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Abstract. In this work, we study and establish some quenched functional Central Limit Theorems
(CLTs) for stationary random fields under a projective criteria. These results are functional gener-
alizations of the theorems obtained by Zhang et al. (2020) and of the quenched functional CLTs for
ortho-martingales established by Peligrad and Volný (2020) to random fields satisfying a Hannan
type projective condition. In the work of Zhang et al. (2020), the authors have already proven a
quenched functional CLT, however the assumptions were not optimal as they required the existence
of a 2 + δ-moment. In this article, we establish the results under weaker assumptions, namely we
only require an Orlicz space condition to hold. The methods used to obtain these generalizations
are somewhat similar to the ones used by Zhang et al. (2020) but we improve on them in order
to obtain results within the functional framework. Moreover, a Rosenthal type inequality for said
Orlicz space is also derived and used to obtain a sufficient condition analogous to that of Theorem
4.4 in the work of Zhang et al. (2020). Finally, we apply our new results to derive some quenched
functional CLTs under weak assumptions for a variety of stochastic processes.

1. Introduction

Developments within the Markovian theory led to the question of the conditions under which
a central limit theorem could be derived for Markov chains; in particular what restrictions were
sufficient on the initial distribution and the transition operator to have this kind of result. Seminal
results were obtained by Gordin and Lifšic (1978) (see also Borodin and Ibragimov, 1995; Derriennic
and Lin, 2001) for Markov chains endowed with the stationary measure as their initial distribution
as well as Kipnis and Varadhan (1986) (see also Derriennic and Lin, 2001) for additive functionals of
reversible Markov chains. Additionally, Derriennic and Lin (2001) also obtained a CLT for Markov
chains starting from a fixed point (in other words, endowed with δx, the Dirac measure at the state
x, as their initial distribution). Such theorems are called quenched CLTs. Another way of expressing
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these results is to consider a fixed past and to study the convergence in distribution with respect
to that past. The difficulties during the proof arise from the fact that this fixed past causes the
process to not be stationary anymore. An extensive literature exists on the subject, one can cite the
following works by Barrera et al. (2016); Cuny and Peligrad (2012); Cuny and Merlevède (2014);
Cuny and Volný (2013); Dedecker et al. (2014); Peligrad (2015); Volný and Woodroofe (2014).
Note that some counterexamples to quenched central limit theorems under specific conditions were
found by Ouchti and Volný (2008) and Volný and Woodroofe (2010). Functional versions of these
quenched central limit theorems, also called quenched weak invariance principles, have also been the
subject of numerous research articles such as the ones by Barrera et al. (2016); Cuny and Merlevède
(2014); Cuny and Volný (2013); Peligrad (2015).

Random fields naturally appear as a generalization of sequences of random variables, however
extending the one-dimensional results to greater dimensions is much harder than one would think.
The first problem we are faced with is to correctly define the notion of past trajectory. The approach
we have implemented in this paper is to use the notion of commuting filtrations. In particular, this
property is satisfied by filtrations generated by fields of independent random variables or even by
fields with independent columns (or, equivalently, independent rows). As a lot of processes can be
expressed as a functional of i.i.d. random variables, these types of filtrations are quite common and
merit interest. A lot of work has been done under commuting filtrations (see Volný, 2015; Cuny
et al., 2016).

As usual, we will require some kind of dependency condition on the studied field. Namely, in
this paper, we will use Hannan’s projective condition as defined by Hannan (1973). The problem
we are interested in has been studied by Cuny and Volný (2013) for time series but it has yet to
be investigated for higher dimensions, which is the purpose of this article. Though the problem
we focus on hasn’t been studied yet, one can note that fields satisfying Hannan’s condition have
been quite extensively studied and numerous CLTs and functional CLTs, both in the annealed and
quenched sense, have been obtained. One could refer to the following works: Volný and Wang
(2014); Klicnarová et al. (2016); Zhang et al. (2020).

The proofs for the main theorems in this paper are based upon the use of a martingale-coboundary
decomposition that can be found in Volný and Wang (2014) (some more recent and general results
can be found in El Machkouri and Giraudo, 2016; Volný, 2018; Giraudo, 2018, see also Gordin, 2009)
as well as the central limit theorem and the weak invariance principle established by Peligrad and
Volný (2020) for ortho-martingales. Once the main theorems are established, we derive corollaries
in the spirit of the results obtained by Zhang et al. (2020). As shown by the previous results in the
literature, it will be required to address two situations separately: first when the summations are
done over cubic regions of Zd and, after that, when the regions are only required to be rectangular.

In the previous work of Zhang et al. (2020), the Rosenthal inequality for Lebesgue spaces (see
Hall and Heyde, 1980, Theorem 2.11, p.23) was used to derive a sufficient condition for the quenched
CLT and its functional form to hold. In order to obtain an analogous result within our framework,
we will make use of a Rosenthal type inequality for this Orlicz space. Given that no such result
seems to exist in the literature, we will follow the outline of the proof given by Burkholder (1973)
and adapt it to our framework in order to establish the required inequality.

This paper will be structured as follows: in Section 2, we introduce the notations used throughout
our article and we present the main results obtained in this work. In particular, we will split the
results into two categories: the first one will aggregate theorems dealing with summations over cubic
regions only while the other category will deal with results concerning more general rectangular
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regions. The proofs of these theorems will appear in Section 3 and we will improve on the two
applications studied by Zhang et al. (2020) as well as provide some additional examples in Section
4. These examples include linear and Volterra random fields as well as Hölder continuous functions
of linear fields, which are a common occurrence in the field of financial mathematics and economics,
and also weakly dependent random fields in the sense of Wu (2005) which hold a significant role in
mathematical physics and, in particular, within the study of particle systems. Finally, in Section 5,
we give the proof of the Rosenthal type inequality for the Orlicz space mentioned throughout this
paper.

2. Framework and results

In all that follows, we consider a probability space (Ω,F ,P) and all the random variables consid-
ered thereafter will be real-valued and defined on that probability space. We start by introducing
multiple items of notation that will be used throughout this article: d will be an integer greater than
1, [x] will denote the integer part of a real number x, bold characters will designate multi-indexes
and in particular we shall write 0 := (0, . . . , 0) ∈ Zd as well as 1 := (1, . . . , 1) ∈ Zd. For any n ∈ Zd,
we denote n := (n1, . . . , nd) and |n| :=

∏d
i=1 ni. The set of all positive integers will be denoted by

N∗ and the set of integers {1, . . . , d} will be denoted by J1, dK. In order to define the concept of past
trajectory, it is necessary to define an order on Zd: if u,v ∈ Zd are multi-indexes such that for all
k ∈ J1, dK, uk ≤ vk, then we will write u ≤ v.

Convergence of fields indexed by Zd will be interpreted in the following sense. If n = (n1, . . . , nd)
is a multi-index, then the notation n → ∞ is to be interpreted as the convergence of min{n1, . . . , nd}
to ∞. Convergence in distribution (resp. almost surely) will be denoted by D−−−−−−→ (resp.

a.s.−−−−−−→).

Before introducing the field we are interested in, we define some transformations on Ω. We let
Ti : Ω → Ω, i ∈ {1, . . . , d} be invertible measure-preserving commuting transforms on the probability
space (Ω,F ,P) and we make use of the operator notation (i.e. if U and V are two transformations
on Ω, we denote UV := U ◦ V ).

We consider a sigma-field F0 ⊂ F such that F0 ⊂ T−iF0 for all i ∈ Zd, and a random variable
X0 ∈ L0

2 where L0
2 = L0

2(Ω,F0,P) is the set of all F0-measurable and square integrable random
variables with zero mean.

For every n = (n1, . . . , nd) ∈ Zd, set

Xn = X0 ◦ Tn, (2.1)

and
Fn = T−nF0, (2.2)

where Tn = Tn1
1 · · ·Tnd

d . As a result, Xn is Fn-measurable.

Suppose that the family (Fk)k∈Zd is a commuting filtration, that is, for every integrable random
variable X, we have

Ei

[
Ej [X]

]
= Ei∧j [X],

where Ei[X] = E[X|Fi] and i ∧ j is the coordinate-wise minimum between i and j.

We recall the notion of ortho-martingale which was introduced by Cairoli (1969) (see also Khosh-
nevisan, 2002). We say that a random field (Di)i∈Zd is an ortho-martingale difference field if each
Dn is in L1(Fn) and satisfies the equation Ea[Dn] = 0 as long as there exists k ∈ J1, dK such
that ak < nk. Then, if Mn :=

∑
0≤u≤nDu, the random field (Mn)n∈Zd

+
will be called an ortho-

martingale.
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Suppose also that the random variable X0 is regular with respect to the filtration F , that is
E[X0|F−∞ei ] = 0 for every i ∈ {1, · · · , d}, where ei is the multi-index whose i-th coordinate is
equal to 1 and the others are equal to 0 with the convention that ∞× 0 = 0.

We consider the projection operators defined, for any n ∈ Zd, by Pn =
∏d

i=1 (En − En−ei), and
for every ω ∈ Ω, we denote by Pω a regular version of the conditional probability given F0, that is,
Pω = P(·|F0)(ω).

Finally, we introduce the sum that we will be studying, for every n ∈ (N∗)d,

Sn =

n∑
i=1

Xi :=
∑

1≤i≤n

Xi,

and we also set

S̄n = Sn −Rn with Rn =
d∑

i=1

(−1)i−1
∑

1≤j1<···<ji≤d

En(j1,··· ,ji) [Sn],

where n(j1,··· ,jd) is the multi-index obtained by replacing with 0 all the j1, · · · , ji-th coordinates of
the multi-index n and leaving the rest unchanged.

In dimension d = 1, this reduces to the following expression:

S̄n = Sn − E[Sn|F0], for n ∈ N∗.

This case was investigated by Cuny and Volný (2013) and therefore, we will always consider d > 1
in the rest of the paper. In dimension d = 2, the definition of S̄n reduces down to

S̄n,m = Sn,m − E[Sn,m|Fn,0]− E[Sn,m|F0,m] + E[Sn,m|F0,0], for (n,m) ∈ (N∗)2.

2.1. Functional CLT over cubic regions. Here we present the quenched functional CLT over cubic
regions of Zd. These results expand Theorem 4.1, the second part of Corollary 4.3, and Theorem
4.4 (a) obtained by Zhang et al. (2020) to the functional framework. It is also possible to view
these results as an extension to higher dimensions of Theorem 1 established by Cuny and Volný
(2013). As noted by Zhang et al. (2020), the proofs of these theorems essentially reduce down to
particular cases of the proofs of the functional central limit theorems over rectangular regions of
Zd. The differences in the proofs between the two frameworks will be specified in greater detail in
Section 3.

Theorem 2.1. Assume that (Xn)n∈Zd is defined by (2.1) and that the filtration (Fn)n∈Zd given by
(2.2) is commuting. Also, assume that one of the transformations Ti, 1 ≤ i ≤ d, is ergodic and that∑

u≥0

∥P0(Xu)∥2 < ∞. (2.3)

Then, for P-almost all ω ∈ Ω,(
1

nd/2
S̄[nt]

)
t∈[0,1]d

D−−−−−−→
n→∞

(σWt)t∈[0,1]d under Pω,

where σ2 := E[D2
0] with D0 =

∑
i≥0 P0(Xi), (Wt)t∈[0,1]d is a standard Brownian sheet, [kt] :=

([kt1], · · · , [ktd]) for k ∈ Z and the convergence happens in the Skorokhod space D([0, 1]d) endowed
with the uniform topology. Moreover, σ2 = lim

n→∞
E[S̄2

n,...,n]

nd .
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In Theorem 2.1, the random centering R[nt] cannot be avoided without additional hypotheses. As
a matter of fact, for d = 1, Volný and Woodroofe (2010) constructed an example showing that the
CLT for partial sums needs not be quenched. It should also be noticed that, for a stationary ortho-
martingale, the existence of a finite second moment is not enough for the validity of a quenched
CLT when the summation is taken over rectangles (see Peligrad and Volný, 2020). That being said,
the following corollary gives a sufficient condition to get rid of the stochastic centering Rn in the
previous theorem.

