterise the algebraic and differential nature
of the Laplace transforms of the absorption probability. In a sense, this would exhaustively rank the
complexity of the absorption probability in the hierarchy (1.4) according to the value of α. Such a
result, which would provide sufficient but also necessary conditions, would require difference Galois
theory which is beyond the scope of this article.

2. Preliminaries

2.1. From the cone to the quadrant. The results presented in this paper are particularly neat when
expressed in terms of the angles that define the process in a cone, whereas the proofs are simpler
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Figure 2.2. Equivalence between the reflected Brownian motion Z̃t in a β-wedge
with drift µ̃ and reflection angles δ and ε and the reflected Brownian motion Zt in
the first quadrant with drift µ and reflection vectors R1 and R2.

for a process in the quadrant. This is why the results stated in the introduction for the standard
Brownian motion Z̃t reflected in a cone C of angle β ∈ (0, π), drift angle θ and reflection angles
δ and ε will be proved by considering a Brownian motion Zt reflected in the quadrant R2

+ with a
positive-definite covariance matrix, a drift and a reflection matrix noted respectively

Σ =

(
σ11 σ12
σ12 σ22

)
, µ =

(
µ1

µ2

)
, R =

(
R1 R2

)
=

(
1 −r2

−r1 1

)
which satisfy the following relations

cosβ =
−σ12√
σ11σ22

, tan θ =
µ2

√
det(Σ)

σ22µ1 − σ12µ2
, tan δ =

−
√
det(Σ)

r2σ22 + σ12
, tan ε =

−
√

det(Σ)

σ11r1 + σ12
. (2.1)

The study of these two processes is equivalent by considering ϕ a simple bijective linear transform
defined by

ϕ :=

(√
σ11 0
0

√
σ22

)(
sin(β) − cos(β)

0 1

)
∈ GL(2,R)

which maps the cone C onto the first quadrant R2
+ = ϕ(C), and Z̃t onto Zt = ϕ(Z̃t). We have

of course ϕ(0) = 0 and T = inf{t > 0 : Z̃t = 0} = inf{t > 0 : Zt = 0}. It is then equivalent to
compute the absorption probability for the process Z̃t starting from (ũ, ṽ) ∈ C and for the process
Zt starting from (u, v) = ϕ(ũ, ṽ) ∈ R2

+. We denote the escape probability

f(u, v) := P(u,v)(T < ∞) and f̃(ũ, ṽ) := f(ϕ(ũ, ṽ)). (2.2)

This linear transform doesn’t affect the form of the absorption probability. More precisely, the
absorption probability f(u, v) is a sum-of-exponential, given by (1.3), if and only if f̃(ũ, ṽ) is a
sum-of-exponential, given by

f̃(ũ, ṽ) =
2α−1∑
k=1

ck exp

(
ak

√
σ22

det(Σ)
ũ+

1
√
σ22

[
bk −

akσ12√
det(Σ)

]
ṽ

)
.

Note that thanks to this linear transformation, our results generalise immediately to all Brownian
motions with any covariance matrix (possibly different from the identity) in any convex cone.

2.2. Partial differential equation. The escape probability of the process Zt starting from (u, v) de-
fined by

g(u, v) := 1− f(u, v) = P(u,v)(T = ∞)

satisfies the following partial differential equation, see Proposition 11 in Ernst et al. (2021). The
function g is both bounded and continuous in the quarter plane and on its boundary and continuously
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differentiable in the quarter plane and on its boundary (except perhaps at the corner), and satisfies
the elliptic partial differential equation

Gg :=

(
1

2
∇ · Σ∇+ µ · ∇

)
g = 0 on R2

+ (2.3)

with oblique Neumann boundary conditions

∂R1g(0, · ) :=
(
R1 · ∇

)
g(0, · ) = 0, ∂R2g( · , 0) :=

(
R2 · ∇

)
g( · , 0) = 0 on R+ (2.4)

and the limit conditions
g(0, 0) = 0, lim

∥(u,v)∥→∞
g(u, v) = 1. (2.5)

The absorption probability f = 1− g satisfies the same partial differential equation replacing (2.5)
with the appropriate limit conditions.

2.3. Laplace transform and functional equation. We define the Laplace transform of the escape
probability g(u, v) by

φ(x, y) :=

∫∫
R2
+

P(u,v)(T = ∞)e−xu−yvdudv

and the Laplace transforms of the escape probabilities g(0, v) and g(u, 0) when the process starts
from the boundaries by

φ1(y) :=

∫
R+

P(0,v)(T = ∞)e−yvdv, φ2(x) :=

∫
R+

P(u,0)(T = ∞)e−xudu. (2.6)

One can easily use integrations by parts to translate the partial differential equation made of the
three conditions (2.3), (2.4), (2.5) into a functional equation for the Laplace transforms.

Proposition 2.1 (Prop. 12 in Ernst et al. (2021)). The Laplace transforms φ, φ1 and φ2 satisfy
the following kernel functional equation, for (x, y) ∈ C2 such that ℜx > 0 and ℜy > 0 we have

K(x, y)φ(x, y) = k1(x, y)φ1(y) + k2(x, y)φ2(x) (2.7)

where
K(x, y) :=

1

2
(x, y)⊺ · Σ(x, y)⊺ + µ · (x, y)⊺ =

1

2
(σ11x

2 + σ22y
2 + 2σ12xy) + µ1x+ µ2y,

k1(x, y) :=
σ11
2

(x+ r1y) + σ12y + µ1,

k2(x, y) :=
σ22
2

(r2x+ y) + σ12x+ µ2.

