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Abstract. The first part of this paper (Lambert and Uribe Bravo, 2018) introduced splitting trees:
those chronological trees admitting the self-similarity property where individuals give birth, at
constant rate, to iid copies of themselves. It also established the intimate relationship between
splitting trees and Lévy processes. When this Lévy process is of finite variation, the associated
genealogical tree is the celebrated Galton-Watson tree, even in the supercritical case. In the infinite
variation case, the chronological trees involved were formalized as Totally Ordered Measured (TOM)
trees.

The aim of this paper is to continue this line of research in two directions: we first decompose
locally compact TOM trees in terms of their prolific skeleton (consisting of its infinite lines of
descent). When applied to splitting trees, this implies the construction of the supercritical ones
(which are locally compact) in terms of the subcritical ones (which are compact) grafted onto a
Yule tree (which corresponds to the prolific skeleton).

As a second (related) direction, we study the genealogical tree associated to our chronological
construction. This is done through the technology of the height process introduced by Duquesne
and Le Gall (2002). In particular we prove a Ray-Knight type theorem which extends the one for
(sub)critical Lévy trees to the supercritical case.
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1. Introduction

1.1. Motivation. Consider the following informal population dynamics, more correctly specified and
studied in Lambert (2008), Lambert (2010) and Lambert and Uribe Bravo (2018). The dynamics
take into account birth and death times and not only the genealogy of the population.

Model 1.1 (Finite genealogy binary splitting dynamics). Given a probability measure Λ on r0,8q,
called the lifetime distribution, and a non-negative real number b P r0,8q, called the birth rate,
assume that individuals in the population behave independently once incorporated into the population,
have iid lifetimes with distribution Λ and give birth at rate b during their lifetimes to exactly one
individual.

For concreteness, we start the population with only one individual, so that the population dy-
namics can be encoded by a (chronological) tree as in Figure 1.1.

The chronological model gives rise also to a genealogical one. Indeed, there are at least 2 different
branching processes one can associate to such a model: the continuous time process counting the
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Figure 1.1. On (A), a splitting tree corresponding to Model 1.1: time increases
upwards and segments correspond to the lifetimes of individuals, which are linked
to their parents via dashed horizontal lines. The j-th descendant of individual u
(according to birth-time) is given the label uj, starting with the empty label H.
(B) depicts the associated genealogical tree. The order in (A) is important to define
the countour of the tree in (C), by traversing lifetimes decreasingly at constant rate,
jumping to new members of the population at birth events and jumping back to
the parent´s lifetime finishing the traversal and recording the time that is being
visited. (D) depicts the genealogical tree of a supercritical splitting tree with its
prolific individuals indicated by black disks.
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number of individuals alive at time t and the discrete time process counting the number of individuals
comprising the n-th generation. The latter is a Galton-Watson process whose offspring distribution
is explicitly computed in Lambert (2008). The offspring mean, denoted m, is b times the mean of
Λ. Hence, our chronological tree is a finite union of finite segments whenever m ¤ 1 (which we
can call the (sub)critical case). The above construction is generalized to the case when Λ is infinite
but satisfies

³
1 ^ xΛpdxq in Lambert (2010), called the finite variation case, where it is shown

how to encode the tree through a finite variation spectrally positive Lévy process (not drifting to
infinity) with a random and positive initial state and stopped upon reaching zero. In Lambert and
Uribe Bravo (2018), the infinite variation case was studied through an inverse procedure: it is shown
that a spectrally positive Lévy process which does not drift to infinity encodes a real tree (which
with additional structure is called a splitting tree) which generalizes the above model. In this paper,
we are interested in the following aspects:

(1) The structure of a supercritical splitting tree. There are individuals which have descendants
at any positive time. These will be termed prolific and a surprising aspect is that, irre-
spectively of the Lévy process in question, the prolific individuals form a Yule tree. Hence,
the number of prolific individuals alive at time t is a Yule process. The whole supercritical
tree can be obtained by grafting subcritical splitting trees onto the Yule tree. A precise
description of how this is done represents our skeletal decomposition of supecritical splitting
trees.

(2) The genealogy of supercritical splitting trees. In the subcritical case, one can obtain the
genealogy by means of the height process of the Lévy process in question introduced in
Le Gall and Le Jan (1998) and further studied in Duquesne and Le Gall (2002). In the
supercritical case, we need to truncate the infinite trees in order to code them by Lévy type
processes, whose height processes we then consider. The sequence of height processes so
obtained is then shown to correspond to a family of growing trees giving us a supercritical
genealogical tree by a (categorical) direct limit construction. This can be termed a super-
critical Lévy tree. From our previous skeletal decomposition, we deduce an analogous one
for the supercritical Lévy trees.

(3) A Ray-Knight theorem for the genealogy of supercritical splitting trees. Just as there are
prolific individuals in our chronological construction, the same is true for the genealogical
tree of the previous item. We show that the process which counts the number of prolific
individuals of a given generation is a Galton-Watson process, and that jointly with a measure
of the size of the population at succesive generations, one obtains a two-type branching
process.

Models of supercritical Lévy trees have been proposed before. Indeed, in Duquesne and Winkel
(2007), a model is constructed out of a growing limit of Galton-Watson trees. Secondly, in Abraham
and Delmas (2012), the authors give a model as a growing limit of changes of measures of subcritical
truncated Lévy trees. Finally, in Abraham et al. (2015), the authors show that the latter two models
actually agree. On the other hand, Bertoin et al. (2008) define a model of supercritical Lévy trees
using the flow of subordinators approach of Bertoin and Le Gall (2000). They prove that the
counting process of prolific individuals is the same Galton-Watson process we find here. However,
we propose here a simple chronological model whose corresponding genealogy is related to branching
processes. Also, both of our models can be obtained in a pathwise manner from Lévy type processes.
We do not tackle the question of whether the genealogical model proposed here and those in the
above references coincide, which we believe.

1.2. Preliminaries. In this subsection, we recall the setting and results of the prequel Lambert and
Uribe Bravo (2018) that we will use.
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1.2.1. Spectrally positive Lévy processes. We will mainly concentrate on spectrally positive Lévy
processes. An adequate background is found in Bertoin (1996), especially Chapter VII. We use
the canonical setup. There will be two canonical spaces: the Skorohod space D of càdlàg functions
f : r0,8q Ñ RYt:u and the (positive) excursion space E consisting of càdlàg functions f : r0,8q Ñ
r0,8q Y t:u for which there exists a lifetime ζ � ζpfq P r0,8s such that f ¡ 0 on p0, ζq and f � :
after ζ. (As usual, : stands for an isolated cemetery state.) We recall that on both spaces, the
canonical process X can be defined by Xtpfq � fptq and equipped with the canonical filtration
Ft � σpXs : s ¤ tq.

Let Ψ be the Laplace exponent of a possibly killed spectrally positive Lévy process. The function
Ψ is characterized in terms of the Lévy quadruple pκ, α, β, υq where κ ¥ 0, α P R, β ¥ 0 and υ is a
measure on p0,8q satisfying

³ �
1^ x2

�
υpdxq   8. The characterization is expressed through the

Lévy-Kintchine formula as follows:

Ψpλq � �κ� αλ� βλ2 �

» 8
0

�
e�λx � 1� λx1x¤1

�
υpdxq .