Corollary 2.2. Assume that the hypotheses of Theorem 2.1 are satisfied and assume in addition
that for every i ∈ {1, . . . , d}, it holds

1

nd
E0

[
max

1≤m≤n1

(
Em(i) [Sm]

)2] a.s.−−−−−−→
n→∞

0

where we recall that m(i) is the multi-index obtained by replacing with 0 the i-th coordinate of the
multi-index m and leaving the rest unchanged. Then, for almost all ω ∈ Ω,(

1

nd/2
S[nt]

)
t∈[0,1]d

D−−−−−−→
n→∞

(σWt)t∈[0,1]d under Pω, (2.4)

where (Wt)t∈[0,1]d is a standard Brownian sheet and the convergence happens in the Skorokhod space
D([0, 1]d) endowed with the uniform topology.

To end this section, we give a condition that is easier to verify but still guarantees that the
convergence (2.4) holds.

Corollary 2.3. Assume that (Xn)n∈Zd is defined by (2.1), that (Fn)n∈Zd is given by (2.2) and is a
commuting filtration, and that one of the transformations Ti, 1 ≤ i ≤ d, is ergodic. If the following
condition is satisfied: ∑

u≥1

∥E1(Xu)∥2
|u|

1
2

< ∞. (2.5)

Then, for almost all ω ∈ Ω, the conclusion of Corollary 2.2 holds.

Once again we note that this result is an extension of Corollary 2 in Cuny and Volný (2013) to
random fields and an extension of Theorem 2.6 (a) found in Zhang et al. (2020) to the functional
framework.

2.2. Functional CLT over rectangular regions. In order to obtain a functional CLT when we sum
over rectangular regions, a stronger projective condition than (2.3) is necessary. Indeed, Peligrad
and Volný (2020) gave a counterexample to a quenched CLT over rectangles for some stationary
ortho-martingale under condition (2.3). This leads us to consider a projective condition in an Orlicz
space associated with a specific Young function.

Following the work of Krasnosel’skĭı and Rutitskĭı (1960), we define the Luxemburg norm asso-
ciated with the Young function Φ : [0,∞) → [0,∞) as

∥f∥Φ = inf
{
t > 0 : E

[
Φ(|f |/t)

]
≤ 1
}
.

In everything that follows, we will consider the Young function Φd : [0,∞) → [0,∞) defined for
every x ∈ [0,∞) by

Φd(x) = x2(log(1 + x))d−1. (2.6)
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Theorem 2.4. Assume that (Xn)n∈Zd is defined by (2.1) and that the filtration (Fn)n∈Zd given by
(2.2) is commuting. Also, assume that one of the transformations Ti, 1 ≤ i ≤ d, is ergodic and that∑

u≥0

∥P0(Xu)∥Φd
< ∞. (2.7)

Then, for P-almost all ω ∈ Ω,(
1√
|n|

S̄[tn]

)
t∈[0,1]d

D−−−−−−→
n→∞

(σWt)t∈[0,1]d under Pω,

where [tn] := ([t1n1], · · · , [tdnd]), σ2 is defined in Theorem 2.1, (Wt)t∈[0,1]d is a Brownian sheet,

and the convergence happens in the Skorokhod space D([0, 1]d). In addition, σ2 = lim
n→∞

E[S̄2
n]

|n| .

We remark that this result and the following ones extend Theorem 4.2, the first part of Corollary
4.3, and Theorem 2.6 (b) in Zhang et al. (2020) by obtaining functional versions of these theorems.

Corollary 2.5. Suppose that the hypotheses of Theorem 2.4 hold and assume that in addition, for
every i ∈ J1, dK,

1

|n|
E0

[
max

1≤m≤n

(
Em(i) [Sm]

)2] a.s.−−−−−−→
n→∞

0.

Then, for P-almost all ω ∈ Ω,(
1√
|n|

S[tn]

)
t∈[0,1]d

D−−−−−−→
n→∞

(σWt)t∈[0,1]d under Pω, (2.8)

where (Wt)t∈[0,1]d is a Brownian sheet and the convergence happens in the Skorokhod space D([0, 1]d).

Corollary 2.6. Assume that the hypotheses of Theorem 2.4 and (2.5) hold. Then for almost all
ω ∈ Ω, (2.8) holds.

This last Corollary not only extends Theorem 4.4 (b) in Zhang et al. (2020) to the functional
case but also reduces the required condition even in the classical CLT case.

Corollary 2.7. Assume that (Xn)n∈Zd is defined by (2.1), that (Fn)n∈Zd is given by (2.2) and is a
commuting filtration, and that one of the transformations Ti, 1 ≤ i ≤ d, is ergodic. If the following
condition is satisfied: ∑

u≥1

∥E1[Xu]∥Φd

Φ−1
d (|u|)

< ∞. (2.9)

Then, for almost all ω ∈ Ω, the conclusion of Corollary 2.5 holds.

3. Proofs of the results

Before we prove the previous results, we start by defining some additional notations:
• if h : Ω → R is a measurable function, we will denote by hu,u ∈ Zd, the function h ◦ Tu;
• for any n ∈ (N∗)d and for any measurable function h : Ω → R, we denote

Sn(h) =
∑

1≤i≤n

hi and S̄n(h) = Sn(h)−Rn(h)

where

Rn(h) =
d∑

i=1

(−1)i−1
∑

1≤j1<···<ji≤d

En(j1,··· ,ji) [Sn(h)],

and n(j1,··· ,ji) is the multi-index whose j1, · · · , ji−th coordinates are 0 and the others are
equal to the corresponding coordinates of n;
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• for any i ∈ J1, dK and for any ℓ ∈ N, we denote

F (i)
ℓ =

∨
k∈Zd

ki≤l

Fk;

• we set L2 logd−1 L(G) to be the set of G-measurable functions h : Ω → R such that
E
[
h2max

(
0, log |h|

)d−1
]
< ∞; if G = F , we simply write L2 logd−1 L(F) = L2 logd−1 L;

• if h ∈ L2 logd−1 L, then we define the maximal operator h∗ = supm>0
1

|m|
∑

1≤i≤m |h| ◦ T i.
Let us start with the proof of Theorem 2.4 as it is the most general result. Moreover, the computa-
tions used in the proof of Theorem 2.1 are a particular case of the computations used in the proof
of Theorem 2.4 and will be largely skipped.

The proof of Theorem 2.4 relies on the following important lemma which we will refer to as the
Main Lemma in the rest of the paper

Lemma 3.1 (Main Lemma). For any F0-measurable function h ∈ L2 logd−1 L satisfying the fol-
lowing condition: ∑

u≥0

∥P0(hu)∥Φd
< ∞, (3.1)

there exists an integrable function g such that for all N ∈ (N∗)d,√
E0

[
max

1≤n≤N

1

|n|
∣∣Sn(h)

∣∣2] ≤ g P− a.s.

To establish this lemma, we shall first obtain the following intermediary lemma.

Lemma 3.2. For any function h ∈ L2 logd−1 L, there exists a constant C > 0 such that for all
u ∈ Zd, we have ∥∥∥∥∥

√(∣∣P0(hu)
∣∣2)∗

∥∥∥∥∥
1

≤ C∥P0(hu)∥Φd
.

Proof of Lemma 3.2: Let h ∈ L2 logd−1 L, u ∈ Zd and t > ∥P0(hu)∥Φd
. We let

Ωt =
{
ω ∈ Ω : 4

(
P0(hu)

)2
(ω) > t2

}
.

According to Corollary 1.7 of Chapter 6 in Krengel (1985), there exists a constant Cd > 0 such that

P

(
sup

n∈(N∗)d

1

|n|
∑

1≤i≤n

(
P0(hu) ◦ T i

)2
> t2

)
≤ Cd

∫
Ωt

4
(
P0(hu)

)2
t2

(
log

(
4
(
P0(hu)

)2
t2

))d−1

dP

≤ 2d−1Cd

∫
Ωt

(
2P0(hu)

)2
t2

(
log

(
1 +

2|P0(hu)|
t

))d−1

dP

≤ 2d+1Cdt
−2∥P0(hu)∥2Φd

.

The last inequality results from the fact that

∥P0(hu)∥Φd
= inf

{
t > 0 : E

[
Φd

(
|P0(hu)|

t

)]
≤ 1

}
.

Indeed, by letting t0 = ∥P0(hu)∥Φd
, we have

E

[
(P0

(
hu)
)2(

log

(
1 +

|P0(hu)|
t0

))d−1
]
≤ t20.
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Hence since t > t0, ∫
Ω

(
P0(hu)

)2
t2

(
log

(
1 +

|P0(hu)|
t

))d−1

dP ≤ t20t
−2.

Therefore, applying this inequality to h′ = 2h ∈ L2 logd−1 L, we get∫
Ωt

(
2P0(hu)

)2
t2

(
log

(
1 +

2|P0(hu)|
t

))d−1

dP ≤ 4t−2∥P0(hu)∥2Φd
.

Thus ∥∥∥∥∥
√(∣∣P0(hu)

∣∣2)∗
∥∥∥∥∥
1

=

∫ ∞

0
P

(
sup

n∈(N∗)d

1

|n|
∑

1≤i≤n

(
P0(hu) ◦ T i

)2
> t2

)
dt

≤
∫ t0

0
1dt+

∫ ∞

t0

P

(
sup

n∈(N∗)d

1

|n|
∑

1≤i≤n

(
P0(hu) ◦ T i

)2
> t2

)
dt

≤ (2d+1Cd + 1)∥P0(hu)∥Φd
.

□

Proof of the Main Lemma: We consider a measurable function h satisfying the hypotheses of the
lemma and we let n,N ∈ (N∗)d such that n ≤ N . Then, we start by studying the quantity S̄n(h)
using the following projective decomposition (see Peligrad and Zhang, 2018):

Sn(h)−Rn(h) =
∑

1≤i≤n

Pi

( ∑
i≤u≤n

hu

)
=

∑
1≤i≤n

P0

( ∑
0≤u≤n−i

hu

)
◦ T i.

By exchanging the sums, we get

S̄n(h) =
∑

0≤u≤n−1

∑
1≤i≤n−u

P0(hu) ◦ T i.

Then, recalling that n ≤ N , we obtain

∣∣S̄n(h)
∣∣ ≤ ∑

0≤u≤N−1

max
1≤k≤N

∣∣∣∣∣ ∑
1≤i≤k

P0(hu) ◦ T i

∣∣∣∣∣.
Note that for all u ≥ 0, the partial sum

∑
1≤i≤k

P0(hu)◦T i is an ortho-martingale. Using Cairoli’s

inequality for ortho-martingales (see Khoshnevisan, 2002), we find that

E0

[
max

1≤k≤N

∣∣∣∣∣ ∑
1≤i≤k

P0(hu) ◦ T i

∣∣∣∣∣
2]

≤ 22dE0

[( ∑
1≤i≤N

P0(hu) ◦ T i

)2]
.

By orthogonality, we obtain for all N ∈ (N∗)d√
E0

[
max

1≤n≤N

∣∣S̄n(h)
∣∣2] ≤ 2d

∑
u≥0

√ ∑
1≤i≤N

E0

[(
P0(hu)

)2◦T i
]
≤ 2d

√
|N |

∑
u≥0

√(∣∣P0(hu)
∣∣2)∗.

Since the previous inequality is satisfied for all N ∈ (N∗)d, then it also holds√
E0

[
max

1≤n≤N

1

|n|
∣∣Sn(h)

∣∣2] ≤ 2d
∑
u≥0

√(∣∣P0(hu)
∣∣2)∗. (3.2)
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However, according to Lemma 3.2 and hypothesis (3.1), there exists C > 0 such that∥∥∥∥∥∑
u≥0

√(∣∣P0(hu)
∣∣2)∗∥∥∥∥∥

1

≤ C
∑
u≥0

∥P0(hu)∥Φd
< ∞.