(2.8)

2.4. Study of the kernel K and uniformization. To solve functional equation (2.7), we first need to
study K, and more precisely its vanishing set

S := {(x, y) ∈ C2 : K(x, y) = 0}.
For x ∈ C, the equation K(x, y) = 0 in y is quadratic, and has therefore two solutions Y +(x)

and Y −(x) in C:

Y ±(x) :=
−σ12x− µ2 ±

√
(σ12x+ µ2)2 − σ22(σ11x2 + 2µ1x)

σ22
. (2.9)

Likewise, we define X+(y) and X−(y) to be the two solutions of the equation K(x, y) = 0 in the
variable x. The curve S can be thought of as the image of the multivalued function Y (resp. X)
which has two ramification points x+ and x− (resp. y+ and y−) given by

x± :=
(µ2σ12 − µ1σ22)±

√
(µ2σ12 − µ1σ22)2 + det(Σ)µ2

2

det(Σ)
. (2.10)
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The branches X+ and X− are analytic on C\((−∞, y−]∪[y+,+∞)), and Y + and Y − are analytic
on C \ ((−∞, x−] ∪ [x+,+∞)).

Lemma 2.2. The kernel K is irreducible over C[X,Y ].

Proof : Suppose K = AB for two non-constant polynomials A,B ∈ C[X,Y ]. Given the degree of
K, the polynomials A and B must be of degree 1:

A(x, y) := a1x+ a2y + a3, B(x, y) := b1x+ b2y + b3

where a2b2 = σ22/2 ̸= 0. Solving equation K(x, y) = A(x, y)B(x, y) = 0 in y yields

{Y +(x), Y −(x)} = {−(a1x+ a3)/a2,−(b1x+ b3)/b2}.
This means that Y + and Y − are affine functions which implies that the polynomial under the square
root of Equation (2.9) is the square of an affine function. This is equivalent to say that

(σ12x+ µ2)
2 − σ22(σ11x

2 + 2µ1x)

has a double root and then to the fact that the discriminant

(µ2σ12 − µ1σ22)
2 + det(Σ)µ2

2

(already computed in (2.10)) is equal to 0. This is not possible because detΣ > 0 since Σ is a
positive-definite covariance matrix. Hence there is no such decomposition of K, and K is therefore
irreducible.
We can sketch an alternative proof. According to the classification of conics (see Lawrence (1972),
p.63), the nature of the conic {(x, y) ∈ R2 : K(x, y) = 0} only depends on the signs of det(Σ) and
the following block matrix determinant

∆ :=

∣∣∣∣Σ µ
µ⊺ 0

∣∣∣∣ = −(µ2σ
2
11 + µ1σ

2
22 − 2µ1µ2σ12) = −

(
µ⊺Σ−1µ

)
det(Σ).

The matrix Σ is positive-definite, and so is its inverse Σ−1, hence det(Σ) > 0 and ∆ < 0, which
corresponds to a non-degenerate ellipse. If K = AB for two polynomials of degree 1, it would imply
that the ellipse would be equal to the union of two lines and therefore would be degenerate. We
deduce again that K is irreducible.
Note that the discriminant of the first proof is linked to the determinant of the second proof since
(µ2σ12 − µ1σ22)

2 + det(Σ)µ2
2 = −σ22∆. □

It will be handy to work with the following rational uniformization of S, first stated in Franceschi
and Kourkova (2017, Proposition 5), defined by

(x,y)(s) :=

(
x+ + x−

2
+

x+ − x−

4

(
s+

1

s

)
,
y+ + y−

2
+

y+ − y−

4

(
s

eiβ
+

eiβ

s

))
, (2.11)

which is such that
S = {(x(s),y(s)), s ∈ C∗}.

In the following, we adopt the notation
q := e2iβ.

The functions x and y satisfy the following invariance properties: for all s ∈ C∗

x(s) = x(s−1) and y(s) = y(qs−1). (2.12)

Lemma 2.3. There exists C1, C2 ∈ C such that for all s ∈ C∗ the polynomials defined in (2.8)
satisfy

k1(x(s),y(s)) = C1
(s− s′0)(s− s1)

s
, k2(x(s),y(s)) = C2

(s− s′′0)(s− s2)

s
,
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Figure 2.3. On the left, the points introduced in Lemmas 2.3 and 4.2 on the unit
complex circle U; on the right, their images by (x,y) on the ellipse S ∩ R2. For the
sake of readability, points on the ellipse are labelled with their preimages. Invariances
in (2.12) are represented by the dotted arrows.

with
s′0 := ei(2β−θ), s′′0 := e−iθ, s1 := ei(θ+2ε), s2 := ei(θ−2δ). (2.13)

Proof : For i ∈ {1, 2}, ki(x(s),y(s)) = 0 is a degree-two polynomial equation whose roots can be
computed with some basic trigonometry using (2.1). □

2.5. Boundary Value Problem. We define a hyperbola H deeply linked to the kernel by

H := Y ±([x+,∞)) = {y ∈ C : K(x, y) = 0 and x ∈ [x+,∞)}.

Noticing that x(R+) = [x+,+∞) and by the invariance y(s) = y(qs−1) we can see that

H = y(R+) = y(qR+). (2.14)

This hyperbola is the boundary of the Boundary Value Problem stated below. We now define GH
the domain of C bounded by H and containing y+, see Figure 3.4. By (2.14), remembering that
q = e2iβ and y−1(y+) = eiβ we see that

GH = y
(
{aeib, (a, b) ∈ R+ × [0, 2β]}

)
, (2.15)

see Figure 3.5. Finally, we compute

y(s1) = − 2(r1µ1 + µ2)

σ22 + σ11r21 + 2σ12r1
. (2.16)

The following proposition is a Carleman Boundary Value Problem which characterizes the Laplace
transform φ1 and which can be easily obtained from the functional equation (2.7), see Ernst et al.
(2021).