Recall that Ψ gives rise to a (sub)Markovian family of probability laws on D, say pPx, x P Rq,
such that each Px is (sub)Markovian and they are spatially homogeneous (the image of Px under
the mapping f ÞÑ y � f is Px�y). The link between Px and Ψ is:

Ex

�
e�λXt

	
� e�λx�tΨpλq.

We assume that Ψ does not correspond to a subordinator, which is equivalent to saying that Ψpλq Ñ
8 as λ Ñ 8. Since Ψ is convex, Ψ has at most two roots. We let b stand for the biggest root
of Ψ and define the associated Laplace exponent Ψ# defined by Ψ#pλq � Ψpλ� bq. The Laplace
exponent Ψ# can be obtained by conditioning Px on reaching arbitrarily low levels as in Lemma 7
in Bertoin (1996, Ch. 7) and Lemme 1 in Bertoin (1991). We say that Ψ is supercritical if b ¡ 0
and (sub)critical otherwise.

Let Ψ be a supercritical Laplace exponent and Px the law of a spectrally positive Lévy process
with Laplace exponent Ψ started at x. Since X drifts to 8 under P0, the minimum X8 of X
belongs to p�8, 0s. We can then define Tm as the last time the minimum of X is approached as a
left limit; note that X might have a positive jump at Tm. The post-minimum process XÑ is defined
as

XÑ
t � XTm�t �XTm�.

Note that XÑ does not start at zero if X jumps at Tm. The law of this process is PÑ. It has the
important properties of being Markovian, that XÑ

t ¡ 0 for t ¡ 0 , and for any t ¡ 0, conditionally
on XÑ

t � x ¡ 0, the shifted process XÑ
t�� has law Px conditioned on not reaching zero. Later,

we will assume Grey’s hypothesis on Ψ, which in particular implies that the process is of infinite
variation. In terms of Ψ, we will have either σ ¡ 0 or

³
r1 ^ xs υpdxq � 8 and then X reaches its

minimum at a unique place and continuously (cf. Proposition 2.1 in Millar (1977), Proposition 1 of
Pitman and Uribe Bravo (2012) or, in a more general context, Theorem 2 in Angtuncio Hernández
and Uribe Bravo (2020)).

1.2.2. The compact tree coded by a càdlàg function. Let f : r0,ms Ñ r0,8q be a càdlàg function
with no negative jumps and such that fpmq � 0. The tree coded by f is defined as follows. For
s, t P r0,ms, define

df ps, tq � fpsq � fptq � 2f
rs,ts

where f
rs,ts

� inf
rPrs,ts

fprq

(if s ¡ t, define rs, ts as rt, ss). Then df is a pseudometric on r0,ms and we define τf as the set
of equivalence classes rtsf induced by the associated equivalence relationship �f where s �f t if
df ps, tq � 0. The induced metric by df on τf turns the space pτf , df q into a compact real tree, with
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an argument similar to the classical one for continuous functions of Le Gall (2006) or for cáglád
functions in Duquesne (2006).

On a rooted real tree pτ, d, ρq, the image of r0, dpσ1, σ2qs under the isometry ϕσ1,σ2 is denoted
rσ1, σ2s. We also define the associated partial order ¨, where σ1 ¨ σ2 if σ1 P rρ, σ2s. Lack of
loops implies that for any σ1, σ2 P τ , there exists an element of τ denoted σ1 ^ σ2 and interpreted
as the most recent common ancestor of σ1 and σ2, such that

rρ, σ1s X rρ, σ2s � rρ, σ1 ^ σ2s.

On τf , where the root is chosen as rmsf , if σi � rtisf , then σ1 ¨ σ2 if and only if f
rt1,t2s

� fpt1q.
The interval rσ, ρs is called the line of descent of σ. Since trees coded by functions have been

interpreted as genealogies, the different points of r0, σs are interpreted as (different) ancestors. In
Lambert and Uribe Bravo (2018) (see in particular Model 1 and Figure 1), we give the chronological
interpretation of the tree coded by a function and argue that elements of r0, σs, going towards the
root, consists of one same individual seen through time, until it is born, at which point we start
looking at its parent.

The main proposal of Lambert and Uribe Bravo (2018), adapted from Duquesne (2006), is to
endow the compact rooted real tree pτf , df , ρq with additional structure inherited from r0,ms: a
total order ¤ where rssf ¤ rtsf if suprssf ¤ suprtsf , and the measure µ given by the image of Leb
under the projection t ÞÑ rtsf . The triplet ppτf , df , ρq ,¤, µq constitutes a compact Totally Ordered
Measured (TOM) tree (see Section 2 for the definition).

We now define the random TOM trees that will interest us in the compact case. Let Ψ be a
(sub)critical exponent. Then lim inftÑ8Xt � �8 under P0, so that the past minimum process X
given by Xt � infs¤tXs, satisfies X8 � �8. Hence, 0 is recurrent for the Markov process X �X
and we can then define ν � νΨ as the excursion measure of X � X (cf. Chapter VI in Bertoin
(1996)) . We then consider the measure η � ηΨ equal to the image of ν under the map that sends
excursions into TOM trees.

1.2.3. Locally compact trees and their coding sequence. Let us now recall how to obtain a locally
compact TOM tree out of a sequence of functions compatible under pruning. Let pfn, n ¥ 0q be a
sequence of càdlàg functions on r0,mns. We say that the sequence is compatible under pruning if,
for every n ¥ 1 there exists a set Bn � r0,mns such that, on defining

B̃n � tt P r0,mns : Ds P Bn, rssfn ¨ rtsfnu , An
t � Leb

�
r0, tszB̃n

	
and

Cn
t � inf ts ¥ 0 : An

s ¡ tu ,

we have the equality
fn�1 � fn � C

n.

Heuristically, the set Bn selects nodes on the tree coded by fn and the time-change Cn removes
whatever is on top of them. It follows that the compact TOM tree cn�1 coded by fn�1 can be
embedded into cn. Indeed, one can prove that the map ϕn�1 : t ÞÑ Cn

t is constant on the equivalence
class of rtsfn�1 and use this to construct the embedding. Under the condition

lim
nÑ8

inf
tPBn

fnptq � 8

and reasoning as in the proof of Proposition 5 of Lambert and Uribe Bravo (2018), we conclude
the existence of a unique locally compact TOM tree c � ppτ, d, ρq ,¤, µq such that each cn can be
embedded (in a growing manner) into c and such that the embeddings exhaust c. More formally, we
might define τ̃ �

�
tiu�τi and then define τ as the quotient of τ̃ under the equivalence relationship

pi, σiq � pj, σjq (where i   j, say) whenever ϕj�1 � � � � ϕipσiq � σj . (Other structural parts of c can
be defined analogously.) Then, the embedding would just send σ P ci to pi, σq. We say that pfnq
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is a coding sequence for the locally compact TOM tree c. If c̃ is any other TOM tree with this
property, then c can be embedded into c̃. The abstraction of this construction of locally compact
TOM trees is called the (categorical) direct or inductive limit and should be contrasted with the
inverse or projective limit which is much more familiar to probabilists. Indeed, inverse limits in
the setting of trees are more akin to completions (and constructions of trees through inverse limits
are one way to construct the ends of trees) while direct limits are more similar to considering a
union. A particular case of the above construction is when the set Bn consists of t P r0,mns such
that fnptq ¡ rn�1 and the sequence prnq is non-decreasing. In this case, B̃n � Bn and the time-
change Cn removes the set of t such that fnptq ¡ rn�1 and closes up the gaps. We refer to this as
time changing fn to remain below rn�1 and the sequence pfnq is said to be consistent under
truncation (at levels rn). Consistence under truncation was used in Delmas (2008); Abraham and
Delmas (2012) to construct a model of supercritical Lévy trees by applying change of measure to the
sequence of truncated (sub)critical Lévy trees. (Sub)-critical Lévy trees are models for the genealogy
of a population, so that truncating a tree at height r means considering individuals whose generation
is less than r. In contrast, we will build chronological models, meaning that our truncated tree at
height r analyzes the population until time r. The truncated (chronological) trees will be coded
by functions which are compatible under truncation. When considering the genealogical trees that
are associated to the chronology of the population until time r, as r varies, these will be coded by
functions which are no longer compatible under truncation, but are nevertheless compatible under
suitable pruning.