This concludes the proof of the main lemma. □

Proof of Theorem 2.4: For any n ∈ N∗, we let

X
(n)
0 =

∑
j∈J−n,0Kd

Pj(X0).

Given the regularity of X0, the sequence of random variable (X0−X
(n)
0 )n∈N converges almost surely

to 0 and using (3.2), we get the inequality

lim sup
N→∞

√
E0

[
max

1≤m≤N

1

|m|
∣∣Sm(X0 −X

(n)
0 )

∣∣2] ≤ 2d
∑
u≥0

√(∣∣∣P0

(
(X0 −X

(n)
0 ) ◦ Tu

)∣∣∣2)∗

for all n ∈ N∗. Then, using lemma 3.2, there exists a constant C such that∥∥∥∥∥
√
lim sup
N→∞

E0

[
max

1≤m≤N

1

|m|
∣∣Sm(X0 −X

(n)
0 )

∣∣2]∥∥∥∥∥
1

≤ C
∑
u≥0

∥∥∥P0

(
(X0 −X

(n)
0 ) ◦ Tu

)∥∥∥
Φd

−−−−−−→
n→∞

0.

Therefore, there exists an increasing sequence of integers (nk)k∈N such that

lim
k→∞

lim sup
N→∞

E0

[
max

1≤m≤N

1

|m|
∣∣Sm(X0 −X

(nk)
0 )

∣∣2] = 0 a.s. (3.3)

Moreover, we also have, for all n ∈ N∗

1

|N |
E0

[
max

1≤i≤N

∣∣Ri(X
(n)
0 )

∣∣2] a.s.−−−−−−→
N→∞

0. (3.4)

Indeed, using the triangle inequality, it is enough to show that for all i ∈ J−n, 0Kd

1

|N |
E0

[
max

1≤j≤N

∣∣Rj(Pi(X0))
∣∣2] a.s.−−−−−−→

N→∞
0.

This holds true by applying the following lemma.

Lemma 3.3. For any square integrable F0-measurable function h, the condition∑
u≥1

∥E1[hu]∥2
|u|1/2

< ∞ (3.5)

implies
1

|N |
E0

[
max

1≤n≤N

∣∣Rn(h)
∣∣2] a.s.−−−−−−→

N→∞
0.

We delay the proof of this lemma to later in this section.

Remark that the proof of Proposition 4.1 in Volný and Wang (2014) can be easily adapted to the
case of Orlicz spaces; so that for some fixed n ∈ N∗, we get the following martingale-coboundary
decomposition

X
(n)
0 =

∑
S⊂J1,dK

h
(n)
S ◦

∏
j∈Sc

(I − Tj),
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where h
(n)
S ∈

⋂
i∈S

(
L2 logd−1 L

(
F (i)
0

)
⊖ L2 logd−1 L

(
F (i)
−1

))
for all S ⊂ J1, dK and using the conven-

tion
∏

j∈∅ (I − Tj) = I. Moreover

h
(n)
J1,dK =

∑
i∈Zd

P0

(
X

(n)
0 ◦ T i

)
.

According to the proof of Remark 11 in Peligrad and Volný (2020) (see also the proof of Theorem
7 in the same article), the following almost-sure convergence

Pω

(
max

1≤m≤N

1

|N |

∣∣∣Sm

(
X

(n)
0 − dn

)∣∣∣2 ≥ ϵ

)
a.s.−−−−−−→

N→∞
0 (3.6)

holds for all ϵ > 0, where dn = h
(n)
J1,dK. Moreover, letting N ∈ (N∗)d and D0 =

∑
i∈Zd P0(Xi), we

get

SN (D0 − dn) =
∑

1≤i≤N

(
Di −D

(n)
i

)
,

where
Di =

∑
j∈Zd

Pi

(
Xi−j

)
and D

(n)
i =

∑
j∈J−n,0Kd

Pi

(
Xi−j

)
.

Hence, given that
(
Di −D

(n)
i

)
i∈Zd is an ortho-martingale difference field and according to Cairoli’s

inequality, we have

Pω

(
1√
|N |

max
1≤i≤N

∣∣Si(D0 − dn)
∣∣ > ϵ

)
≤ 22d

ϵ2|N |
∑

1≤i≤N

E0

[(
Di −D

(n)
i

)2]
.

Let us note that√√√√ 1

|N |
∑

1≤i≤N

E0

[(
Di −D

(n)
i

)2]
≤

∑
j ̸∈J−n,0Kd

√
1

|N |
∑

1≤i≤N

E0

[(
P0(X−j)

)2 ◦ T i
]
.

According to the ergodic Theorem 1.1 of Chapter 6 in Krengel (1985) for Dunford Schwartz operators
and Lemma 7.1 in Dedecker et al. (2014), we have the convergence

lim
N→∞

1

|N |
∑

1≤i≤N

E0

[(
P0(X−j)

)2 ◦ T i
]
= E

[(
Pj(X0)

)2]
a.s.

for all j ̸∈ J−n, 0Kd. Since
∑

j≥0 ∥P0(Xj)∥2 < ∞, we get

lim
n→∞

lim
N→∞

22d

ϵ2|N |
∑

1≤i≤N

E0

[(
Di −D

(n)
i

)2]
= 0 a.s. (3.7)

Combining (3.3), (3.4),(3.6) and (3.7), we obtain that for all ϵ > 0,

lim sup
N→∞

Pω

(
1√
|N |

max
1≤m≤N

∣∣S̄m − Sm(D0)
∣∣ ≥ ϵ

)
= 0 a.s.

We conclude by noticing that the field (D0 ◦ T i)i∈Zd satisfies a functional central limit theorem
(according to Theorem 10 in Peligrad and Volný, 2020) and therefore the expected result is obtained
by applying Theorem 3.1 in Neuhaus (1971). □
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Proof of the Theorem 2.1: The proof of this theorem is very similar to the previous one, with the ex-
ception of using Theorem 2.8 instead of Theorem 1.1 of Chapter 6 in Krengel (1985) and Lemma 1.4
in the same Chapter (applied to the abstract maximal operator Mf := supn∈N

1
nd

∑
1≤i≤n1 |f | ◦ T i,

see Definition 1.3 of Chapter 6 and Corollary 2.2 of Chapter 1 in Krengel, 1985) instead of Corollary
1.7 in order to obtain the L2 versions of lemma 3.2 and the Main Lemma mentioned below. □

Lemma 3.4 (L2 version of the Main Lemma 3.1). For any function h ∈ L2(F0) satisfying the
following condition: ∑

u≥0

∥P0(hu)∥2 < ∞, (3.8)

there exist an integrable function g such that for all N ∈ N∗,√
E0

[
max

1≤n≤N

1

nd

∣∣Sn1(h)
∣∣2] ≤ g P− a.s.

Lemma 3.5 (L2 version of Lemma 3.2). For all functions h ∈ L2, there exists a constant C > 0
such that for all u ∈ Zd, we have∥∥∥∥∥

√(∣∣P0(hu)
∣∣2)⋆∥∥∥∥∥

1

≤ C∥P0(hu)∥2,

where h⋆ = supn∈N∗
1
nd

∑
1≤i≤n1 |h| ◦ T i.

The following proof of Corollary 2.5 can be easily adapted to obtain Corollary 2.2 by using the
Theorem 2.1 instead of Theorem 2.4.

Proof of Corollary 2.5: According to Theorem 2.4 and Theorem 3.1 in Neuhaus (1971), it is enough
to show

1

|n|
E0

[
max

1≤m≤n
R2

m

]
a.s.−−−−−−→

n→∞
0.

Let m ∈ Zd, and recall that

Rm =
d∑

i=1

(−1)i−1
∑

1≤j1<···<ji≤d

Em(j1,··· ,ji) [Sm],

where m(j1,...,ji) is the multi-index such that the jk-th, 1 ≤ k ≤ i coordinates are zero and the
others are equal to the corresponding coordinates of m.

Using the triangle inequality, it is enough to prove that the property
1

|n|
E0

[
max

1≤m≤n

(
Em(j1,··· ,ji) [Sm]

)2] a.s.−−−−−−→
n→∞

0 P (j1, . . . , ji)

holds for any j1 < · · · < ji, 1 ≤ i ≤ d. We establish that via induction on i.

The terms satisfying i = 1 have this property according to the hypothesis of the corollary. By
induction, the corollary will be proven if we can show that if property P (j1, . . . , ji) is verified for
all j1 < · · · < ji for some i < d, then P (j1, . . . , ji+1) also holds for all j1 < · · · < ji+1. For the sake
of simplicity and without loss of generality, we will only establish that

∀j ∈ J1, dK, P (j) =⇒ P (1, 2).

In other words, we use the hypothesis of the corollary to show
1

|n|
E0

[
max

1≤m≤n

(
Em(1,2) [Sm]

)2] a.s.−−−−−−→
n→∞

0.
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According to Jensen’s inequality, we have

E0

[
max

1≤m≤n

(
Em(1,2) [Sm]

)2]
= E0

[
max

1≤m≤n

(
Em(1,2)

[
Em(1) [Sm]

])2] ≤ E0

[
max

1≤m≤n

(
Em(1) [Sm]

)2]
.

So
1

|n|
E0

[
max

1≤m≤n

(
Em(1,2) [Sm]

)2] ≤ 1

|n|
E0

[
max

1≤m≤n

(
Em(1) [Sm]

)2] a.s.−−−−−−→
n→∞

0.

□

Before continuing with the proof, we establish Lemma 3.3.

Proof of Lemma 3.3: We show that for any i ∈ J1, dK and any 1 ≤ j1 < · · · < ji ≤ d, we have the
convergence

1

|N |
E0

[
max

1≤n≤N

(
En(j1,...,ji) [Sn(h)]

)2] a.s.−−−−−−→
N→∞

0.

In order to do so, we use an induction on k = d − i with d fixed. For k = 0 and in the same way
as in the proof of Lemma 3.2 in Zhang et al. (2020) (see also the proof of Theorem 4.4 in the same
article), we establish that (

E0[Sn(h)]
)2

|n|
a.s.−−−−−−→

n→∞
0.

Hence
1

|N |
max

1≤n≤N

(
E0[Sn(h)]

)2 a.s.−−−−−−→
N→∞

0.

Now, we suppose that the desired property holds for some k−1 < d−1. Without loss of generality,
we establish the property only for (j1, . . . , jk) = (1, . . . , k); it is enough to show that

1

|N |
E0

[
max

1≤n≤N

(
En(j1,...,jk) [Sn(h)]− En(j2,...,jk) [Sn(h)]

)2] a.s.−−−−−−→
N→∞

0.

Let n,N ∈ (N∗)d such that n ≤ N , then the following decomposition holds

E0

[
max

1≤n≤N

(
En(j1,...,jk) [Sn(h)]− En(j2,...,jk) [Sn(h)]

)2]
= E0

[
max

1≤n≤N

(
n1∑
i=1

P
(1)

n(j1,...,jk),i
(Sn(h))

)2]
,

where P
(1)

n(j1,...,jk),i
(Sn(h)) = Eie1+n(j1,...,jk) [Sn(h)] − E(i−1)e1+n(j1,...,jk) [Sn(h)] and e1 is the multi-

index whose coordinates are all zero except for the first one which is 1.

Since h is F0-measurable, we have∣∣∣∣∣
n1∑
i=1

P
(1)

n(j1,...,jk),i
(Sn(h))

∣∣∣∣∣ ≤ ∑
1≤u≤N

max
1≤k≤N1

∣∣∣∣∣
k∑

i=1

P
(1)

u(j1,...,jk),i
(hu)

∣∣∣∣∣.
Therefore, according to Doob’s inequality for martingales, it follows√√√√E0

[
max

1≤n≤N

(
n1∑
i=1

P
(1)

n(j1,...,jk),i
(Sn(h))

)2]
≤ 2

∑
1≤u≤N

√√√√E0

[(
N1∑
i=1

P
(1)

u(j1,...,jk),i
(hu)

)2]
.