Proposition 2.4 (Proposition 22 and Lemma 32 in Ernst et al. (2021)). The Laplace transform φ1

satisfies the boundary value problem:
(1) φ1 is meromorphic on the open domain GH and continuous on GH := GH ∪H;
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(2) φ1 admits one or two poles in GH, 0 is always a simple pole of φ1 and y(s1) is a simple pole
of φ1 if and only if 2ε+ θ ⩾ 2π;

(3) for some positive constant C the asymptotics of φ1 when y → ∞ is given by

φ1(y) ∼ Cy−α−1; (2.17)

(4) φ1 satisfies the boundary condition

φ1(y) = G(y)φ1(y), ∀y ∈ H (2.18)

where

G(y) =
k1(X

+(y), y)

k2(X+(y), y)

k2(X
+(y), y)

k1(X+(y), y)
.

In the next section, our strategy will be to find cases where the function G simplifies in order to
find rational and D-algebraic solutions to this Boundary Value Problem.

3. Tutte’s invariants and Laplace transform

3.1. Decoupling and Tutte’s invariant. The method involves finding all cases where there exists
decoupling in the following sense. Recall that S = {(x, y) ∈ C2 : K(x, y) = 0}.

Definition 3.1 (Decoupling). A pair of rational functions (P,Q) satisfying
k2(x, y)

k1(x, y)
= λ

P (x)

Q(y)
for all (x, y) ∈ S (3.1)

for some constant λ is called a decoupling pair.

We shall see that the existence of a decoupling pair leads to the study of what is called an invariant,
which glues together the upper and the lower branches of the hyperbola H in the following sense.

Definition 3.2 (Invariant). A function I which is meromorphic in GH, continuous on its boundary
H and satisfying I(y) = I(y) for all y ∈ H is called an invariant.

Under the existence of a decoupling pair (P,Q), the boundary condition (2.18) can be rewritten
as

Qφ1(y) = Qφ1(y), ∀y ∈ H. (3.2)
If (P,Q) is a decoupling pair, the function Qφ1 is then called the unknown invariant (since we
are looking for φ1). We now introduce a conformal gluing function w, which we call the canonical
invariant, in terms of a classical Gauss hypergeometric function which is often called generalised
Chebyshev polynomial,

w(y) := 2F1

(
− π

β
,
π

β
;
1

2
;
1

2

(
1− 2y − (y+ + y−)

y+ − y−

))
= cos

(
π

β
arccos

(
2y − (y+ + y−)

y+ − y−

))
.

The fact that w is a conformal invariant (in the sense of Definition 3.2) is proven in Lemma 5.3
of Bousquet-Mélou et al. (2021). In particular, w is analytic and bijective from GH to C \ (−∞,−1]
and

w(y) = w(y), ∀y ∈ H. (3.3)
Equation (3.3) justifies the terminology conformal gluing function for w, often encountered in the
literature on Tutte’s invariant method.

Lemma 5.3 of Bousquet-Mélou et al. (2021) also provides, for some constant Ĉ, the asymptotics

w(y) ∼ Ĉyπ/β. (3.4)

It is also well known that w is a polynomial when π/β ∈ Z, is algebraic when π/β ∈ Q and is always
D-finite. Remark that the set of D-finite functions is stable by multiplication but not by division
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Figure 3.4. Domains and codomains for w and its inverse.

and 1/w is D-algebraic but not necessarily D-finite. See Proposition 5.2 of Bousquet-Mélou et al.
(2021).

The key point of Tutte’s invariant method is to express the unknown invariant in terms of the
canonical invariant. The following crucial lemma shows that there are few invariants.

Lemma 3.3 (Invariant lemma). If I is an invariant in the sense of Definition 3.2 which doesn’t
have any pole on GH and has a finite limit at +∞, then I is constant.

Proof : Since w is conformal, and maps GH to the cut plane C \ (−∞,−1], I ◦ w−1 is analytic on
this cut plane, and continuous on the cut thanks to (3.3). By Morera’s theorem, I ◦w−1 (or better
yet, its continuous extension) is meromorphic on C. Since I is bounded, Liouville’s theorem implies
that I ◦ w−1 (and then I) is constant. □

In the following proposition, we obtain a necessary and sufficient condition for the existence of a
decoupling condition (3.1) and we give explicit decoupling pairs.

Proposition 3.4 (Decoupling condition). There exists a rational decoupling pair (P,Q) if and only
if

α ∈ Z+
π

β
Z.

In this case let d, r ∈ Z such that α = d− 1+ rπ/β, i.e. δ+ ε = (d− 1)β+(r+1)π. Then d cannot
be equal to 1 and we distinguish two cases:

• If d ⩾ 2, then one can choose the following polynomial decoupling pair,

P (x) := x
d−2∏
k=0

x− x(s2q
k)

−x(s2qk)
, Q(y) := y

d−2∏
k=0

y − y(s1/q
k)

−y(s1/qk)
. (3.5)

• If d ⩽ 0, then one can choose the following rational decoupling pair,

P (x) := x

1−d∏
k=1

−x(s2q
k)−1

x− x(s2/qk)
, Q(y) := y

1−d∏
k=1

−y(s1/q
k)−1

y − y(s1qk)
. (3.6)

We have d = deg(P ) = deg(Q).