1.3. Statement of the results. The locally compact TOM trees that will interest us come from the
Laplace exponent of a supercritical Laplace exponent Ψ as is now described. Recall that b denotes
the greatest root of Ψ and that the associated subcritical Laplace exponent is given by Ψ#. The
reflected process X�X under P0 is now transient, which in terms of its construction by excursions,
means that its excursion measure charges those with infinite length. Let ν be the excursion measure
of X �X under P and ν# the same excursion measure under P#. Then, ν � ν# � bPÑ. Let QÑ,r

be the probability measure constructed by concatenating, to a process obtained by time-changing a
process with law PÑ to remain below r, independent copies of a process with law Pr time-changed
to remain below r, until the first copy reaches zero, when we kill the process. We then define
νr � ν#,r � bQÑ,r, where ν#,r is the image of ν# under time-change to remain below r.

By construction, the measures νr are consistent under truncation, meaning that if r1 ¤ r2 then
νr1 is the image of νr2 under time change to remain below r1. Hence, a unique measure ηΨ on
locally compact TOM trees can be defined so that νr equals the image of ηΨ under the function
which takes a tree into the contour of its truncation at level r.

Splitting trees are those whose law is ηΨ, either in the (sub)critical or supercritical cases. They
have been characterized as the σ-finite laws on locally compact TOM trees satisfying a certain
self-similarity property termed the splitting property in Theorem 2 of Lambert and Uribe Bravo
(2018).

In this work, we will be interested in analyzing the measure ηΨ. We will first be concerned with
the descriptions of the prolific individuals.

A particular case of the construction of ηΨ is the Yule tree. It is obtained with the Lévy process
Xt � �t killed at rate b, for which Ψpλq � λ� b. The interpretation is that individuals have infinite
life-times (which correspond to interpreting killing as making an infinite jump) and that they give
birth at rate b. The measure ν#,r is zero, while QÑ,r has a simple description: let pTnq be a Poisson
point process on r0,8q with intensity bLeb, set Si � Ti � Ti�1 and Nr � min ti ¥ 1 : Si ¡ ru. We
let

Xr
t �

Nŗ

n�1

rr � pt� Tn�1qs1Tn�1¤t Tn (1.1)
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on the interval r0, TNr�1 � rs. A simple consequence of this description of the Yule tree is that the
number of individuals alive at time r, which evolve as the usual Yule process and correspond to
the number of jumps of Xr until reaching zero, has a geometric distribution of parameter 1� e�br.
This is a classical result which is usually proved using the Kolmogorov equations (for example, in
Athreya and Ney (1972, Ch. III§5)).

As we shall see, Yule trees appear in supercritical splitting trees. Indeed, the latter can be
obtained by first constructing a skeleton of infinite lines of descent, which is a Yule tree, and then
grafting onto it supercritical splitting trees conditioned on extinction. The latter turn out to be a
special kind of subcritical splitting tree. These types of decompositions are found in the literature
as spinal, backbone or skeletal decompositions; they have been provided for continuous branching
processes in Bertoin et al. (2008); Kyprianou and Palau (2018); Kyprianou and Ren (2012); Fekete
et al. (2019), for superprocesses in Berestycki et al. (2011); Kyprianou et al. (2014); Fekete et al.
(2021), for Lévy trees in Lambert (2002); Duquesne and Winkel (2007); Duquesne (2009); Abraham
and Delmas (2012). However, we have found no skeletal decompositions for splitting trees. Finding
the universal structure of the Yule tree associated to any Ψ is quite surprising.

Let us first explore the notions of infinite lines of descent and of grafting.

Definition 1.2. Let c � ppτ, d, ρq ,¤, µq be a locally compact TOM tree. An infinite line of
descent is an isometry ϕ : r0,8q Ñ τ such that t ÞÑ dpρ, ϕptqq is increasing. We say that σ P τ has
an infinite line of descent if σ belongs to the image of an infinite line of descent.

It turns out that the prolific individuals constitute a tree by themselves, as in the forthcoming
Proposition 2.3. To build the complete tree, we only need to graft compact trees to the left and to
the right along the prolific subtree. The precise notion of grafting is given in Section 2, but only an
intuitive grasp is needed for our next results.

One can give a more geometric construction of the Yule tree using grafting as follows. We start
with IH � r0,8q (seen, vertically, as a TOM tree). We next run a rate b Poisson process along
IH and at its jump times, we graft copies of r0,8q, say I1, I2, . . .. The same procedure is then
recursively repeated along each grafted copy. The tree so constructed, termed the Yule tree with
birth rate b and denoted I, is the unique random locally compact TOM tree which has the same
law as the tree obtained by grafting iid trees with the same law as I on the interval r0,8q at the
jump times of an independent Poisson process.

The Yule tree is the simplest example of a locally compact splitting tree since all of its individuals
live indefinitely. For more general locally compact splitting trees, we must accommodate individuals
with finite and infinite lines of descent. In the forthcoming Theorem 1.3 and Corollary 1.4, we see
that the infinite lines of descent of a splitting tree evolve analogously to Yule trees, on which compact
trees are then grafted to the left and to the right. We will describe each infinite line of descent
with the compact trees grafted on them; locally compact trees with only one infinite line of descent
above the root are called trees with a single infinite end, or sin trees, following the terminology
introduced in Aldous (1991).

We first define the sin trees involved. Informally, the sin tree has left and right-hand sides: the
left-hand side is coded by the post-minimum process of a Lévy process with Laplace exponent Ψ
started at zero while the right-hand side is coded by a Lévy process with Laplace exponent Ψ# which
starts at 8 and is killed upon reaching zero. Formally, the sin tree is the unique random locally
compact TOM tree whose truncation at level r is coded by the concatenation of the post-minimum
process of a Lévy process with Laplace exponent Ψ started at zero and time-changed to remain
below r followed by a Lévy process with Laplace exponent Ψ# which starts at r, is time-changed
to remain below r, and is killed upon reaching zero. Its law will be denoted Υ. It can be seen that
under Υ, there exists a unique infinite line of descent from the root almost surely (cf. Proposition
3.1). Define the measure Υtree (as a distributional fixed point) as the unique measure which equals
the law of the grafting of iid copies of Υtree onto a copy of Υ along the unique infinite line of descent
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of the latter at heights which correspond to the jump times of an independent Poisson process of
intensity b.