Let c > 0, we use the following decomposition

1√
|N |

∑
1≤u≤N

√√√√E0

[(
N1∑
i=1

P
(1)

u(j1,...,jk),i
(hu)

)2]
=: IN ,c + IIN ,c
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where

IN ,c =
1√
|N |

∑
1≤u1≤N1

∑
1≤u2,...ud≤c

√√√√E0

[(
N1∑
i=1

P
(1)

u(j1,...,jk),i
(hu)

)2]
and IIN ,c is the remainder of the initial sum.

Let us show that
lim sup
N→∞

IN ,c = 0 a.s.

Indeed, by an orthogonality argument

IN ,c ≤
cd−1√
|N |

sup
1≤u2,...,ud≤c

∑
u1≥0

√√√√ N1∑
i=1

E0

[(
P

(1)

u(j1,...,jk),0
(hu)

)2
◦ T i

1

]
.

However, according to Lemma 7.1 in Dedecker et al. (2014), we get the convergence

lim
N1→∞

1

N1

∑
1≤i≤N1

E0

[(
P

(1)

u(j1,...,jk),0
(hu)

)2
◦ T i

1

]
= E

[(
P

(1)

u(j1,...,jk),0
(hu)

)2 ∣∣∣∣ I1] a.s.

where I1 is the invariant σ-algebra of the transformation T1. Hence

lim sup
N→∞

IN ,c = 0 a.s.

Each sum appearing in IIN ,c, admits at least one direction (different from the first one) for which
the index is at least equal to c+1. Without loss of generality, we will only treat the case where the
second direction has an index at least equal to c+ 1 and all other directions have the full range of
indexes. Then

1√
|N |

∑
1≤u1≤N1

∑
c+1≤u2≤N2

∑
1≤u3≤N3

· · ·
∑

1≤ud≤Nd

√√√√E0

[(
N1∑
i=1

P
(1)

u(j1,...,jk),i
(hu)

)2]

≤
∑

u2≥c+1

∑
u1≥0

∑
u3≥1

· · ·
∑
ud≥1

(u2 · · ·ud)−
1
2

√√√√ 1

N1

N1∑
i=1

E0

[(
P

(1)

u(j1,...,jk),0
(hu)

)2
◦ T i

1

]
.

Once again, applying Lemma 7.1 in Dedecker et al. (2014), we obtain

lim sup
N→∞

IIN ,c ≤
∑

u2≥c+1

∑
u1≥0

∑
u2≥1

· · ·
∑
ud≥1

√
E
[(

P
(1)

u(j1,...,jk),0
(hu)

)2 ∣∣∣∣ I1]
√
u2 · · ·ud

.

Since (3.5) implies (45) in Zhang et al. (2020) (see the proof of Theorem 4.4), we get

lim
c→∞

lim sup
N→∞

IIN ,c = 0 a.s.

This concludes the proof. □

Corollaries 2.6 and 2.3 are direct consequences of this lemma and the previous results.

Proof of Corollary 2.6: This theorem is a consequence of Lemma 3.3 and Theorem 2.4. □

Proof of Corollary 2.3: The theorem is a consequence of Lemma 3.3, Theorem 2.4 and Lemma 3.3
in Zhang et al. (2020) (for d > 2, see Theorem 4.4 (a) and its proof in Zhang et al., 2020) and
Theorem 2.1. □
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The rest of this section will be dedicated to proving Corollary 2.7. We start by making a few
remarks concerning the Luxemburg norms. Let us note that for x ≥ 0 and 0 < λ ≤ e− 1,

log
(
1 +

x

λ

)
log(1 + λ) ≤ log(1 + x).

Recall that the function Φd : [0,∞) → [0,∞) is defined by

Φd(x) = x2(log(1 + x))d−1

for all x ∈ [0,∞). Then, we deduce the following remarkable property of the function Φd.
For x > 0 and 0 < λ ≤ e− 1,

Φd

(x
λ

)
=
(x
λ

)2(
log
(
1 +

x

λ

))d−1
≤ x2(log(1 + x))d−1

λ2(log(1 + λ))d−1
=

Φd(x)

Φd(λ)
. (3.9)

Besides, since Φd is a convex function, we also have

Φd

(x
λ

)
= Φd

(x
λ
+
(
1− 1

λ

)
· 0
)
≤ Φd(x)

λ
+
(
1− 1

λ

)
Φd(0) =

Φd(x)

λ
, (3.10)

for x ≥ 0 and λ ≥ 1.

Obviously, the function Φd defined by (2.6) is bijective and we denote by Φ−1
d its inverse function.

The following lemma might be well-known but we could not find it in the literature.

Lemma 3.6. Let X ∈ L2 logd−1 L. If Φ−1
d

(
E
[
Φd(|X|)

])
≤ e− 1, then

∥X∥Φd
≤ Φ−1

d

(
E
[
Φd(|X|)

])
,

and if E
[
Φd(|X|)

]
≥ 1, then

∥X∥Φd
≤ E

[
Φd(|X|)

]
.

Proof of Lemma 3.6: If X = 0 almost surely, then the property is evident. Else, suppose that
P(X = 0) ̸= 1, and recall the definition of Luxemburg norm

∥X∥Φd
= inf

{
λ > 0 : E

[
Φd

(
|X|
λ

)]
≤ 1

}
.

Note that by the properties of Φd for any 0 < λ ≤ e− 1

E
[
Φd

(
|X|
λ

)]
≤

E
[
Φd(|X|)

]
Φd(λ)

.

From this inequality it follows that if λ is the solution to the equation E
[
Φd(|X|)

]
= Φd(λ), we have

necessarily that E
[
Φd

(
|X|
λ

)]
≤ 1, and then ∥X∥Φd

≤ λ = Φ−1
d

(
E
[
Φd(|X|)

])
.

For the case E
[
Φd(|X|)

]
> 1, the proof is similar using property (3.10) of Φd. □

Lemma 3.7. Condition (2.9) implies
∑

u≥0∥P0(Xu)∥Φd
< ∞.

Proof of Lemma 3.7: Let a, b ∈ Zd such that a ≤ b. Denote by Ψd the conjugate function associated
with Φd defined in the following way

Ψd(x) = sup
y≥0

(xy − Φd(y))
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for x ≥ 0. By the generalized Holder inequality for Orlicz spaces (see Rao and Ren, 1991, p.58), we
have∑
u≥1

∥P0(Xu)∥Φd
=
∑
n≥0

2n+1−1∑
v=2n

∥P0(Xv)∥Φd

≤2
∑
n≥0

inf

{
η > 0 :

2n+1−1∑
v=2n

Ψd

(
1

η

)
≤ 1

}
· inf

{
η > 0 :

2n+1−1∑
v=2n

Φd

(∥P0(Xv)∥Φd

η

)
≤ 1

}
,

(3.11)

where 2n = (2n1 , . . . , 2nd). Computing the second term in the sum, we get

inf

{
η > 0 :

2n+1−1∑
v=2n

Ψd

(
1

η

)
≤ 1

}
=

1

Ψ−1
d (|2n|−1)

.

In order to control the second term in (3.11), we make the following remark: if f is a nondecreasing
convex function then for any η > 0, the following holds

f

(∥∥∥∥∥
2n+1−1∑
v=2n

P−v(X0)

η

∥∥∥∥∥
Φd

)
= f

(∥∥∥∥∥1η
d∑

i=0

(−1)d−i
∑

1≤j1<···<ji≤d

E
−2n+1(j1,...,ji)

[X0]

∥∥∥∥∥
Φd

)

≤ 1

2d

d∑
i=0

∑
1≤j1<···<ji≤d

f

(∥∥∥∥∥2dη (−1)d−iE
−2n+1(j1,...,ji)

[X0]

∥∥∥∥∥
Φd

)

≤ f

(
2d

η
∥E−2n [X0]∥Φd

)
.

Note that in the previous inequalities, the term corresponding to i = 0 is by convention
(−1)dE−2n+1 [X0]. It is enough to control the second term in (3.11) only when E

[
Φd

(
|P−v(X0)|

η

)]
≤

Φd(e − 1) for any v ≥ 0, as the other cases can be proved using similar arguments and are left to
the reader. By Lemma 3.6 above, if E

[
Φd

(
|P−v(X0)|

η

)]
≤ Φd(e− 1) for any v ≥ 0, we also have

Φd

(∥P−v(X0)∥Φd

η

)
≤ E

[
Φd

(
|P−v(X0)|

η

)]
.

So
2n+1−1∑
v=2n

Φd

(∥P−v(X0)∥Φd

η

)
≤

2n+1−1∑
v=2n

E
[
Φd

(
|P−v(X0)|

η

)]
. (3.12)

Before proceeding, we state the following lemma which is a version of the Rosenthal inequality in
the Orlicz space associated with Φd. Its proof will be given in the appendix.

Lemma 3.8. If (du)u∈(N)∗ is an ortho-martingale difference field and 0 < ϵ < 1, then there exists
two constants C1, C2 > 1, which only depend on d and ϵ, such that

n−1∑
u=0

E
[
Φd(|du|)

]
≤ C1max

{
φ−1
d

(
C2

∥∥∥∥∥
n−1∑
u=0

du

∥∥∥∥∥
Φd

)
, ϕd ◦ fϵ

(
C2

∥∥∥∥∥
n−1∑
u=0

du

∥∥∥∥∥
Φd

)}
,

with ϕd(x) = xd+1
(
log(1 + x)

)d−1, φd(x) = x
(
log(1 + x)

)d−1 and fϵ(x) = x1/(1−ϵ) for all x ≥ 0.

We let ϵ = 1
d+2 and we notice that while the function ϕd ◦ fϵ is convex on [0,∞), that is not the

case for φ−1
d . To solve this issue, remark that

(
φ′
d

(
C−1

1
2

))−1
x +

C−1
1
2 ≥ φ−1

d (x) for all x ≥ 0 and
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thus the function ρ : [0,∞) → [0,∞) defined by ρ(x) = max

{(
φ′
d

(
C−1

1
2

))−1
x+

C−1
1
2 , ϕd ◦ fϵ(x)

}
is

convex and greater than φ−1
d . Applying Lemma 3.8, we can show that there exists C1, C2 > 1 such

that for any η > 0,

2n+1−1∑
v=2n

Φd

(∥P0(Xv)∥Φd

η

)

≤
2n+1−1∑
v=2n

E
[
Φd

(
|P−v(X0)|

η

)]

≤ C1max

{
φ−1
d

(
C2

∥∥∥∥∥
2n+1−1∑
v=2n

P−v(X0)

η

∥∥∥∥∥
Φd

)
, ϕd ◦ fϵ

(
C2

∥∥∥∥∥
2n+1−1∑
v=2n

P−v(X0)

η

∥∥∥∥∥
Φd

)}

≤ C1ρ

(
C2

∥∥∥∥∥
2n+1−1∑
v=2n

P−v(X0)

η

∥∥∥∥∥
Φd

)
.

According to the remark above, we get that

ρ

(
C2

∥∥∥∥∥
2n+1−1∑
v=2n

P−v(X0)

η

∥∥∥∥∥
Φd

)
≤ ρ

(
2dC2

η
∥E−2n [X0]∥Φd

)
.

Since ρ is continous and ρ(0) < C−1
1 , the set

{
µ > 0 : ρ(µ) ≤ C−1

1

}
is non-empty. Moreover

C1ρ

(
C2

2d

η
∥E−2n [X0]∥Φd

)
≤ 1 ⇐⇒ η ≥ 2dC2

ρ−1(C−1
1 )

∥E−2n [X0]∥Φd
.

Therefore, setting C = 2dC2

ρ−1(C−1
1 )

, we conclude that

inf

{
η > 0 :

2n+1−1∑
v=2n

Φd

(∥P0(Xv)∥Φd

η

)
≤ 1

}
≤ inf

{
η > 0 : C1ρ

(
C2

2d

η
∥E−2n [X0]∥Φd

)
≤ 1

}
= C∥E−2n [X0]∥Φd

.