Proof : If there exists a rational decoupling (P,Q), see (3.1), then by the invariances of x and y
established in (2.12) we have

k2(x(s),y(s))k1(x(s
−1),y(s−1))

k1(x(s),y(s))k2(x(s−1),y(s−1))
=

P (x(s))Q(y(s−1))

Q(y(s))P (x(s−1))
=

Q(y(qs))

Q(y(s))
. (3.7)
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According to Lemma 2.3 we also have

k2(x(s),y(s))k1(x(s
−1),y(s−1))

k1(x(s),y(s))k2(x(s−1),y(s−1))
=

(s− s′′0)(s− s2)

(s− s′0)(s− s1)
· (s

−1 − s′0)(s
−1 − s1)

(s−1 − s′′0)(s
−1 − s2)

. (3.8)

Taking the limit as s goes to +∞ of (3.7) and (3.8), we get

s′0s1
s′′0s2

= qd, where d := deg(Q) ∈ Z. (3.9)

Plugging in the values of s′0, s′′0, s1, s2 obtained in Lemma 2.3 and remembering that q = e2iβ

in (3.9) we obtain that e2i(β+δ+ε) = e2idβ and then there exists r ∈ Z such that

α =
δ + ε− π

β
= d− 1 + r

π

β
. (3.10)

Conversely, we assume that (3.10) holds. First, let us treat the case d ⩾ 2 and assume that P and
Q are given by (3.5). Through the uniformization (2.11), one gets

P (x(s)) =
1

sd
(s− s′′0)

(
s− 1

s′′0

) d−2∏
k=0

s− s2q
k

−x(s2qk)

(
s− 1

s2qk

)
,

Q(y(s)) =
1

sd
(s− s′0)

(
s− q

s′0

) d−2∏
k=0

s− s1/q
k

−y(s1/qk)

(
s− qk+1

s1

)
.

We know that s′0 = qs′′0. Given that α = d − 1 + rπ/β with d and r in Z, we can also use the
fact that s1 = qd−1s2. When taking the ratio of P (x(s)) and Q(y(s)), these identities produce a
telescoping which gives

P (x(s))

Q(y(s))
=

d−2∏
k=0

y(s1/q
k)

x(s2qk)

(s− s′′0)(s− s2)

(s− s′0)(s− s1)
=

1

λ

k2(x(s),y(s))

k1(x(s),y(s))
,

where the last equality comes from Lemma 2.3 and taking

λ :=
C1

C2

d−2∏
k=0

x(s2q
k)

y(s1/qk)
. (3.11)

We deduce that (P,Q) is a decoupling pair. The proof is similar for the case d ⩽ 0. The fact that
d cannot be equal to 1 directly derives from the fact that ε, δ ∈ (0, π), β ∈ (0, π) and α ⩾ 1. □

Lemma 3.5 (Simple root condition). Let α ∈ Z+ π
βZ and (d, r) ∈ Z2 such that α = d− 1 + rπ/β.

If β/π ∈ Q then (d, r) is not unique, in this case for β/π = p/q for p and q relatively prime and
p < q, we (can) choose d such that |d| < q. If d ⩾ 2 (resp. d ⩽ 0) then P and Q have no multiple
roots (resp. pole) if and only if for all k ∈ {1, . . . , 2d− 4} (resp. k ∈ {2d− 1, . . . ,−2}) we have

θ − 2δ + kβ ̸≡ 0 mod(π). (3.12)

Proof : Let d ⩾ 2. The polynomial P has a double root (or more) if and only if for two distinct
elements i and j of {0, . . . , d−2} we have x(s2qi) = x(s2q

j). Using the expression of x given in (2.11)
there are only two ways for this to happen. The first one is that qi = qj , i.e. iβ = jβ mod(π)
which is not possible even when β/π = p/q ∈ Q since |i − j| < |d| < q. The second one is that
s2q

i = (s2q
j)−1, using the value of s2 in (2.13) it is equivalent to θ − 2δ + (i + j)β ≡ 0 mod(π).

Similarly, Q has a double root if and only if θ− 2δ+ (2d− i− j − 3)β ≡ 0 mod(π). The case d ⩽ 0
is similar. □

One should observe that the decoupling condition α ∈ Z + π
βZ doesn’t depend on θ (and hence

on the drift) while the multiple root condition does.
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3.2. Explicit expression for the Laplace transforms. We now state our first main result when α ∈ N.

Theorem 3.6 (Laplace transforms, α ∈ N). If α ∈ N then the rational function defined by

L(x, y) :=
k1(x, y)P (x) + k2(x, y)Q(y)

K(x, y)
(3.13)

is a polynomial and we have

φ1(y) =
1

Q(y)
, φ2(x) =

1

P (x)
, φ(x, y) =

L(x, y)

P (x)Q(y)

where P and Q are given in (3.5).

Proof : Assuming that α = d − 1 ∈ N, the polynomials P and Q given in (3.5) form a decoupling
pair by Proposition 3.4. The boundary value problem of Proposition 2.4 thus implies that Qφ1 is
an invariant, see (3.2). According to Lemma 3.3, we only need to prove that Qφ1 doesn’t have any
pole on GH, and has a finite limit as y goes to +∞. By (2.17) and (3.5), and since α = d − 1 we
have

Q(y)φ1(y) ∼
yd∏d−2

k=0−y(s1/qk)
· Cy−α−1 =

C∏d−2
k=0−y(s1/qk)

.

Furthermore the poles of φ1 given in Proposition 2.4 i.e. 0 and y(s1) when 2ε + θ ⩾ 2π, are
compensated by the zeros of Q. Indeed 0 and y(s1) are always roots of Q. By Lemma 3.3, there
exists κ ∈ C such that Qφ ≡ κ. On the one hand, using the fact that Q′(0) = 1 gives

lim
y→0

yφ1(y) = κ lim
y→0

y

Q(y)
=

κ

Q′(0)
= κ.