Theorem 1.3. Let Ψ be a supercritical Laplace exponent and b its largest root. The measure ηΨ on
locally compact real trees can be described in terms of its restrictions to compact and non-compact
trees as follows:

ηΨ � ηΨ
#
� bΥtree.

Corollary 1.4. Under Υtree, the TOM tree of infinite lines of descent has the same law as a Yule
tree with birth rate b.

We now pass to the description of the genealogical tree associated to supercritical splitting trees.
As a motivation, consider the case where Ψ is the Laplace exponent of a compound Poisson process
with drift �1, as in (C) of Figure 1.1. From a glance at (A) in this figure , the reader might
note that the generation of the individual visited at time t equals the number of subtrees grafted
to the left of its ancestral line (in the figure, there is one such subtree for each dashed horizontal
line). We can then count the sizes of the successive generations; in (B) of Figure 1.1, the successive
generation sizes are 1, 1, 4, 4 and 1. (As noted in Lambert (2010), the sizes of succesive generations
in the compound Poisson case correspond to the well known Galton-Watson process.) In analogy,
Duquesne and Le Gall (2002) define the height process of a subcritical Lévy process (or the associated
TOM tree). Let Ψ be the Laplace exponent of an infinite variation spectrally positive Lévy process
which is not a subordinator. We now assume Grey’s condition on the Laplace exponent

Hypothesis (G):
³8� 1

Ψpλq dλ   8.

Let S be a splitting tree with law ηΨ, Sr its truncation at time r, and ϕr the contour of Sr. Based
on Duquesne and Le Gall (2002), we will obtain the existence of a norming function aphq such that
there is a continuous process Hr which agrees with

t ÞÑ lim inf
hÑ0

1

aphq
# tSubtrees of Sr to the left of rρ, ϕrptqs of height greater than hu .

on a (random) dense set. By properties of Lévy processes, the above limit can be expressed in terms
of local times, and hence equal to

lim inf
kÑ8

1

εk

» t

0
1Xr

s�Xr
rs,ts¤εk ds.

for any sequence εk decreasing to 0. We will call Hr the genealogy coding process of Xr. The
quantity Hr

t is our proxy for the generation of the individual visited at time t in the tree coded by
Xr. In the (sub)critical case there is no need to truncate to define a height process H, which codes
a tree Γ and has been called the Lévy tree in Duquesne and Le Gall (2005). In the supercritical
case the process Hr is then the coding function of a compact real tree. The family pHr, r ¥ 0q is
compatible under pruning (cf. Lemma 4.3), so that the sequence of trees Γr that they encode is
increasing (in the sense that Γr can be embeded in Γr1 if r ¤ r1). We will conclude the existence
of a limit tree Γ, which we call the genealogical tree associated to our splitting tree. The law of Γ,
denoted γ, can be decomposed as γc � bγlc, where γc is the restriction of γ to compact trees (and
is the law of the tree coded by the height process under ν#), while γlc is the normalized restriction
of γ to non-compact trees.

Other articles generalizing Lévy trees to the supercritical setting are Duquesne and Winkel (2007),
Delmas (2008) and Abraham and Delmas (2012). In the first one, the authors construct them as
limits of Galton-Watson trees consistent under Bernoulli leaf percolation, while in the second and
third the construction is carried out by relating the locally compact trees to the compact ones
via Girsanov’s theorem. However, the possibility of studying the height process of a sequence of
Lévy-like processes had not been considered before.
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To state a Ray-Knight theorem, consider the process

Z1
a � # tσ P Γ : σ has an infinite line of descent and dpσ, ρq � au .

The above quantity is finite by local-compactness. Recall that υ stands for the Lévy measure of Ψ
and β for its Gaussian coefficient.

Theorem 1.5. Under γlc, the process Z1 is a continuous-time non-decreasing branching process
with values in N and jumps in t1, 2, , . . .u which starts at 1. Its jump rate from j to j � k (where
k ¥ 1) equals

j

�
1k�1βb�

» 8
0

bkzk�1

pk � 1q!
e�bz υpdzq

�
.

Furthermore, if δpσq � dpρ, σq, then the random measure µ � δ�1 admits a càdlàg density Z2.
Finally, the process Z �

�
Z1, Z2

�
is a two-type branching process with values in N� r0,8q started

at p1, 0q. Let Epn,zq be its law when started at pn, zq. Then Z is characterized by

d

dt

����
t�0

Epn,zq
�
sZ

1
t e�λZ2

t

	
� e�λzsn

�
zΨ#pλq

�
� e�λzsn�1n

1

b
rΨpλ� bp1� sqq �Ψpλ� bqs .

Two-type branching processes with state-space r0,8q2 were introduced in Watanabe (1969) and
form part of the affine processes of Duffie et al. (2003). In Caballero et al. (2017), they have been
given a time-change representation which gives insight into their infinitesimal behavior. Indeed,
once we note that Z2 does not influence the behavior of Z1 (since non-prolific individuals cannot
give rise to prolific ones), we see that there exist two independent Lévy processes X1 �

�
X1,1, X1,2

�
and X2 (with values in N� r0,8q and R respectively) such that Z has the same law as the unique
solution to

Z1
t � 1�X1,1

³t
0 Z

1
s ds

Z2
t � X2³t

0 Z
2
s ds

�X1,2
³t
0 Z

1
s ds

.

Note that Z1 has pathwise constant trajectories. The link between the infinitesimal behavior of X
and Z is as follows: if Z is started at pk, zq then, as t Ñ 0, Zt behaves as Xk,z

t � pk � X1,1
kt , z �

X2
zt�X1,2

kt q. This can be made precise by comparing the derivatives of their semigroups at zero, at
least for functions whose second derivative is continuous and bounded.

The quantities

Ψ1pλ1, λ2q � � logE
�
e�λ1X

1,1
1 �λ2X

1,2
1

	
and

Ψ2pλq � � logE
�
e�λX2

1

	
(which govern the infinitesimal behavior of X1 and X2) are called the branching mechanisms of the
two-type branching process Z and determine the process uniquely. In the setting of Theorem 1.5,
Ψ2 � Ψ# while X1 has drift coefficient p0, 2βq and its Lévy measure equal to the sum βbδp1,0q �

υf � υi, where υf is responsible for the common finite-activity jumps of X1,1 and X1,2, while υi is
responsible for the infinite activity jumps of X1,2. We have the explicit expressions

υf pdk, dxq �
8̧

l�1

e�bxbl
xl�1

pl � 1q!
δlpdkq υpdxq and υipdxq �

1� e�bx

b
υpdxq .

The above two-dimensional branching process is exactly the one obtained by Bertoin et al. (2008)
in their study of the prolific individuals in continuous-state branching (CB) processes with branch-
ing mechanism Ψ. The aforementioned work was aimed at extending the well known decomposition
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of a supercritical Galton-Watson process in terms of its individuals with infinite and finite lines of
descent. The two-dimensional branching process is also implicit in the work Duquesne and Winkel
(2007) where the authors construct supercritical Lévy trees by means of increasing limits of discrete
trees consistent under Bernoulli leaf percolation. We have therefore obtained chronological and ge-
nealogical interpretations of the prolific individuals and an independent construction of supercritical
Lévy trees. Superprocess versions of the prolific skeleton decomposition can be found in Berestycki
et al. (2011), Kyprianou et al. (2014) and the references therein.