Since ∥E−n[X0]∥Φd
is nonincreasing in all directions of n, we obtain that for any n such that nk > 0

for all k ∈ J1, dK, we have

|2n|
Φd

−1(|2n|)
∥E−2n [X0]∥Φd

≤ 2d
2n−1∑

u=2n−1

∥E0[Xu]∥Φd

Φd
−1(|u|)

.

So, for some positive constant K,

∑
v≥1

∥P0(Xu)∥Φd
≤ K

∑
n≥1

Φ−1
d (|2n|)

|2n|Ψd
−1(|2n|−1)

2n−1∑
u=2n−1

∥E−u(X0)∥Φd

Φd
−1(|u|)

.

However, there exists a constant K ′ > 0 such that Φd
−1(|2n|) ∼

n→∞
|2n|Ψd

−1(|2n|−1)K ′. Hence,
according to the previous inequalities, we have shown that (2.9) implies∑

u≥1

∥P0(Xu)∥Φd
< ∞.
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In the same way, we have for every i ∈ J1, dK and for every (j1, . . . , ji) ∈ J1, dKi such that j1 < · · · <
ji, ∑

u(j1,...,ji)≥1(j1,...,ji)

∥P0(Xu(j1,...,ji))∥Φd
< ∞.

Hence (2.7) is fulfilled. □

Proof of Corollary 2.7: This corollary is a consequence of Theorem 2.4 and Lemmas 3.3 and 3.7. □

4. Examples

In this section, we present various examples of applications of the different results we obtained.
First, we will focus on linear processes as well as a particular case of nonlinearity known as the
Volterra field. In doing so, we improve on the results by Zhang et al. (2020) by requiring weaker as-
sumptions on both the moment of the innovations and the coefficients which appear in each example.
More precisely, we obtain a functional CLT despite only requiring that the i.i.d. innovations belong
to the Orlicz space L2 logd−1 L instead of the Lebesgue space Lq with q > 2 as is required by Zhang
et al. (2020). Afterward, we shall discuss the case of Hölder continuous functions of linear fields.
To the best of the authors’ knowledge, it does not appear that quenched central limit theorems
have been derived in this context. Finally, we study the case of weakly dependent processes in the
sense of Wu (2005) which play an important role in many physical models such as particle systems
(see Liggett, 1985; Stroock and Zegarliński, 1992). As far as we know, this class of random fields
has been seldom, if ever, investigated for quenched central limit theorems. In that, our theorems
provide some innovative convergence results for these processes.

Throughout this section, we will write a ◁ b whenever a ≤ Cb with C > 0 being a constant which
can only depend on some fixed parameters. Recall that the function Φd : [0,∞) → [0,∞) is bijective
and defined by (2.6).

4.1. Linear field with independent innovations. The first application of our results will deal with
linear fields as it presents an opportunity to show how our results improve on that of Zhang et al.
(2020). It is also a very common type of fields which present a lot of interest in and of themselves.
The main argument of the proof relies on Corollary 2.6.

Example 4.1. (Linear field) Let (ξn)n∈Zd be a random field of independent, identically distributed
random variables, which are centered and satisfy E

[
|ξ0|2

(
log(1 + |ξ0|)

)d−1
]
< ∞. For k ≥ 0 define

Xk =
∑
j≥0

ajξk−j ,

where au are real coefficients such that
∑

u≥0 a
2
u < ∞. In addition, assume that∑

k≥1

1√
|k|

( ∑
j≥k−1

a2j

) 1
2

< ∞. (4.1)

Then the quenched convergence (2.8) holds.

The results obtained by Zhang et al. (2020) (Remark 6.2 (c)) required the existence of q−th
moment, with q > 2, of the innovation ξ0 to obtain the quenched functional CLT; meanwhile, we
only require that ξ0 satisfy a weaker Orlicz condition to obtain that result. Additionally, we require
weaker assumptions on the coefficients au,u ∈ Zd.

Proof of Example 4.1: Let u ≥ 0. According to the independence of the ξn, we have

P0(Xu) = auξ0 and for u ≥ 1, E1[Xu] =
∑

j≥u−1

ajξu−j .
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Applying Burkholder inequality, we obtain

∥E1[Xu]∥2 =

∥∥∥∥∥ ∑
j≥u−1

ajξu−j

∥∥∥∥∥
2

◁

√ ∑
j≥u−1

a2j∥ξu−j∥22.

By stationarity of the random field (ξi)i∈Zd , we get that

∥E1[Xu]∥2 ◁ ∥ξ0∥2

( ∑
j≥u−1

a2j

) 1
2

.

Thus, using assumption (4.1) and since ∥ξ0∥Φd
< ∞, we have shown that condition (2.5) is satisfied.

Now, noticing that ∑
u≥0

∥P0(Xu)∥Φd
=

∥ξ0∥Φd

∥ξ0∥2

∑
u≥0

∥P0(Xu)∥2

whenever P(ξ0 = 0) < 1 and using Lemma 3.3 in Zhang et al. (2020), we find that condition (2.7)
is satisfied. To get the result, we simply apply Corollary 2.6. □

4.2. Nonlinearity: the case of Volterra fields. As for the linear case, a lot is known about Volterra
fields including some quenched limit theorem under a variety of conditions as in Dedecker et al.
(2007); Zhang et al. (2020). Applying our results will require a bit more work than in the previous
case since the lack of linearity means that we cannot guarantee that Hannan’s criterion is satisfied
if we only assume that the coefficients of the Volterra field satisfy a condition similar to (4.1).
In particular, a new method of proof relying on Corollary 2.5 will be required leading to slightly
stronger assumptions than in Example 4.1.

Example 4.2. (Volterra field) Let (ξn)n∈Zd be a random field of independent, identically distributed,
and centered random variables satisfying E

[
|ξ0|2

(
log(1 + |ξ0|)

)d−1
]
< ∞. For k ≥ 0, define

Xk =
∑

u,v≥0

au,vξk−uξk−v

where au,v are real coefficients with au,u = 0 and
∑

u,v≥0 a
2
u,v < ∞. In addition, assume that

∑
k≥1

1

Φd
−1(|k|)

( ∑
u,v≥k−1

a2u,v

)1/2

< ∞, (4.2)

Then the quenched functional CLT in Corollary 2.5 holds.

This result is a generalization of the quenched functional CLT obtained in Zhang et al. (2020)
(Example 6.3). Here, we only require an Orlicz space type condition on the innovation ξ0 and we
weaken the condition (54) in Zhang et al. (2020) to condition (4.2). Additionally, we can see that
(4.2) is not a very tractable condition to work with; therefore we provide the following stronger, but
easier to verify, sufficient condition for (4.2) to hold:

∑
k≥1

(
log(|k|)

) d−1
2

|k|
1
2

( ∑
u,v≥k−1

a2u,v

)1/2

< ∞.
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Proof of Example 4.2: Let k ≥ 1 and note that

E1[Xk] =
∑

u,v≥k−1

au,vξk−uξk−v.

Let (ξ′n)n∈Zd and (ξ′′n)n∈Zd be two independent copies of (ξn)n∈Zd . By applying a decoupling
inequality by de la Peña and Giné (Theorem 3.1.1 in de la Peña and Giné, 1999, p.99), we get for
any t > 0,

E
[
Φd

(
|E1[Xk]|/t

)]
= E

[
Φd

(
1

t

∣∣∣∣∣ ∑
u,v≥k−1

au,vξk−uξk−v

∣∣∣∣∣
)]

≤ E

[
Φd

(
C

t

∣∣∣∣∣ ∑
u,v≥k−1

au,vξ
′
k−uξ

′′
k−v

∣∣∣∣∣
)]

,

with C > 0. Hence

∥E1[Xk]∥Φd
◁

∥∥∥∥∥ ∑
u,v≥k−1

au,vξ
′
k−uξ

′′
k−v

∥∥∥∥∥
Φd

.

Therefore, using the inequality ∥XY ∥Φd
◁ ∥X∥Φd

∥Y ∥Φd
for any two independent random variables

X,Y such that both ∥X∥Φd
and ∥Y ∥Φd

are finite, and applying the Burkholder inequality for Orlicz
spaces (see Dellacherie and Meyer, 1982, p.304, VII - 92), we get

∥E1[Xk]∥Φd
◁

( ∑
u,v≥k−1

u̸=v

a2u,v∥ξk−u∥2Φd
∥ξk−v∥2Φd

) 1
2

.

By stationarity and since ∥ξ0∥Φd
< ∞, we obtain by using assumption (4.2), that condition (2.9)

holds. Thus the CLT in Corollary 2.5 holds. □

Here, we cannot relax assumption (4.2) on the coefficients au,v to a condition similar to (4.1)
since it would not guarantee that the projective criterion (2.7) is satisfied. Indeed, in the case of
Volterra fields we have

P0(Xk) =
∑

u,v≥k
⟨u−k,v−k⟩=0

au,vξk−uξk−v,

where ⟨i, j⟩ =
∑d

ℓ=1 iℓjℓ for i, j ∈ Zd. Therefore, using the independence of the ξn, it holds that

∥P0(Xk)∥Φd
▷ ∥ξ0∥22

√√√√ ∑
u,v≥k

⟨u−k,v−k⟩=0

a2u,v,

Now, if we let g : x 7→ x−
1
2h(x) where h(x) =

∫ x
1

1
(log(1+y))2

dy and au,v =
(
g′(u2)g′(v1)

u1v2

)1/2
, then

∑
k≥1

1√
|k|

( ∑
u,v≥k−1

a2u,v

)1/2

< ∞,

but Hannan’s condition (2.7) fails.
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4.3. Hölderian function of a linear field. Linear random fields such as the ones presented in Example
4.1 are quite useful for stochastic modeling and are a very common occurrence in the literature of
that subject. Despite that, these types of fields might not capture the nonlinear properties of many
dynamical systems and thus practicians are often required to introduce some more complex models
that lack linearity. As we have seen, Volterra fields are a way to do so; however, in a lot of cases, a
better model for a dynamical system can appear through random fields which are regular functions
of linear fields. In the following example, we are interested in a type of regularity known as Hölder
continuity. Such processes have been studied by Dedecker et al. (2007) for example and an annealed,
i.e. nonquenched, central limit theorem under Hannan’s condition has been derived. Here, we will
provide sufficient conditions for that central limit theorem to be quenched.

Example 4.3. (Hölder function of a linear field) Consider an Hölder continuous function f : R → R
of order α ∈ (0, 1] and let (ξn)n∈Zd be a random field of independent, identically distributed, and
centered random variables which satisfy the following condition:{

E[ξ20] < ∞ if α ∈ (0, 1),

E
[
|ξ0|2

(
log(1 + |ξ0|)

)d−1
]
< ∞ if α = 1.

For k ≥ 0, define

Xk = f

(∑
j≥0

ajξk−j

)
− E

[
f

(∑
j≥0

ajξk−j

)]
(4.3)

where au are real coefficients such that
∑

u≥0 a
2
u < ∞. If the coefficients au also satisfy

∑
k≥1

1

Φd
−1(|k|)

( ∑
j≥k−1

a2j

)α
2

< ∞ (4.4)

then the quenched functional CLT in Corollary 2.5 holds.

Once again, note that (4.4) is satisfied whenever

∑
k≥1

(
log(|k|)

) d−1
2

|k|
1
2

( ∑
j≥k−1

a2j

)α
2

< ∞.

Before moving on with the rest of the proof we will need the following lemma whose proof will be
provided later on.

Lemma 4.4. For all α ∈ (0, 1) and for any nonnegative random variable X, we have the following
bound

∥Xα∥Φd
≤ Kα,d∥X∥α2

with Kα,d > 0 only depending on α and d.

Proof of Example 4.3: Throughout this proof, we will denote by Cα the Hölder constant associated
with f .