On the other hand, by the final value theorem and (2.5) we have

lim
y→0

yφ1(y) = lim
v→+∞

P(0,v)(T = +∞) = 1. (3.14)

Hence κ = 1 and φ1 = 1/Q. The same method also works to show that φ2 = 1/P . Replacing φ1

and φ2 in the functional equation (2.7), one can obtain

k2(x, y)

k1(x, y)
= −P (x)

Q(y)
, for all (x, y) ∈ S.

Comparing with Definition 3.1 we can see that the constant λ given in (3.11) is equal to −1. The
polynomial k2Q + k1P vanishes on S the set of the zeros of K. By Hilbert’s Nullstellensatz (see
Theorem 1.3A in Hartshorne (1977)),

k2Q+ k1P ∈
√

(K)

where (K) := {LK,L ∈ C[X,Y ]} and
√
(K) := {H ∈ C[X,Y ] : ∃m ∈ N s.t. Hm ∈ (K)} are

the ideal generated by K and its radical. By Lemma 2.2, K is irreducible which implies that√
(K) = (K). This shows that there exists L ∈ C[X,Y ] such that LK = k1P + k2Q. We see that

L(x, y) ∈ R for all (x, y) ∈ R2, so the coefficients of L must be real. Substituting the values for φ1

and φ2 into the functional equation (2.7) yields φ(x, y) = L(x, y)/(P (x)Q(y)). □

We now state a lemma useful to obtain our second main result which deals with the case where
α ∈ Z+ π

βZ. We consider d and r ∈ Z such that α = (d− 1) + rπ/β. If β/π = p/q ∈ Q, with p and
q relatively prime, we (can) choose |d| < q. For further use, we need to study the number of zeros
and poles of Qφ1 which belong to GH. First of all, we can see that 0 is always a root of Q and a
pole of φ1, which therefore compensate each other considering Qφ1.

When d ⩾ 2 we denote

Z := {y(s1/qk) ∈ GH : k = 1, . . . , d− 2} (3.15)
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Figure 3.5. Enumeration of P and Z for (d, r) = (−9, 2) (on the left) and (d, r) =
(11,−1) (on the right). The shaded area corresponds to y−1(GH).

which is a set containing (all the) zeros of Qφ1 in GH, see (3.5). Note that in this definition k cannot
be taken equal to 0 since when y(s1) is both a pole of φ1 in GH and a zero of Q they compensate
each other, by item 2 of Proposition 2.4.

When d ⩽ 0 we denote

P := {y(s1qk) ∈ GH : k = 0, . . . , 1− d} (3.16)

which is the set of poles of Qφ1 in GH, see (3.6). Note that in this definition k can be taken equal to
0 since y(s1) is a pole of φ1 which can belongs to GH, see item 2 of Proposition 2.4. See Figure 3.5
to visualize P and Z.

Lemma 3.7 (Cardinal of Z and P). Let α ⩾ 1 and assume that α ∈ Z+ π
βZ and (3.12) holds. Let

d and r ∈ Z such that α = (d− 1)+ rπ/β, i.e. (d− 1)β+(r+1)π = δ+ ε. Then d ̸= 1 and we have
(i) If d ⩾ 2 then r ⩽ 0 and we have

Card(Z) = −r.

(ii) If d ⩽ 0 then r > 0 and we have

Card(P) = r.

Proof : Using the fact that ε, δ ∈ (0, π), β ∈ (0, π) and α ⩾ 1 it is easy to see that d cannot be equal
to 1, that d ⩾ 2 implies r ⩽ 0 and that d < 1 implies r > 0.

(i) Assume that d ⩾ 2 and r ⩽ 0. Recalling equation (2.15) and noticing that for all k ∈ Z,
s1/q

k ∈ U (where U is the complex unit circle) we define

C0 := {eib, b ∈ [0, 2β]} = y−1(GH) ∩ U

and we have

Card(Z) = Card
(
{s1/qk ∈ C0 : k = 1, . . . , d− 2}

)
.

We recall that s1 = qd−1s2, and so we need to count the number of points s1/q
k for

k = 1, . . . , d − 2 which have their argument in (0, 2β) modulo 2π. These points can be
obtained by making d− 1 successive rotations of angle −2β, starting from s1 to s2 (without
taking into account s1 and s2). By doing this, the number of complete revolutions around
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the unit circle in the clockwise direction is −r. This comes from the fact that, denoting
arg s1 = θ + 2ε ∈ (θ, θ + 2π) and arg s2 = θ − 2δ + 2π ∈ (θ, θ + 2π), we have

arg s2 − arg s1 = (d− 1)(−2β)− r(2π) > 0.

Since 0 < θ < β, there are exactly −r points s1/q
k for k = 1, . . . , d − 2 which have their

argument in (0, 2β) modulo 2π, see Figure 3.5. Interested readers may refer to the study
of mechanical or Sturmian sequences, see eg. Lothaire (2002), where this kind of counting
problem is standard.

(ii) The case d ⩽ 0 and r > 0 is similar considering 1− d successive rotations of angle 2β from
s1 to s2 making r turn around the unit circle in the counter-clockwise direction.

□

We now state our second main result about φ1 when α ∈ Z+ π
βZ. A symmetrical result holds for

φ2, and φ can thus be determined by (2.7).

Theorem 3.8 (Laplace transforms, α ∈ Z+ π
βZ). Assume that α ∈ Z+ π

βZ and α ⩾ 1 and the simple
root condition (3.12) holds. Let d and r ∈ Z such that α = (d−1)+rπ/β, i.e. (d−1)β+(r+1)π =
δ + ε, then

φ1(y) =
S(w(y))

Q(y)
,

where S is a rational function of degree −r given by

S(z) :=
∏
q∈Z

z − w(q)

w(0)− w(q)
, if d ⩾ 2 and S(z) :=

∏
p∈P

w(0)− w(p)

z − w(p)
, if d ⩽ 0.