In order to make the link between supercritical CB processes and our construction of supecritical
Lévy trees more explicit, we will obtain a version of Theorem 1.5 in which we obtain a CBpΨq
process that starts at x. For this, let x ¡ 0 and, considering the interval r0, xs as a compact TOM
tree (to be rooted at 0). Now define a probability measure ηΨx on locally compact TOM trees by
grafting to the right of r0, xs trees cn at height xn where pxn, cnq are the atoms of a Poisson random
measure on r0, xs with intensity Leb � ηΨ. As before, we will first define the height process of the
truncated contour Hr under ηΨx , show that these continuous processes code a collection of growing
TOM trees, hence showing the existence of a limiting TOM tree Γx whose law will be denoted
γΨx . The statement features a continuous-branching process with branching mechanism Ψ, CBpΨq,
started at x. As in the above discussion of the two-dimensional case, this process can be represented
as the unique solution to

Zt � x�X³t
0 Zs ds

where X is a spectrally positive Lévy process with Laplace exponent Ψ. For background on these
representations of continuous branching processes, the reader is referred to Lamperti (1967), Helland
(1978) and Caballero et al. (2009) for the monotype case without immigration, Caballero et al. (2013)
for the monotype case with immigration and Chaumont and Liu (2016) and Caballero et al. (2017)
for the multitype cases.

Corollary 1.6 (Ray-Knight theorem for supercritical Lévy trees). Let Ψ be a supercritical Laplace
exponent which satisfies Hypothesis G. Under γΨx , the measure µ � δ�1 admits a càdlàg density Z.
The process Z is a CBpΨq which starts at x.

1.4. Organization. Section 2 is devoted to notions surrounding real and TOM trees and to the study
of infinite lines of descent in the deterministic setting. Then, the results are taken to the random
setting of splitting trees in Section 3 which features a proof of Theorem 1.3 and Corollary 1.4.
Section 4 constructs the genealogical tree associated to supercritical splitting trees. Finally, Section
5 contains a proof of the Ray-Knight type theorem stated as Theorem 1.5.

2. The prolific skeleton on a locally compact TOM tree

Let us begin by recalling the notions related to trees that we will use.

Definition 2.1 (From Dress and Terhalle (1996) and Evans et al. (2006)). An R-tree (or real
tree) is a metric space pτ, dq satisfying the following properties:

Completeness: pτ, dq is complete.
Uniqueness of geodesics: For all σ1, σ2 P τ there exists a unique isometric embedding

ϕσ1,σ2 : r0, dpσ1, σ2qs Ñ τ

such that ϕp0q � σ1 and ϕpdpσ1, σ2qq � σ2.
Lack of loops: For every injective continuous mapping ϕ : r0, 1s Ñ τ such that ϕp0q � σ1

and ϕp1q � σ2, the image of r0, 1s under ϕ equals the image of r0, dpσ1, σ2qs under ϕσ1,σ2 .
A triple pτ, d, ρq consisting of a real tree pτ, dq and a distinguished element ρ P τ is called a rooted
(real) tree.
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We will now use the notation rσ1, σ2q for ϕσ1,σ2pr0, dpσ1, σ2qqq.

Definition 2.2. A real tree pτ, d, ρq is called totally ordered if there exists a total order ¤ on
τ which satisfies

Or1: σ1 ¨ σ2 implies σ2 ¤ σ1 and
Or2: σ1   σ2 implies rσ1, σ1 ^ σ2q   σ2.

A totally ordered real tree is called measured if there exists a measure µ on the Borel sets of τ
satisfying:

Mes1: µ is locally finite and for every σ1   σ2:

µptσ : σ1   σ ¤ σ2uq ¡ 0.

Mes2: µ is diffuse.
A totally ordered measured tree will be referred to as a TOM tree.

The importance of this notion is that compact TOM trees are precisely those that can be coded
by a function in a canonical manner (Cf. Theorem 1 of Lambert and Uribe Bravo (2018), adapted
from Theorem 1.1 in Duquesne (2006)). Indeed, the mapping σ ÞÑ µptσ̃ : σ̃ ¤ σuq has a range D
dense in r0, µpτqs. Its inverse, which respects the induced order on D, has a unique càdlàg extension
ϕ called the exploration process. The càdlàg function t ÞÑ dpρ, ϕptqq, which is called the contour,
codes a TOM tree isomorphic to pτ, d, ρ,¤, µq. In a sense, we replicate the concept of plane trees (a
setting which has proved very useful for Galton-Watson processes) in the continuous setting thanks
to the total order and the measure.

We will now give a genealogical structure to the infinite lines of descent.

Proposition 2.3. Let I be the collection of individuals with infinite lines of descent in any given
locally compact TOM tree pτ, d, ρ,¤, µq. Then I � H if and only if τ is compact. If τ is non-
compact, I is a non-compact connected subset of τ containing the root which can be given the
structure of a locally compact TOM trees as follows: the tree structure (geodesics and lack of loops)
is inherited from τ , as is the total order, and there exists a naturally defined Lebesgue measure on
I which assigns to any interval rρ, σs its length dpρ, σq. Furthermore, there exists a plane tree
τI � U and a collection of infinite lines of descent pIu : u P τIq of τ , with images pIu, u P τpq,
where Iu � tIuptq, t ¥ 0u, which partition I as follows:

(1)
�

uPτI
Iu � I and

(2) on defining σu � Iup0q, we have IuXIv � tσuu if v � πpuq or πpvq � πpuq and IuXIv �
H if πpuq � v, πpvq.

Furthermore, if αu � dpρ, σuq for u P τI , then I can be uniquely reconstructed from the marked
plane tree pτI , αq.

Heuristically, the infinite lines of descent are formed out of the plane tree τI , by stipulating that
individuals u P τI live an infinite amount of time, and their offspring uj are born at time dpσuj , ρq.
In the case of the Yule tree, the birth times are the jump times of a Poisson process of rate b along
each infinite line of descent. We now move to the proof of the above propostion by first considering
a lemma.

Let c � ppτ, d, ρq ,¤, µq be a locally compact TOM tree. Let

I � tσ P τ : σ has an infinite line of descentu .

Lemma 2.4. I is empty if and only if τ is compact. Otherwise, I is a non-compact connected
subset of τ containing the root which inherits the structure of a locally compact TOM tree when
equipped with Lebesgue measure.
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Proof : Obviously I is empty when τ is compact. When τ is not compact, then the sphere Sr �
tσ P τ : dpσ, ρq � ru is non-empty for any r ¥ 0. Let us define, for n ¥ r,

Sn
r � tσ P Sr : Dσ

n P Sn, σ P rρ, σ
nsu .

Local compactness implies that Sn
r is finite; it is non-empty since otherwise Sr�n would be empty,

implying that τ is compact. Note that

Sn�1
r � Sn

r � Sr.