Let k ≥ 1 and consider (ξ′n)n∈Zd an independent copy of (ξn)n∈Zd . Using the fact that E1[X
′
k] = 0

where X ′
k is given by (4.3) with the innovations ξn replaced by ξ′n, we deduce that

E1[Xk] = E1

[
f

(∑
j≥0

ajξ
∗
k−j

)]
− E1

[
f

(∑
j≥0

ajξ
′
k−j

)]
,
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where ξ∗n = ξn for n ≤ 1 and ξ∗n = ξ′n otherwise. Since f is Hölder continuous of order α, we find
that

∥E1[Xk]∥Φd
≤ Cα

∥∥∥∥∥
∣∣∣∣∣ ∑
j≥k−1

aj(ξk−j − ξ′k−j)

∣∣∣∣∣
α∥∥∥∥∥

Φd

.

First, suppose that 0 < α < 1. Then by Lemma 4.4, there exists Kα,d > 0 such that∥∥∥∥∥
∣∣∣∣∣ ∑
j≥k−1

aj(ξk−j − ξ′k−j)

∣∣∣∣∣
α∥∥∥∥∥

Φd

≤ Kα,d

∥∥∥∥∥ ∑
j≥k−1

aj(ξk−j − ξ′k−j)

∥∥∥∥∥
α

2

.

However, according to the Burkholder inequality for the L2-norm, it holds∥∥∥∥∥ ∑
j≥k−1

aj(ξk−j − ξ′k−j)

∥∥∥∥∥
2

◁

( ∑
j≥k−1

a2j ∥ξk−j∥22

) 1
2

= ∥ξ0∥2

( ∑
j≥k−1

a2j

) 1
2

Thus ∥∥∥∥∥
∣∣∣∣∣ ∑
j≥k−1

aj(ξk−j − ξ′k−j)

∣∣∣∣∣
α∥∥∥∥∥

Φd

◁ ∥ξ0∥α2

( ∑
j≥k−1

a2j

)α
2

. (4.5)

Now, suppose that α = 1, then applying the Burkholder inequality for Orlicz space (see Dellacherie
and Meyer, 1982, p.304, VII - 92), we get∥∥∥∥∥ ∑

j≥k−1

aj(ξk−j − ξ′k−j)

∥∥∥∥∥
Φd

◁ ∥ξ0∥Φd

( ∑
j≥k−1

a2j

) 1
2

. (4.6)

Combining both inequalities (4.5) and (4.6), we obtain that for any α ∈ (0, 1], the inequality∥∥∥∥∥
∣∣∣∣∣ ∑
j≥k−1

aj(ξk−j − ξ′k−j)

∣∣∣∣∣
α∥∥∥∥∥

Φd

◁

∥ξ0∥α2
(∑

j≥k−1 a
2
j

)α
2 if α ∈ (0, 1),

∥ξ0∥αΦd

(∑
j≥k−1 a

2
j

)α
2 if α = 1

is satisfied. Therefore, using (4.4) and the moment condition on the random variable ξ0, we obtain
that (2.9) is verified and thus the quenched functional CLT in Corollary 2.5 holds. □

In order to prove Lemma 4.4, we give another very useful property of the natural logarithm: if
0 < α < 1 and ϵ ∈ (0, α], then there exists a constant cd,ϵ > 0 such that for any x > 0,(

log(1 + xα)
)d−1 ≤ cd,ϵx

(d−1)ϵ. (4.7)

In particular, this implies that the function Φd satisfies

Φd(x
α) ≤ cd,ϵx

2α+(d−1)ϵ,

for any x > 0.

Proof of Lemma 4.4: Let α ∈ (0, 1) and X be a positive random variable, and consider ϵ ∈ (0, α].
Consider t = κα > 0 and remark that

E
[
Φd

(
Xα

t

)]
= E

[
Φd

((
X

κ

)α)]
≤ cd,ϵE

[(
X

κ

)2α+(d−1)ϵ]
.
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First, suppose that α ∈ [1/2, 1). We choose ϵ small enough such that δ := 2α+ (d− 1)ϵ < 2 (which

is always possible since α < 1). Letting κ0 = c
1/δ
d,ϵ ∥X∥δ (correspondingly t0 = c

α/δ
d,ϵ ∥X∥αδ ), we have

E
[
Φd

(
Xα

t0

)]
≤ cd,ϵE

[(
X

κ0

)δ]
=

E[Xδ]

∥X∥δδ
= 1.

We deduce from the definition of ∥ · ∥Φd
that

∥Xα∥Φd
≤ c

α/δ
d,ϵ ∥X∥αδ ≤ c

α/δ
d,ϵ ∥X∥α2 .

Now suppose α ∈ (0, 1/2). We choose ϵ small enough such that δ := 2α + (d − 1)ϵ < 1 (which is

always possible since α < 1/2). In this case, we set κ0 = c
1/δ
d,ϵ ∥X∥1 (correspondingly t0 = c

α/δ
d,ϵ ∥X∥α1 ).

Then, using the concavity of the function x 7→ xδ, we get

E
[
Φd

(
Xα

t0

)]
≤ cd,ϵE

[(
X

κ0

)δ]
≤ cd,ϵ

(
E
[
X

κ0

])δ

=

(
E[X]

∥X∥1

)δ

= 1.

Therefore,
∥Xα∥Φd

≤ c
α/δ
d,ϵ ∥X∥α1 ≤ c

α/δ
d,ϵ ∥X∥α2 .

Combining the discussions above, we conclude that for any α ∈ (0, 1) there exists Kα,d > 0 such
that

∥Xα∥Φd
≤ Kα,d∥X∥α2 .

□

As in the previous example, we cannot relax condition (4.4) to condition (4.1) in this case. In
fact, neither (4.1) nor the condition

∑
i≥0 |ai|α < ∞ are enough to guarantee that (2.7) holds.

Indeed, consider the case d = 2 and let

au,v =

{
g′(u)g′(v) if u > 0 and v > 0
0 otherwise,

where g : x 7→ x−1
(
log(1 + x)

)−3.

Assume that the innovation field (ξi)i∈Z2 is a random field of independent and identically dis-
tributed random variables such that ξ0,0 follows the standard normal distribution N (0, 1). Consider
the Lipschitz (Hölderian of order 1) function f : x ∈ R 7→ |x| ∈ R+. Letting i, j ≥ 0, we have

P0,0(Xi,j) = E0,0

[
f(Y + Z + ζ0,0)− f(Y + Z + ζ−1,0)− f(Y + Z + ζ0,−1) + f(Y + Z + ζ−1,−1)

]
with

Y =
∑

k≥i+1

∑
l≥j+1

ak,lξi−k,j−l, Z =
∑
k≥0

∑
l≥0

ak,lξ
′
i−k,j−l −

∑
k≥i

∑
l≥j

ak,lξ
′
i−k,j−l,

ζ0,0 =
∑
k≥i

ak,jξi−k,0 +
∑

l≥j+1

ai,lξ0,j−l,

ζ−1,0 =
∑

k≥i+1

ak,jξi−k,0 +
∑
l≥j

ai,lξ
′
0,j−l,

ζ0,−1 =
∑
k≥i

ak,jξ
′
i−k,0 +

∑
l≥j+1

ai,lξ0,j−l,

and
ζ−1,−1 =

∑
k≥i

ak,jξ
′
i−k,0 +

∑
l≥j+1

ai,lξ
′
0,j−l.
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where (ξ′i,j)(i,j)∈Z2 is an independent copy of (ξi,j)(i,j)∈Z2 . Let x ∈ RZ2 , then

E
[
f(Y + Z + ζ0,0)− f(Y + Z + ζ−1,0)− f(Y + Z + ζ0,−1) + f(Y + Z + ζ−1,−1)

∣∣ ξ = x
]

= E
[
f(y + Z + ζx0,0)− f(y + Z + ζx−1,0)− f(y + Z + ζx0,−1) + f(y + Z + ζx−1,−1)

]
where y =

∑
k≥i+1

∑
l≥j+1 ak,lxi−k,j−l,

ζx0,0 =
∑
k≥i

ak,jxi−k,0 +
∑

l≥j+1

ai,lx0,j−l,

ζx−1,0 =
∑

k≥i+1

ak,jxi−k,0 +
∑
l≥j

ai,lξ
′
0,j−l

ζx0,−1 =
∑
k≥i

ak,jξ
′
i−k,0 +

∑
l≥j+1

ai,lx0,j−l

and
ζx−1,−1 =

∑
k≥i

ak,jξ
′
i−k,0 +

∑
l≥j+1

ai,lξ
′
0,j−l.

Remark that y + Z + ζx0,0, y + Z + ζx−1,0, y + Z + ζx0,−1 and y + Z + ζx−1,−1 follows respectively the
normal distributions N

(
mx

0,0, σ
2
0,0

)
, N
(
mx

−1,0, σ
2
−1,0

)
, N
(
mx

0,−1, σ
2
0,−1

)
and N

(
mx

−1,−1, σ
2
−1,−1

)
with

σ2
0,0 = Var[Z] =

∑
k≥0

∑
l≥0

a2k,l −
∑
k≥i

∑
l≥j

a2k,l and mx
0,0 = y + ζx0,0,

σ2
−1,0 = Var[Z + ζx−1,0] =

∑
k≥0

∑
l≥0

a2k,l −
∑

k≥i+1

∑
l≥j

a2k,l and mx
−1,0 = y +

∑
k≥i+1

ak,jxi−k,0,

σ2
0,−1 = Var[Z + ζx0,−1] =

∑
k≥0

∑
l≥0

a2k,l −
∑
k≥i

∑
l≥j+1

a2k,l and mx
0,−1 = y +

∑
l≥j+1

ai,lx0,j−l,

and
σ2
−1,−1 = Var[Z + ζx−1,−1] =

∑
k≥0

∑
l≥0

a2k,l −
∑

k≥i+1

∑
l≥j+1

a2k,l and mx
−1,−1 = y.

Thus, for (a, b) ∈ {−1, 0}2,

E[f(y + Z + ζxa,b)] = E[|y + Z + ζxa,b|] =
2σa,b√
2π

e
−

(mx
a,b)

2

2σ2
a,b +

|mx
a,b|√

2πσ2
a,b

∫ |mx
a,b|

−|mx
a,b|

e
− z2

2σ2
a,b dz.

Rewriting the right-hand side, we notice that

2σa,b√
2π

e
−

(mx
a,b)

2

2σ2
a,b +

|mx
a,b|√

2πσ2
a,b

∫ |mx
a,b|

−|mx
a,b|

e
− z2

2σ2
a,b dz

= σa,b

(
2√
2π

e
−

(mx
a,b)

2

2σ2
a,b +

|mx
a,b|

σa,b

∫ |mx
a,b|

σa,b

−
|mx

a,b
|

σa,b

e−
z2

2

√
2π

dz

)

=: σa,bg

(
mx

a,b

σa,b

)
.
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For any (a, b) ∈ {−1, 0}2, we let Ξa,b = mξ
a,b − Y and by applying Taylor’s formula, we get

g

(
mξ

a,b

σa,b

)
= g

(
Y

σ0,0
+

(
1

σa,b
− 1

σ0,0

)
Y +

Ξa,b

σa,b

)
= g

(
Y

σ0,0

)
+

Ξa,b

σa,b
g′
(

Y

σ0,0

)
+

(
1

σa,b
− 1

σ0,0

)
Y g′
(

Y

σ0,0

)
+Ra,b.

where |R| ≤ 2Ξ2
a,b

σ2
a,b

+ 2
(

1
σa,b

− 1
σ0,0

)2
Y 2. Thus

∥P0,0(Xi,j)∥Φd
=

∥∥∥∥∥ ∑
(a,b)∈{0,1}2

(−1)a+bσa,bg

(
mξ

a,b

σa,b

)∥∥∥∥∥
Φd

≥

∥∥∥∥∥g
(

Y

σ0,0

) ∑
(a,b)∈{0,1}2

(−1)a+bσa,b

∥∥∥∥∥
Φd︸ ︷︷ ︸

=:N1

−

∥∥∥∥∥g′
(

Y

σ0,0

) ∑
(a,b)∈{0,1}2

(−1)a+bΞa,b

∥∥∥∥∥
Φd︸ ︷︷ ︸

=:N2

−

∥∥∥∥∥Y g′
(

Y

σ0,0

) ∑
(a,b)∈{0,1}2

(−1)a+b

(
1−

σa,b
σ0,0

)∥∥∥∥∥
Φd︸ ︷︷ ︸

=:N3

−

∥∥∥∥∥ ∑
(a,b)∈{0,1}2

(−1)a+bσa,bRa,b

∥∥∥∥∥
Φd︸ ︷︷ ︸

=:N4

.