We deduce sufficient conditions for φ1, φ2 and φ to belongs to the hierarchy (1.4). If α ∈ N these
Laplace transforms are rational, if π/β ∈ Q and α ∈ Z+ π

βZ they are algebraic, if α ∈ N+ π
βZ they

are D-finite and if α ∈ Z+ π
βZ they are D-algebraic.

Proof : Recall the definitions of Z in (3.15), P in (3.16) and Q in (3.5) and (3.6). The function
(Qφ1)/(S ◦ w) is continuous on H and meromorphic on GH. By (3.2) and (3.3), we have for all
y ∈ H,

Qφ1(y)

S(w(y))
=

Qφ1(y)

S(w(y))
.

The function (Qφ1)/(S◦w) is then an invariant in the sense of Definition 3.2. Recall that deg(Q) = d,
deg(S) = −r by Lemma 3.7, φ1(y) ∼ Cy−α−1 by (2.17), w(y) ∼ Ĉyπ/β by (3.4). For a constant κ
we obtain when y → ∞,

Qφ1(y)

S(w(y))
∼ κ

ydy−α−1

y−rπ/β
= κ

where the last equality comes from α = (d − 1) + rπ/β. By construction, (Qφ1)/(S ◦ w) does not
have any pole on GH. Indeed if d ⩾ 2 the roots of Q compensate the poles of 1/(S ◦w) and if d ⩽ 0
the zeros of 1/(S ◦ w) compensate the poles of Qφ1. Then, the invariant Lemma 3.3 assures that

Qφ1(y)

S(w(y))
= κ.

Applying again the final value theorem (3.14) and using the fact that limy→0Q(y)/y = Q′(0) = 1

and S(w(0)) = 1 we obtain the value of the constant: κ = Q(y)
y

yφ1(y)
S(w(y)) −→

y→0
1 = κ. The sufficient

conditions given in the theorem therefore follow from the properties of w stated below (3.4). □
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4. Absorption probability via compensation approach

This section deals with the case where α ∈ N. The aim is to show that the absorption probability
is a sum of exponentials and to calculate precisely all the coefficients of this sum. To that end
we invert the Laplace transforms and we explain the recursive compensation phenomenon which
appears in this sum.

4.1. Inverse Laplace transform. When α ∈ N and the simple root condition (3.12) holds, we invert
the Laplace transforms φ1 and φ2 obtained in Theorem 3.6 by performing a partial fraction decom-
position. Therefore, remembering that φ1 and φ2 are defined in (2.6) as the Laplace transforms of
the escape probability on the boundaries, the absorption probabilities starting from the boundaries
can be written as sum-of-exponential and are explicitly given by

P(u,0)(T < ∞) =
α−1∑
i=0

di exp
(
x(s2q

i)u
)
, P(0,v)(T < ∞) =

α−1∑
j=0

ej exp
(
y(s1/q

j)v
)
,

where

di =
−1

P ′(x(s2qi))
, ej =

−1

Q′(y(s1/qj))
.

However, inverting the bivariate Laplace transform φ(x, y) and computing the coefficients involved
is not immediately obvious. We now state the last main result of this article.

Theorem 4.1 (Sum-of-exponential absorption probability). Let (Zt)0⩽t⩽T a reflected Brownian
motion in the quadrant of drift µ ∈ R2

+, such that α ⩾ 1, starting from (u, v) ∈ R2
+, where T is the

first hitting time of the vertex. We assume that for all j ∈ {1, . . . , 2α− 2}, θ− 2δ+ jβ ̸≡ 0 mod(π).
The following statements are equivalent:

(i) α = n, for some integer n ⩾ 1 ;
(ii) there exist coefficients a1, . . . , a2n−1, b1, . . . , b2n−1, c1, . . . , c2n−1 such that

P(u,v)(T < ∞) =
2n−1∑
k=1

ck exp(aku+ bkv). (4.1)

In this case, the constants ak and bk are given by

(a2k, b2k) :=
(
x(s1/q

k),y(s1/q
k)
)

and (a2k+1, b2k+1) :=
(
x(s1/q

k+1),y(s1/q
k)
)

(4.2)

and can also be computed thanks to the recurrence relationship stated in Proposition 4.3. The
coefficients ck are determined by the recurrence relationship given in Proposition 4.4.

Proof : First we assume that α = n and for all j ∈ {1, . . . , 2α − 2}, θ − 2δ + jβ ̸≡ 0 mod(π).
Theorem 3.6 gives an explicit expression of the Laplace transform: one can write φ(x, y) = L(x,y)

P (x)Q(y)

where L is a polynomial given by (3.13) and perform a partial fraction decomposition of φ. It is
then possible to invert the Laplace transform. Recall the definition of P and Q given in (3.5) and
remark that {s2qi : i = 0, . . . , α − 1} = {s1/qi : i = 1, . . . , α} since s1 = s2q

α, we obtain α2

constants c̃i,j such that

f(u, v) = P(u,v)(T < ∞) =
α∑

i=1

α−1∑
j=0

c̃i,j exp
(
x(s1/q

i)u+ y(s1/q
j)v
)
. (4.3)

Actually, only 2α − 1 of those constants c̃i,j are non-zero. More precisely, we are now going to
show that if i /∈ {j, j + 1} then c̃i,j = 0.
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Considering (4.3), the partial differential equation (2.3) leads to

0 = Gf(u, v) =
α∑

i=1

α−1∑
j=0

c̃i,jK
(
x(s1/q

i),y(s1/q
j)
)
exp

(
x(s1/q

i)u+ y(s1/q
j)v
)
.