Since Sr is compact, by the Hopf-Rinow theorem, then S8r �
�

n S
n
r is non-empty and finite. Let

σr be the first element of S8r with respect to the total order ¤. We now prove, by contradiction,
that σr ¨ σr1 if r ¤ r1. Indeed, if σr ª σr1 , we can construct, by definition of S8r , an element
σ̃r1 P S8r1 such that σr ¨ σ̃r1 . By definition, σr1   σ̃r1 . However, if we now define σ̃r as the unique
element in rρ, σr1s at distance r from the root, then (as σr^ σ̃r � σr), σ̃r   σ̃r1 ¤ σr, by Or2, which
contradicts the definition of σr. Hence, r ÞÑ σr is an isometry from r0,8q to τ and by construction
dpρ, σrq � r, which increases with r, so that I is non-empty.

To see that I is connected, it suffices to note that any isometry from r0,8q into τ can be
extended to an isometry which contains the root. Hence, I can be considered a (locally compact)
real tree, which can be given a total order by restricting the total order on τ . We will give it
Lebesgue measure for coding purposes, since the measure µ on our tree τ might assign zero mass
to I . □

We will now see that I can be thought of as a plane tree whose individuals live indefinitely and
have associated to them a sequence of birth times, which is precisely the content of Proposition 2.3.

Proof of Proposition 2.3: Note that, for any r ¡ 0, there are only a finite number of elements of I
at distance r from ρ. (Otherwise, there would be an accumulation of long branches, contradicting
local compactness). This quantity is positive if τ is non-compact and zero otherwise. We denote by
Ir � I XSr. Let σr

H be the first element in I at distance r from ρ; in the proof of Lemma 2.4, we
have seen that r ÞÑ σr

H is an infinite line of descent if τ is non-compact. If σ belongs to any infinite

line of descent and r � dpσ, ρq, then either σ � σr
H or rσ, σ ^ σr

Hq ¡ σr
H. So, IH �

!
σr
H : r ¥ 0

)
can be thought of as the first infinite line of descent. If I � IH, we will call our tree a sin tree (the
nomenclature for single infinite end tree as coined in Aldous (1991)) and set τI � tHu. Otherwise,
consider the connected components of τzIH which intersect I .

If τ̃ is such a connected component and σ̃ P τ̃ , let A � tt ¥ 0 : ϕρ,σ̃ptq P I8u. The set A is
non-empty since 0 P A. If t � supA, then t P A since IH is closed. Let ρ̃ � ϕρ,σ̃ptq. We now
assert that ρ̃ is independent of the element σ̃ P τ̃ that we considered. Indeed, if σ̃1   σ̃2 P τ̃ gave
rise to ρ1 � ρ2, then ρ1   ρ2 by Or2 and this would create a cycle since we would be able to
go from σ̃1 to σ̃2 inside of τ̃ (by connectedness of components) or going from σ̃1 to ρ̃1, going up
from ρ̃1 to ρ̃2 inside IH, and then from ρ̃2 to σ̃2. Any path from τzτ̃ into τ̃ must therefore pass
through ρ̃ (otherwise there would be cycles). Then τ̃ Y tρ̃u is a TOM tree; to prove it we just need
to see that τ̃ Y tρ̃u is closed. Let σn be a sequence of τ̃ converging to σ P τ . If σ did not belong
to τ̃ Y tρ̃u, then the path rσn, σs would hence have to contain ρ̃. This would imply the inequality
dpσn, σq ¥ dpρ̃, σq ¡ 0, which is incompatible with σn Ñ σ. Hence, components τ̃ of τzIH, when
rooted at their corresponding ρ̃ and restricting order and measure to them, become TOM trees. We
will call these the rooted components.

We now proceed to order the connected components of τzI by showing that if τ1 and τ2 are two
such components, and σi, σ̃i P τi then σ1   σ2 implies σ̃1   σ̃2. In this case, we can say that τ1   τ2.
If τ1 and τ2 are two connected components of τzIH (say rooted at ρ1 and ρ2), consider σi, σ̃i P τi.
Note that the unique path from σ1 to σ2 passes first through ρ1 and then through ρ2, and that, by
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connectedness, σ1 ^ σ̃1 P τ1. Hence, σ1 ^ σ̃1 P rσ1, ρ1q and σ1 ^ σ2 � ρ1 ^ ρ2. From Or, we get

σ̃1 ¤ σ1 ^ σ̃1   σ2.

On the other hand the assumption σ̃2   σ̃1 would imply, by the above argument, that σ2   σ̃1,
which we have shown to be false. We conclude that σ̃1   σ̃2.

Hence, we can order the rooted components of τzIH which intersect I , say as τ1, τ2, . . .. We label
them by increasing height of their root and in case of components τi, τj with the same root, we impose
that i ¤ j implies τi   τj , since there is only a finite number of components of τzIH intersecting
I and sharing the same root by local compactness. (The ordering between two components is
clear if their roots are different, which is the case when τ is binary). Let kH be the number of
such connected components (kH can be zero or infinite). Then the first generation of τ1 consists of
1, . . . , kH if kH is finite and of Z� otherwise. If τi is rooted at ρi, we set αi � dpρ, ρiq. Note that
if kH � 8 then αi is increasing and converges to 8. Indeed, by local compactness, only a finite
number of the αi can belong to a compact interval of R�.

Hence, starting from any non-compact TOM tree τ , we have built its first infinite line of descent
IH and provided a particular labeling for the components of τzIH which intersect I .

We now proceed recursively. Starting from τH � τ , we consider its first infinite line of descent,
with image IH as well as the labeled components τ1, τ2, . . .. Then, on each one of the components,
we repeat the procedure. The image of the first infinite line of τu is denoted Iu. The root of τu
is called ρu and we let αu � dpρ, ρuq. We let ku be the number of connected components of τuzIu

which intersect I . If ku � 0, we have finished exploring this part of the tree. If ku ¡ 0, the rooted
connected components of τuzIu, labeled in our particular way, will be denoted τui, 1 ¤ i ¤ ku, and
we now explore these. Notice that, by construction, Iu XIui � tρuiu. The tree τI consists of the
labels used for the lines of descent.

Let us now show that I �
�

uPτI
Iu. This follows from the more general equality

Sr XI �
¤

uPτI ,αu¤r

Sr XIu, (2.1)

which will be proven by induction on the (finite) quantity of elements of SrXI . When SrXI has
only one element, this is, by construction, the individual of IH at height r, so that SrXI � SrXIH.
Suppose that the equality (2.1) holds for any TOM tree and any r ¥ 0 whenever Sr XI has less
than n elements. If for our tree τ , Sr X I has n � 1 elements, then one (and only one) of these
elements belongs to IH. The others belong to rooted connected components of τzIH, say with
labels 1, . . . , k such that αi ¤ r. Denote these components by τ1, . . . , τk. By construction, the
infinite lines of descent of τi are pIiu : iu P τIq. If I i denotes individuals with infinite lines of
descent of τi and Si

r denotes individuals in τi at distance r � αui from ρui , note that I i X Si
r has

at most n elements, so that from our induction hypothesis we get

I i X Si
r �

¤
iuPτI
αiu¤r

Iiu X Sr.