We have the following relations

N1 =

∥∥∥∥g( Y

σ0,0

)∥∥∥∥
Φd

|σ0,0 − σ−1,0 − σ0,−1 + σ−1,−1|,

N2 =

∥∥∥∥g′( Y

σ0,0

)
ξ′0,0

∥∥∥∥
Φd

|ai,j |,

N3 =

∥∥∥∥ Y

σ0,0
g′
(

Y

σ0,0

)∥∥∥∥
Φd

|σ0,0 − σ−1,0 − σ0,−1 + σ−1,−1|.

and

N4 ≤
∥∥∥∥( Y

σ0,0

)2∥∥∥∥
Φd

∣∣∣∣(σ0,0 − σ−1,0)
2

σ−1,0
+

(σ0,0 − σ0,−1)
2

σ0,−1
− (σ0,0 − σ−1,−1)

2

σ−1,−1

∣∣∣∣
+ 2

(
∥Ξ2

0,0∥Φd

σ0,0
+

∥Ξ2
−1,0∥Φd

σ−1,0
+

∥Ξ2
0,−1∥Φd

σ0,−1

)
.

Before continuing the proof, note that the random variable Y/σ0,0 follows a centered normal distri-
bution with variance inferior to 1 whenever i and j are large enough. Using the previous relations,
it holds that

∥P0,0(Xi,j)∥Φd
≥ |σ0,0 − σ−1,0 − σ0,−1 + σ−1,−1|

(∥∥∥∥g( Y

σ0,0

)∥∥∥∥
Φd

−
∥∥∥∥ Y

σ0,0
g′
(

Y

σ0,0

)∥∥∥∥
Φd

)
−N2 −N4.

Now, making use of the equality u1 − u2 = (u21 − u22)/(u1 + u2) for any u1, u2 > 0, we obtain

σ0,0 − σ−1,0 − σ0,−1 + σ−1,−1 =
σ2
0,0 − σ2

−1,0

σ0,0 + σ−1,0
−

σ2
0,−1 − σ2

−1,−1

σ0,−1 + σ−1,−1
.

However,
δi,j := |σ2

0,0 − σ2
−1,0| =

∑
l≥j

a2i,l and |σ2
0,−1 − σ2

−1,−1| = δi,j − a2i,j .
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According to the definition of the coefficients ai,j , it is possible to show that

|σ0,0−σ−1,0−σ0,−1+σ−1,−1| ≥
(

1

σ0,0 + σ−1,0
− 1

σ0,−1 + σ−1,−1

)
δi,j ▷

(
log(1+ i) log(1+ j)

)−3/2√
j.

In particular, it holds that ∑
(i,j)≥(0,0)

∥P0,0(Xi,j)∥Φd
= ∞,

while also having both

∑
(i,j)≥(0,0)

|ai,j | < ∞ and
∑

(i,j)≥(1,1)

1√
ij

( ∑
(u,v)≥(i−1,j−1)

a2i,j

) 1
2

< ∞.

4.4. Weakly Dependent Processes. In our last example, we study the quenched central limit theorem
for weakly dependent random fields in the sense of Wu. Fields of this kind were introduced by Wu
(2005) and have many applications in mathematical physics, especially within the study of particle
systems (see Liggett, 1985; Stroock and Zegarliński, 1992). Indeed, weakly dependent random fields
are particularly well-suited to model physical systems as they can capture, at least partially, the
influence of the inputs over the outputs of these systems. In particular, they are well adapted to
study the case of nonlinear physical models.

Consider a centered Bernoulli random field (Xi)i∈Zd defined for every i ∈ Zd byXi :=
G(ξi−s; s ≥ 0) where (ξi)i∈Zd is a field of independent and identically distributed random variables.
Now, denote by (ξ′i)i∈Zd an independent copy of (ξi)i∈Zd and set, for any i ∈ Zd,{

ξ∗i = ξ′i if i = 0
ξ∗i = ξi otherwise as well as

{
ξ̃i = ξ′i if i1 = 0 and i ≤ 1

ξ̃i = ξi otherwise.

Then, the perturbed systems (X∗
i )i∈Zd and (X̃i)i∈Zd are given by

X∗
i = G(ξ∗i−s; s ≥ 0) and X̃i = G(ξ̃i−s; s ≥ 0), i ∈ Zd.

In this subsection, we are interested in two different stability conditions. First, we take a look at
the usual notion of weak dependence in the sense of Wu by saying that the random field (Xi)i∈Zd

is stable whenever ∑
i≥0

δi < ∞

where the terms δi are known as the physical dependence coefficients and are defined by

δi = ∥Xi −X∗
i ∥Φd

.

Under this notion of weak dependence, we have the following quenched functional central limit
theorem.

Example 4.5. Suppose that the field (Xi)i∈Zd satisfies

E[X0|Gn]
a.s.−−−−−−→

n→∞
0, (4.8)

where Gn = σ
(
ξi : i ≤ 1 and ∃k ∈ J1, dK, ik ≤ n

)
. Additionally, suppose that∑

k≥1

1

Φ−1
d (|k|)

∑
j≥k−1

δj < ∞. (4.9)

Then the conclusion of Corollary 2.5 holds.
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Note that the condition (4.8) is a stronger condition than the regularity of X0. Moreover, as
we have seen in Example 4.2 and Example 4.3, it is possible to give a stronger yet more tractable
condition than (4.9) which is stated below. Indeed, if

∑
k≥1

(
log(|k|)

) d−1
2

|k|
1
2

∑
j≥k−1

δj < ∞

then the conclusion of Example 4.5 is verified.

Proof : Let k ≥ 1 and consider a bijection τ : Z → Zd such that for all n ∈ Z, we have(
n ≥ 1 ⇐⇒ τ(n) ∈ Z−

1

)
and

(
∀k ∈ N, {i ∈ Zd : 1 ≤ τ−1(i) ≤ kd} = J2− k, 1Kd

)
where Z−

1 = {i ∈ Zd : i ≤ 1}. Since X0 is centered and satisfies (4.8), we find that

E1[Xk] = E1[Xk]− E1

[
G
(
ξ′k−s; s ≥ 0

)]
=
∑
n≥0

E1[Yτ(n) − Yτ(n+1)], (4.10)

where

Yτ(n) = G
(
ζnk−s; s ≥ 0

)
, with ζni =

{
ξi if τ−1(i) > n
ξ′i otherwise.

Remark that, according to stationarity, for any n ≥ 0

∥E1[Yτ(n)−Yτ(n+1)]∥Φd

≤
∥∥G(ζnk−s; s ≥ 0

)
−G

(
ζn+1
k−s ; s ≥ 0

)∥∥
Φd

=
∥∥G(ζnk−s; s ≥ 0

)
−G

(
ζnk−s, ξ

′
τ(n+1); s ≥ 0, s ̸= k − τ(n+ 1)

)∥∥
Φd

=
∥∥G(ξk−τ(n+1)−s; s ≥ 0

)
−G

(
ξk−τ(n+1)−s, ξ

′
0; s ≥ 0, s ̸= k − τ(n+ 1)

)∥∥
Φd

= δk−τ(n+1).

Therefore, using the triangular inequality, we get

∥E1[Xk]∥Φd
≤
∑
n≥0

δk−τ(n+1) =
∑

j≥k−1

δj .

Using condition (4.9) we find that the conclusion of Corollary 2.5 is satisfied. □

By considering a stronger notion of stability, we can relax the hypothesis (4.9) to (4.11) as well
as condition (4.8) to the simple regularity of X0. In fact, we will say that a random field (Xi)i∈Zd

is strongly stable whenever ∑
i≥0

δ̃i < ∞

with
δ̃i = ∥Xi − X̃i∥Φd

.

Under this stronger assumption, we can show that Hannan’s condition (2.7) holds. Then there only
remains to satisfy (2.5) for Corollary 2.6 to apply.

Example 4.6. Suppose that the field (Xi)i∈Zd is strongly stable and that X0 is regular, then condition
(2.7) is also satisfied. If, in addition, we also assume that∑

k≥1

1√
|k|

∑
j≥0

δ̃k+(j−1)e1 < ∞, (4.11)

then the conclusion of Corollary 2.5 holds.
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Proof : Let k ≥ 0, then we have the following bound

∥P0(Xk)∥Φd
=

∥∥∥∥∥
d∏

i=1

(E0 − E−ei)[Xk]

∥∥∥∥∥
Φd

≤ 2d−1∥E0[Xk]− E−e1 [Xk]∥Φd

≤ 2d−1δ̃k.

Hence (2.7) is satisfied. Now suppose that (4.11) holds and k ≥ 1. Since G(ξ′k−s; s ≥ 0) is a
centered random variable, we have

E1[Xk] = E1[Xk]− E1

[
G
(
ξ′k−s; s ≥ 0

)]
=
∑
j≥0

E1[Yj − Yj+1], (4.12)

where

Yj = G
(
ζjk−s; s ≥ 0

)
, with ζji =

{
ξ′i if 1− j < i1 ≤ 1 and i ≤ 1
ξi otherwise.

However, using a similar argument as before, we have that

∥E1[Yj − Yj+1]∥2 ≤ δ̃k+(j−1)e1 .

Therefore, using the triangle inequality, we get

∥E1[Xk]∥2 ≤
∑
j≥0

δ̃k+(j−1)e1 .

And so, using condition (4.11), the conclusion of Corollary 2.6 holds for the stochastic process
(Xk)k∈Zd . □

5. Appendix

In this section, we give the proof of Lemma 3.8. We will follow the outline of the proof given by
Burkholder (1973) for the Rosenthal inequality in Lebesgue spaces but first, we need to establish a
preliminary lemma concerning the Orlicz norm studied in this document. We start by recalling the
definition of the different tools we will require.

Recall that the Luxemburg norm associated with the Young function Φd : x ∈ [0,∞) 7→ Φd(x) =

x2
(
log(1 + x)

)d−1 ∈ [0,∞) is defined as

∥f∥Φ = inf
{
t > 0 : E

[
Φ(|f |/t)

]
≤ 1
}
,

and by Ψd we denote the conjugate function associated with Φd defined in the following way

Ψd(x) = sup
y≥0

(
xy − Φd(y)

)
.

Besides properties (3.9) and (3.10), the natural logarithm also satisfies

log
(
1 +

x

λ

)
log(1 + λ) ≥ log(2)λ log(1 + x), (5.1)

for all 0 < λ ≤ 1 and x ≥ 0 as well as

log
(
1 +

x

λ

)
log(1 + λ) ≥ log(2)

log(1 + x)

λ
, (5.2)

for all λ ≥ 1 and x ≥ 0. The following lemma will help us compute the Orlicz norm associated with
Ψd of a specific random variable which will appear in the proof of Lemma 3.8.
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Lemma 5.1. Suppose that h ∈ L2 logL takes nonnegative values. If ∥h∥Φd
≤ 1, then∥∥∥h(log(1 + h)

)d−1
∥∥∥
Ψd

≤ ∥h∥Φd
.