By linear independence of the exponential functions (the coefficients inside the exponentials are all
different by (3.12)), this implies that c̃i,j = 0 when K

(
x(s1/q

i),y(s1/q
j)
)
̸= 0. By (2.12) this must

hold for all (i, j) such that s1/q
i /∈ {s1/qj , s1/q

j+1} and then for i /∈ {j, j + 1}.
For i ∈ {0, . . . , α} we set the constants c2i = c̃i,i and c2i+1 = c̃i,i−1 and we obtain (4.1). Proposi-

tion 4.4 will give recurrence formulas satisfied by these constants.
Reciprocally, if the absorption probability f(u, v) is a sum of exponentials then f(0, v) is also a

sum of exponentials where we denote m the number of distinct exponentials in this sum. We deduce
that φ1(y), which is the Laplace transform of g(0, v) = 1 − f(0, v), is therefore equivalent up to a
multiplicative constant to y−m−1 when y → ∞. We also know by (2.17) that φ1(y) is equivalent up
to a multiplicative constant to y−α−1, which implies that α = m ∈ N. □

In what follows it will be convenient to denote by k∗1 and k∗2 the following functions

k∗1(x, y) := (x, y) ·R1 = x− r1y, k∗2(x, y) := (x, y) ·R2 = −r2x+ y (4.4)

as they naturally appear when applying ∂R1 and ∂R2 , see (2.4), to a function of the form eau+bv.

Lemma 4.2. The functions k1, k2, k∗1 and k∗2 satisfy the following relations

k1 ◦ (x,y)(s) = −σ11
2

k∗1 ◦ (x,y)(qs−1), k2 ◦ (x,y)(s) = −σ22
2

k∗2 ◦ (x,y)(s−1).

As a direct consequence we have, for some constants C∗
1 and C∗

2 , for all s ∈ C∗,

k∗1(x(s),y(s)) = C∗
1

(s− s∗0)(s− s∗1)

s
, k∗2(x(s),y(s)) = C∗

2

(s− s∗0)(s− s∗2)

s

where s∗0 := s′′−1
0 = qs′−1

0 , s∗1 := qs−1
1 and s∗2 := s−1

2 .

Proof : It is equivalent to prove that for all x and y,

k1(X
+(y), y) = −σ22

2
k∗1(X

−(y), y) and k2(x, Y
+(x)) = −σ11

2
k∗2(x, Y

−(x)),

which can be easily verified using the definitions (2.9), (2.8) and (4.4). Then, Lemma 2.3 allows us
to conclude. See Figure 2.3 for a geometric interpretation. □

The following proposition establishes a recurrence relationship which allows to compute (ak, bk).
It gives a very natural geometric interpretation of this sequence of points which belongs to the
ellipse E := S ∩ R2 = {(x, y) ∈ R2 : K(x, y) = 0}, starts at the intersection with the line {k∗1 = 0}
and ends at the intersection with the line {k∗2 = 0}. It can be visualized in Figure 4.6.

Proposition 4.3 (Recursive relationship of the sequence (ak, bk)). The sequence (ak, bk) ∈ E defined
in (4.2) satisfies the following relations

(a2k+1, b2k+1) =

(
b2k
a2k

· σ22b2k + 2µ2

σ11
, b2k

)
, (a2k+2, b2k+2) =

(
a2k+1,

a2k+1

b2k+1
· σ11a2k+1 + 2µ1

σ22

)
where b1 = y(s1) = y(s∗1) was computed in (2.16), a1 = x(s1/q) = x(s∗1) = r1b1 and k∗1(a1, b1) = 0.
We also have k∗2(a2α−1, b2α−1) = 0 and one can easily compute

a2α−1 = x(s∗2) = − 2(µ1 + r2µ2)

σ11 + σ22r22 + 2σ12r2
and b2α−1 = y(s∗2) = r2a2α−1.
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Proof : By definition (4.2) we have b2k = b2k+1 and a2k ̸= a2k+1. Furthermore K(a2k, b2k) =
K(a2k+1, b2k+1) = 0, then a2k and a2k+1 must be the two distinct roots of the quadratic equation
K(x, b2k) = 0. Vieta’s formula gives the value of the product of those roots in terms of the coefficients
of the equation and we get the relation for (a2k+1, b2k+1). The same method applies for the second
relation about (a2k+2, b2k+2). □

The aim is now to compute explicitly the coefficients ck which appear in Theorem 4.1.

Proposition 4.4 (Recursive relationship of the sequence ck). We assume α ∈ N and condi-
tion (3.12). We recall that the constants ak, bk are defined in (4.2). The constants ck introduced in
Theorem 4.1 are determined by the recurrence relations

c2k = −c2k−1
k∗2(a2k−1, b2k−1)

k∗2(a2k, b2k)
and c2k+1 = −c2k

k∗1(a2k, b2k)

k∗1(a2k+1, b2k+1)

and the normalization relationship
∑2α−1

k=1 ck = 1.

Proof : For the first relation, let us observe that

∂R2 exp(au+ bv)|v=0 = k∗2(a, b) exp(au).

We denote f(u, v) = P(u,v)(T < ∞). Using Theorem 4.1, noticing that a2k−1 = a2k, we evaluate
∂R2f at v = 0 and the Neumann condition (2.4) gives

0 =
α−1∑
k=1

(
c2k−1k

∗
2(a2k−1, b2k−1) + c2kk

∗
2(a2k, b2k)

)
exp(a2ku) + k∗2(a2α−1, b2α−1) exp(a2α−1u). (4.5)

By Lemma 4.2 we see that k∗2(a2α−1, b2α−1) = k∗2 ◦ (x,y)(s∗2) = 0 so that the last term in (4.5) is
zero. Under the simple roots condition (3.12), a2i ̸= a2j for all i ̸= j, the family {u 7→ exp(a2ku)}
is therefore linearly independent and for all k we obtain

c2k−1k
∗
2(a2k−1, b2k−1) + c2kk

∗
2(a2k, b2k) = 0.