Hence,

I X Sr � IH X Sr Y
¤
i¤k
iuPτv
αiu¤r

Iiu X Sr �
¤
uPτI
αu¤r

Sr XIu. □

We end this section by presenting the notion of the grafting operation on TOM trees. Let
ci � ppτi, di, ρiq ,¤i, µiq be two locally compact TOM trees and consider σ P τ1. We wish to graft
c2 to c1 at σ.
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Definition 2.5. The grafting of c2 to the right of σ P τ1 is the locally compact tree c �
ppτ, d, ρq ,¤, µq defined as follows: let

τ �
2¤

i�1

tiu � τi,

equipped with the distance d given by

dppi, σ1q , pj, σ2qq �

#
dipσ1, σ2q i � j

d1pσ1, σq � d2pρ2, σ2q i � 1, j � 2

and rooted at p1, ρ1q. We now define a compatible order ¤ by stipulating that

pi, σ1q ¤ pj, σ2q if and only if either

$'&
'%
i � j and σ1 ¤i σ2

i � 1, j � 2 and σ1 ¤ σ

i � 2, j � 1 and σ2 ¡ σ

.

Finally, we extend µi to tiu � τi in the obvious manner and, abusing notation, set µ � µ1 � µ2.

It can be seen that c � ppτ, d, ρq ,¤, µq is a locally compact TOM tree.
If fi codes the compact tree ci, σ � rtsf1 and t � suprtsf1 , then we can code c by the function f

given by

fpsq �

$'&
'%
f1psq s   t

f1ptq � f2ps� tq t ¤ s   t� µ2pτ2q

f1ps� µ2pτ2qq t� µ2pτ2q ¤ s ¤ µ1pτ1q � µ2pτ2q

.

Instances of the grafting operation on real trees and its use in constructing random trees can be
found in Evans et al. (2006); Evans (2008); Abraham et al. (2014).

3. Backbone decomposition of supercritical splitting trees

In this section, we analyze the laws Υ and Υtree with the aim of proving Theorem 1.3. We first
prove that under Υ, there exists a unique infinite line of descent that contains the root. Then, we
consider the measure Υtree and prove that the infinite lines of descent are a Yule tree and move on
to the proof of Theorem 1.3.

3.1. Infinite lines of descent under Υ. Recall that the probability measure Υ is the (projective)
limit of trees with laws Υr coded by the concatenation of the post-minimum process of a Ψ-Lévy
process (time-changed to remain below r) followed by an independent Ψ#-Lévy process started at
r and time-changed to remain below r until one of them reaches zero. However, in order to access
the infinite line of descent, we need to define the trees with laws Υr on a unique probability space
so that the tree with law Υ becomes its pointwise direct limit. The reader is asked to recall the
definition of a direct limit of a sequence of compact trees compatible under truncation.

Proposition 3.1. Let S be a tree with law Υ. Then S admits a unique infinite line of descent.

Proof : Let X0, X1, . . . be independent processes, where X0 has the law PÑ0 and for i ¥ 1, the
law of Xi is the image under P#

i by killing upon reaching i � 1. We then let Xi,n equal Xi time-
changed to remain below n, with the understanding that if i ¥ n then this is the trivial trajectory
which is ignored when referring to it for concatenation purposes. Finally, we just let Y n equal
the concatenation of X0,n, Xn,n, . . . , X1,n. Assume that the processes are concatenated at times
Tn
1   Tn

2   � � �   Tn
n and that Y n is defined until Tn

n�1. Note that the sequence of processes Y n is
(pointwise) consistent under time-change. We then let Sn be the tree coded by Y n and let S be the
pointwise direct limit of the sequence pSnq, consisting of equivalence classes consisting of elements
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the type pn, σq with σ P Sn (as explained in Subsection 1.2.3). In what follows we identify σ P Sn

and the equivalence class of pn, σnq. Note that the law of S is Υ. We first show that S has at least
one infinite line of descent. Indeed, consider first the path to the root from σn

n � rTn
1 sY n (considered

as an element of S): this consists of individuals

rρ, σn
ns �

!
rtsY n : t ¥ Tn

1 and Y n
t � Y n

rTn
1 ,ts

)
as explained when introducing the tree coded by a function in Lambert and Uribe Bravo (2018).
After Tn

1 , Y n reaches level i   n at Tn
i . It follows that σn

i � rTn
i sY n P rρ, σn

ns. Note that σn
i ¨ σn

i�1.
Hence, I �

�
nrρ, σ

n
ns is an infinite line of descent since dpρ, σn

nq � Y n
Tn
1
� nÑ8 as nÑ8.

We now prove that I is the unique infinite line of descent. Indeed, if σ P S, we consider ñ such
that dpσ, ρq   ñ and hence that σ P Sñ. Also, let n ¥ ñ be such that the maxima of X1, . . . , X ñ

and of X0 (until the last time Λñ it visits r0, ñs) are less than n. Suppose that σ � rtsY n . We
divide into cases depending on if t   Tn

1 or not. In the first case, note that Y n�m � Y n � X0

on r0,Λñs and Y n�m ¥ ñ on rΛñ, T
n�m
1 s. If X0

t � X0
rt,8q then Y n

t � Y n
rt,Tn

1 s
and if we let t̃ �

inf ts ¥ Tn
1 : Y n

s ¤ Y n
t u then rtsY n � rt̃sY n ¨ rTn

1 sY n P I . Otherwise, if dpσ, ρq � X0
t ¡ X0

rt,8q,
then, by the choice of n, the subtree above σ is compact (and coded by X0 (or Y n) from the first
time X0 exceeds X0

t until the last time it is above that quantity. ) Hence, σ is not on an infinite
line of descent (but attaches to its left). When t ¥ Tn

1 , we can analogously divide into the cases
depending on if Y n

t � Y n
rTn

1 ,ts or not. The proof follows the same line as the one just presented and
we one sees that the excursions above the past minimum of the Xi code trees that attach to the
right of the infinite line of descent. □

3.2. Yule trees and the prolific skeleton decomposition. The objective of this section is to prove
Theorem 1.3 and Corollary 1.4. To this end, we will fix a level r ¡ 0 and consider the contour of the
truncation at level r of the restriction of ηΨ to non-compact trees, whose law was equal to bQÑ,r,
as well as the corresponding contour of the truncation of the Υ-tree. Theorem 1.3 will follow once
we prove that the above two contours have the same law.

Recall the measure on sin trees Υ defined before the statement of Theorem 1.3. Let us describe
the law of the contour process of the image Υr of Υ upon truncating at level r. Recall that the
contour process under Υr is the concatenation of XÑ time-changed to remove the part of the
trajectory above r and a Lévy process with Laplace exponent Ψ# started at r, reflected below level
r and killed upon reaching zero. Because of our description of the infinite line of descent under Υ,
we might think of this truncated sin tree as the (vertical) interval r0, rs where we graft trees to the
left and to the right; the left corresponding to the process XÑ and the right to the subcritical Lévy
process (both time-changed to remain below r). Hence, to the right of the interval r0, rs, we just
graft trees f at s where ps, fq is a Poisson random measure with intensity Lebpdsq b ν#,r�spdfq,
where ν#,r is the excursion measure corresponding to the exponent Ψ# and then time-changed to
keep the process below r. Let us consider this description when passing to a Υtree truncated at
level r, say Ir. By construction, Ir can be thought of as the interval r0, rs, whose tip is denoted
σ0, where the left is coded by XÑ (time-changed) and to the right we graft trees as under Υ and
additionally graft truncated locally compact trees pSk, Ikq at the atoms of a Poisson random measure
with intensity b ds b Υr�s