If ∥h∥Φd
> 1 then for all ϵ ∈ (0, 1), there exist a positive constant Cd,ϵ depending only on d and ϵ

such that ∥∥∥h(log(1 + h)
)d−1

∥∥∥
Ψd

≤ Cd,ϵ∥h∥1+ϵ
Φd

. (5.3)

Before moving on with the proof of Lemma 5.1, we explicit another useful property of the natural
logarithm. For all x ≥ λ ≥ 1,

log
(
1 +

x

λ

)
log(1 + λ) ≥ log(2) log(1 + x). (5.4)

Proof of Lemma 5.1: Let h ∈ L2 logL be a nonnegative function such that ∥h∥Φd
≤ 1 and let

t ∈ (0, 1]. Using the inequality Ψ
(
x
(
log(1 + x)

)d−1
/t
)
≤ Φ(x/t) for all x ≥ 0, we get

E
[
Ψd

(
h logd−1(1 + h)

t

)]
≤ E

[
Φd

(
h

t

)]
.

Taking t = ∥h∥Φd
≤ 1, we obtain ∥∥∥h(log(1 + h)

)d−1
∥∥∥
Ψd

≤ ∥h∥Φd
.

We now turn to the proof of the second part of Lemma 5.1 and we begin by noticing that if ∥h∥Φd
=

∞, then (5.3) is trivially satisfied. From now on, we will therefore assume that 1 < ∥h∥Φd
< ∞.

We start by recalling that if we let ϵ ∈ (0, 1), then there exists a constant cd,ϵ > 0 such that(
log(1 + ∥h∥Φd

)
)d−1

≤ cd,ϵ∥h∥ϵΦd
. (5.5)

Now, according to the triangle inequality, we have∥∥∥h(log(1 + h)
)d−1

∥∥∥
Ψd

≤
∥∥∥h(log(1 + h)

)d−11h≤∥h∥Φd

∥∥∥
Ψd

+
∥∥∥h(log(1 + h)

)d−11h>∥h∥Φd

∥∥∥
Ψd

.

To bound the first term in the right-hand side of this inequality, we make use of (5.5) and we obtain∥∥∥h(log(1 + h)
)d−11h≤∥h∥Φd

∥∥∥
Ψd

≤
(
log(1 + ∥h∥Φd

)
)d−1

∥h∥Φd

≤ cd,ϵ∥h∥1+ϵ
Φd

. (5.6)

Dealing with the second term, we combine (5.4), (5.5) and the inequality Ψd(φd(x)) ≤ Φd(x) where
φd(x) = x

(
log(1 + x)

)d−1 for all x ≥ 0, in order to get

E
[
Ψd

(
h
(
log(1 + h)

)d−1

log(2)1−dcd,ϵ∥h∥1+ϵ
Φd

)
1h>∥h∥Φd

]
≤ E

[
Ψd

(h
(
log(2)−1 log

(
1 + h

∥h∥Φd

)
log(1 + ∥h∥Φd

)
)d−1

log(2)1−dcd,ϵ∥h∥1+ϵ
Φd

)]
≤ E

[
Φd

(
h

∥h∥Φd

)]
= 1.

Thus ∥∥∥h(log(1 + h)
)d−11h>∥h∥Φd

∥∥∥
Ψd

≤ log(2)1−dcd,ϵ∥h∥1+ϵ
Φd

. (5.7)

Therefore, combining (5.6) and (5.7) we get the desired result. □
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We can now prove Lemma 3.8. In order to do so, we will make use of Lemma 3.1 in Burkholder
(1973).

Proof of Lemma 3.8: We start by introducing a few items of notation. For all n ∈ Nd, we denote

Mn =
∑n−1

u=0 du and σn =
√∑n−1

u=0 d
2
u. Our proof will be split into two parts. In the first part, we

will make the additional assumption that the ortho-martingale (Mn)n is nonnegative. Then, in the
second part, we will establish the result for real-valued ortho-martingales.

First step: We suppose that (Mn)n∈(N∗)d is a nonnegative ortho-martingale. Let n ∈ Nd be fixed
and remark that, since Φd(

√
a+ b) ≥ Φd(

√
a) + Φd(

√
b) for all a, b ≥ 0, it holds that

E
[
Φd

(
σn
η

)]
≥

n−1∑
u=0

E
[
Φd

(
du
η

)]
. (5.8)

for any η > 0. Let X = max(σn,max0≤u≤nMu) and suppose that ∥X∥Φd
≤ 1. Applying (5.8)

with η = 1, we get

∥σn∥Φd
≤ ∥X∥Φd

≤ 1 and η0 :=
n−1∑
u=0

E[Φd(du)] ≤ 1. (5.9)

Setting η′0 = η0 log(2)
d−1, we find that

E
[
Φd

(
σn
η′0

)]
=

1

η′0
2E

[
σ2
n

(
log

(
1 +

σn
η′0

))d−1
]

≥ 1

η0
E[Φd(σn)]

≥ 1.

The second to last inequality holds since according to (5.1), we have(
log

(
1 +

σn
η′0

))d−1

≥ η′0
d−1

log(2)d−1

(
log(1 + σn)

)d−1(
log(1 + η′0)

)d−1

≥ η′0
2
log(2)d−1

(
log(1 + σn)

)d−1

η′0

=
η′0

2

η0

(
log(1 + σn)

)d−1
.

From the previous inequality, we deduce that

log(2)1−d∥σn∥Φd
≥ η0 =

n−1∑
u=0

E[Φd(du)]. (5.10)

Using Lemma 3.1 in Burkholder (1973), for any λ > 0

λP
(
X >

√
3λ
)
≤ 3

∫
{X>λ}

MndP.

Therefore

E[Φd(X)] =

∫ +∞

0
Φ′
d(u)P(X > u)du ≤ 3

√
3

∫
Ω
Mn

∫ √
3X

0

Φ′
d(u)

u
dudP.
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Computing
∫ √

3X
0

Φ′
d(u)
u du, we find that

∫ √
3X

0

Φ′
d(u)
u du ≤ 3

√
3X
(
log(1 +

√
3X)

)d−1. Thus

E[Φd(X)] ≤ 3
d+5
2

∫
Ω
MnX

(
log(1 +X)

)d−1
dP. (5.11)

Applying Holder’s inequality for Orlicz spaces, we get∫
Ω
MnX

(
log(1 +X)

)d−1
dP ≤ 2∥Mn∥Φd

∥∥∥X(log(1 +X)
)d−1

∥∥∥
Ψd

.

Using Lemma 5.1, we find that ∥∥∥X(log(1 +X)
)d−1

∥∥∥
Ψd

≤ ∥X∥Φd
.

Then ∫
Ω
MnX

(
log(1 +X)

)d−1
dP ≤ 2∥Mn∥Φd

∥X∥Φd
.

Recalling (5.11), we deduce that

E[Φd(X)] ≤ 2 · 3
d+5
2 ∥Mn∥Φd

∥X∥Φd
.

Thus, recalling that ∥X∥Φd
≤ 1 and applying Lemma 3.6, we obtain

φd

(
∥X∥Φd

)
≤ 2 · 3

d+5
2 ∥Mn∥Φd

, (5.12)

with φd(x) = x
(
log(1 + x)

)d−1 for all x ≥ 0. Keeping in mind the inequalities (5.9), (5.10) and
(5.12), we obtain

n−1∑
u=0

E[Φd(du)] ≤ log(2)1−dφ−1
d

(
2 · 3

d+5
2 ∥Mn∥Φd

)
. (5.13)

Now, suppose that ∥X∥Φd
> 1. According to (5.8), we have

n−1∑
u=0

E

[
Φd

(
du

∥X∥Φd

)]
≤ 1.

For any 0 ≤ u ≤ n− 1 and by making use of inequality (5.2), it holds that

E

[
Φd

(
du

∥X∥Φd

)]
= E

[
d2u

∥X∥2Φd

(
log

(
1 +

du
∥X∥Φd

))d−1]

≥ E

[
log(2)d−1Φd(du)

∥X∥d+1
Φd

(
log
(
1 + ∥X∥Φd

))d−1

]
.

We conclude that
n−1∑
u=0

E[Φd(du)] ≤ log(2)1−d∥X∥d+1
Φd

(
log
(
1 + ∥X∥Φd

))d−1
=: log(2)1−dϕd

(
∥X∥Φd

)
. (5.14)

where ϕd(x) = xd+1
(
log(1+ x)

)d−1, for all x ≥ 0. Once again, by the same argument as in the first
case, we get

E[Φd(X)] ≤ 2 · 3
d+5
2 ∥Mn∥Φd

∥∥∥X( log(1 +X)
)d−1

∥∥∥
Ψd

.

However using Lemma 5.1, there exists Cd,ϵ > 0 such that∥∥∥X(log(1 +X)
)d−1

∥∥∥
Ψd

≤ Cd,ϵ∥X∥1+ϵ
Φd

,
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Since log is an increasing function and ∥X∥Φd
> 1, we deduce that

1 = E

[
Φd

(
X

∥X∥Φd

)]
≤ E[Φd(X)]

∥X∥2Φd

and so
∥X∥2Φd

≤ E[Φd(X)] ≤ 2 · 3
d+5
2 Cd,ϵ∥Mn∥Φd

∥X∥1+ϵ
Φd

.

Thus
∥X∥1−ϵ

Φd
≤ 2 · 3

d+5
2 Cd,ϵ∥Mn∥Φd

. (5.15)

Combining (5.14) and (5.15), we get the following inequality

n−1∑
u=0

E[Φd(du)] ≤ log(2)1−dϕd ◦ fϵ
(
2 · 3

d+5
2 Cd,ϵ∥Mn∥Φd

)
. (5.16)

where fϵ(x) = x
1

1−ϵ for all x ≥ 0. Finally, recalling (5.13) and (5.16), there exists C1, C2 > 1 only
depending on d such that

n−1∑
u=0

E[Φd(du)] ≤ C1max
{
φ−1
d

(
C2∥Mn∥Φd

)
, ϕd ◦ fϵ

(
C2∥Mn∥Φd

)}
.

Second step: Now suppose that M can take negative values. We let

M+
u = E

[
max(Mn, 0)|Gu

]
and M−

u = E
[
max(−Mn, 0)|Gu

]
,

with 0 ≤ u ≤ n and Gu = σ
(
Mv,v ≤ u

)
. Both M+

u and M−
u are ortho-martingales and satisfy the

conditions of the first part. Let n ∈ (N∗)d, we define

M+
n :=

n−1∑
u=0

d+u , M−
n :=

n−1∑
u=0

d−u , σ+
n =

√√√√n−1∑
u=0

(d+u)2 and σ−
n =

√√√√n−1∑
u=0

(d−u)2.

Therefore there exists C1, C2 > 1 only depending on d such that
n−1∑
u=0

E[Φd(d
+
u)] ≤ C1max

{
φ−1
d

(
C2∥M+

n ∥Φd

)
, ϕd ◦ fϵ

(
C2∥M+

n ∥Φd

)}
and

n−1∑
u=0

E[Φd(d
−
u)] ≤ C1max

{
φ−1
d

(
C2∥M−

n ∥Φd

)
, ϕd ◦ fϵ

(
C2∥M−

n ∥Φd

)}
.

Using the inequalities Φd(a+ b) ≤ 2d+1(Φd(a) + Φd(b)) for all a, b ≥ 0, we obtain

n−1∑
u=0

E[Φd(|du|)] ≤ 2d+1
n−1∑
u=0

E[Φd(d
+
u)] + 2d+1

n−1∑
u=0

E[Φd(d
−
u)]

≤ 2d+1
(
C1max

{
φ−1
d

(
C2∥M+

n ∥Φd

)
, ϕd ◦ fϵ

(
C2∥M+

n ∥Φd

)}
+ C1max

{
φ−1
d

(
C2∥M−

n ∥Φd

)
, ϕd ◦ fϵ

(
C2∥M−

n ∥Φd

)})
≤ 2d+2C1max

{
φ−1
d

(
C2∥Mn∥Φd

)
, ϕd ◦ fϵ

(
C2∥Mn∥Φd

)}
.

The proof of the theorem is then complete. □
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