The proof of the second relation is similar. The normalization relationship comes from the fact that
f(0, 0) = 1. □

The following paragraph aims to give a geometric interpretation to all the coefficients ak, bk and
ck and to explain the compensation phenomenon which appears in the sum of exponentials.

Figure 4.6. Construction of the finite sequences {(ai, bi) : 1 ⩽ i ⩽ 2α− 1}. On the
left α = 2 while α = 3 on the right.
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4.2. Heuristic of the compensation approach. Using a recursive compensation method (with a finite
number of iterations), it is possible to find a solution to the partial differential equation stated
in (2.3) and (2.4) that is a candidate for being the probability of absorption at the vertex. It
is interesting to remark that the positivity of this solution is by no means obvious and that the
uniqueness of the solution of this kind of PDE usually requires the positivity of the solution.

In this paragraph, we explain the compensation phenomenon. By using an analytic approach, we
showed in Theorem 4.1 that when α ∈ N and (3.12) holds the absorption probability is

f(u, v) = P(u,v)(T < ∞) =
2α−1∑
k=1

ck exp(aku+ bkv),

where the (ak, bk) are determined in Proposition 4.3 and the ck in Proposition 4.4.
We define the following function vector spaces

E0 := {h ∈ C2(R2
+) : Gh = 0 on R2

+},

E1 := {h ∈ C2(R2
+) : ∂R1h(0, · ) = 0 on R+} and E2 := {h ∈ C2(R2

+) : ∂R2h( · , 0) = 0 on R+}.
One may remark that a function h satisfies the PDE (2.3) if and only if h ∈ E0 and h satisfy
the Neumann boundary conditions (2.4) if and only if h ∈ E1 ∩ E2. Furthermore, the function
(u, v) 7→ eau+bv belong to E0 if and only if K(a, b) = 0, belongs to E1 if and only if k∗1(a, b) = 0,
and belongs to E2 if and only if k∗2(a, b) = 0.

By Proposition 4.3 all the (ak, bk) are on the ellipse E defined by K = 0, it is then easy to
understand why f ∈ E0, i.e. why f satisfies the partial differential equation (2.3).

We are now seeking to understand why the coefficients ck given in Proposition 4.4 ensure that
f ∈ E1 ∩E2, i.e. why f satisfies the Neumann boundary conditions (2.4). In fact, the ck have been
chosen such that by grouping the terms of the sum by pairs (except the first or the last term) they
compensate each other to ensure the inclusions in E1 and E2:

f(u, v) = c1 exp(a1u+ b1v)︸ ︷︷ ︸
∈ E1

+

α−1∑
k=1

c2k exp(a2ku+ b2kv) + c2k+1 exp(a2k+1u+ b2kv)︸ ︷︷ ︸
∈ E1

=
α−1∑
k=1

c2k−1 exp(a2ku+ b2k−1v) + c2k exp(a2ku+ b2kv)︸ ︷︷ ︸
∈ E2

+ c2α−1 exp(a2α−1u+ b2α−1v)︸ ︷︷ ︸
∈ E2

so that f ∈ E1 ∩ E2. This is due to the fact that (c2kk
∗
1(a2k, b2k) + c2k+1k

∗
1(a2k+1, b2k))e

b2kv = 0
and (c2k−1k

∗
2(a2k, b2k−1) + c2kk

∗
2(a2k, b2k))e

a2ku = 0.
We now understand the phenomenon of compensation which explains why f is a solution of the

partial differential equation (2.3) with Neumann boundary conditions (2.4). One may also verify
that the limit conditions (2.5) are also satisfied. Let us note, on the other hand, that the positivity
of this function is absolutely not obvious to check.

4.3. Double roots. This last paragraph deals with the case where P or Q have double roots, i.e.
when for some integer j ∈ {1, . . . , 2α − 2}, θ − 2δ + jβ ≡ 0 mod(π), see Lemma 3.5. The number
of cases to handle to give a general explicit formula is too big. Nonetheless, we can give the general
shape of the absorption probability: if α ∈ N, the absorption probability can be written as

P(u,v)(T < ∞) =
2α−1∑
k=0

Ak(u, v) exp(aku+ bkv)

where ak and bk are given in Equation (4.2) and the Ak are affine functions of u and v. Indeed,
Theorem 3.6 holds even when there are multiple roots. Inverting the Laplace transform we show
that the absorption probability can be written

∑2α−1
k=0 Ak(u, v) exp(aku + bkv) where the Ak are
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polynomials. A direct calculation shows that P and Q can’t have triple roots. This proves that the
total degree of Ak is less than 1 for all k. We can also give an intuitive explanation for the fact that
there are no triple roots: the geometric interpretation tells us that the sequence (ak, bk) cannot visit
a point thrice, otherwise it would loop indefinitely.

The case where α = 2 is completely solved below as an example.

Example 4.5 (Double roots, α = 2). For α = 2, we distinguish two cases with double roots
• if θ − 2δ + β = −π then

P(u,v)(T < ∞) = (1 + c) exp
(
x(s2)u+ y(s1)v

)
− (x(s2)u+ c) exp

(
x(s2)u+ y(s1/q)v

)
• if θ − 2δ + 2β = −π then

P(u,v)(T < ∞) = −(y(s1)v + c) exp
(
x(s2)u+ y(s1)v

)
+ (1 + c) exp

(
x(s2q)u+ y(s1)v

)
where c =

1

r1r2 − 1
.
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