treepdfq. We will suppose that S1 ¡ S2 ¡ � � � , so that I1 is the tree that is
grafted to the right of r0, rs farthest from the root and conditionally on S1 � s, I1 has law Υr�s

tree
and tip σ1. If we graft no truncated locally compact trees, then the right of Ir is coded by a Lévy
process with exponent Ψ#, started at r, killed upon reaching zero and time-changed to remain below
r. Otherwise, the right of σ0 is coded by 3 different parts (in their correct chronological order):
first, what happens between σ0 and σ0 ^ σ1, then between σ0 ^ σ1 and σ1, and finally the right
of σ1. Conditionally on S1 � s, between σ0 and σ0 ^ σ1, we have a Lévy process with exponent
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Ψ# time-changed to remain below r and killed upon reaching s. Then, what lies between σ0 ^ σ1
and σ1 is coded by a process with law s � XÑ time-changed to remain below r. Since r � S1 is
exponential of parameter b when I1 needs to be grafted, then these two pieces, plus the value of
S1 can be combined to obtain a Lévy process with exponent Ψ conditioned to remain above zero
(its minimum will be r � S1) and time-changed to remain below r. Finally, the right of σ1 in Ir is
divided into the right of σ1 in I1 and the right of σ0^σ1 in Ir. However, this has the same law as I,
meaning that we restart with the same procedure. Iterating, we see that the coding function for Ir
also admits the following description: we start with a process with law PÑ time-changed to remain
below r until its death-time, followed by processes with laws Pr time-changed to remain below r
which will get concatenated until one of them reaches zero. We deduce that the coding function for
Ir has the same law as the corresponding coding function under ηr, which concludes the proof of
Theorem 1.3.

Regarding Corollary 1.4, we just note that under ηΨ the infinite lines of descent are non-empty
only when the tree is locally compact. However, the restriction of ηΨ to locally compact trees is
bΥtree. The construction of the latter, plus the fact that under Υ there is a unique infinite line of
descent thanks to Proposition 3.1, show that the tree of infinite lines of descent under Υtree is a
Yule tree of birth rate b.

4. The height processes and the genealogical tree associated to supercritical splitting
trees

In this section, we aim at constructing the genealogical tree associated to a supercritical splitting
tree. This will be accomplished by considering the height processes, introduced in Le Gall and
Le Jan (1998) and Duquesne and Le Gall (2002), of truncations of splitting trees. This provides us
with a family of continuous functions coding a growing sequence of compact trees. A direct limit
construction shows us the existence of a locally compact TOM tree; the limit tree will be termed
the supercritical Lévy tree since it reduces to the Lévy tree in the subcritical case. Let us now turn
to the construction of the height process.

Recall that if X is any stochastic process and pεkq is any sequence decreasing to zero, one can
define a measurable version of the height process of X, denoted H�pXq, by means of

H�pXqt � lim inf
kÑ8

1

εk

» t

0
1Xs�Xrs,ts¤εk ds.

Then, one defines the height process as a good version of H�. If Y r is the contour of a Υtree
truncated at height r, and assuming that Grey’s condition

(G) :
³8

1{Ψpqq dq   8

holds, we now construct a continuous extension of (the restriction of) H�pY rq (to a random dense
set).

Recall that we assume that Ψ is supercritical and we let b ¡ 0 denote the positive root of Ψ.
We will also need the Laplace exponent Ψ# where Ψ#pqq � Ψpb� qq. Notice that the Lévy

processes corresponding to Ψ and Ψ# have paths of unbounded variation (because of (G)) and that
hence 0 is regular for both half-lines thanks to Corollary VII.5 of Bertoin (1996). As referenced in
the introduction, in this case, the infimum of X on any interval rs, ts is achieved continuously at a
unique place.

Fix r ¡ 0. Let X1, X2, . . . be independent processes. X1 has law PÑ, while X2, X3, . . . are
Ψ-Lévy processes started at r and killed when they reach zero.

By concatenation, we define the process Y r as follows. First, we define the time-change Ci as
the right-continuous inverse of

Ai
t �

» t

0
1Xi

s¤r ds.
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Since each Xi either has finite lifetime or drifts to infinity, we see that Ci
8   8. We define

Ti � C1
8 � � � � �Ci

8 and T0 � 0. Next, let N be the first index i such that Xi �Ci approaches zero
at death time. We then define

Y r
t �

Ņ

i�1

1tPrTi�1,TiqX
i � Ci

t�Ti�1
.

The process Y r codes a real tree which has been interpreted, in the finite variation case in
Lambert (2010); Lambert and Uribe Bravo (2018), as the contour of the chronological tree of a
population of individuals which have iid lifetimes and reproduce at constant rate to iid copies of
themselves, seen until time r. The processes Y r are consistent under time change, so that if r1 ¤ r
then removing the trajectory on top of r from Y r1 (with a time-change analogous to the Ci) leaves
a process with the same law as Y r (cf. Corollary 8 and Propositon 9 in Lambert and Uribe Bravo
(2018)). Hence, we can actually build the processes Y r on the same probability space so that the
time-change consistency is valid pathwise. Hence, the trees they code naturally form an increasing
family and we can construct from them, by a direct limit construction, a unique locally compact
TOM tree whose truncation at level r is coded by a process with the same law as Y r and which is
not compact.

For (spectrally positive) Lévy processes satisfying Grey’s condition and in the subcritical case
(so under P#, say), Duquesne and Le Gall (2002) construct the so-called Height process of X,
denoted H, as a continuous modification of the process H�pXq, with additional links to the (suitably
normalized Markovian) local time Lptq of the time-reversed processes X̂t given by X̂t

s � Xpt�sq��Xt.
Indeed, according to Lemma 1.4.5 of Duquesne and Le Gall (2002), there exists a sequence εk Ó 0
such that, almost surely, if s is an upward time for X, meaning that there exists a rational t ¡ s
satisfying Xs� ¤ Xrs,ts), we have:

Hs � L
ptq
t � L

ptq
t�s � H�pXqs . (4.1)

Note that the (random) set of upward times is dense on p0, ζq; for example, any jump time is an
upward time and jumps of X are dense under P, P# and PÑ in the infinite activity case. They will
be of fundamental importance in our analysis, since the equality Hs � H�

s is valid for all upward
times s under Px. We will have to consider an alternative to modifications for height processes,
since we were unable to make them work with time-changes. Instead, we will let Hu (or HupXq)
denote the restriction of H� to the set of upward times. We will construct a continuous extension
of HupY rq and define it as the height process of Y r

To construct a continuous extension of HupY rq, we first construct a continuous extension of
HupX � Crq under P#

x , then under Px and PÑ, then finally for Y r. We simplifly notation in the
proof of the next proposition by not writing r as a superscript.

Proposition 4.1. Under P#, HpXq � Cr is the unique continuous extension of HupX � Crq. Ad-
ditionally, almost surely, if t is upward for X � Cr then X � Crpt�q   r and Cr

t is upward for X,
so that we have the equality HpXq � Cr

t � H�pX � Crqt.

Proof : We first prove that HpXq�C is continuous. Since H is continuous, we only need to see what
happens at the discontinuities of C. A discontinuity of C at t corresponds to an excursion interval
of X above r: X ¡ r on pCt�, Ctq. Our aim is to prove that HpXq �Ct� � HpXq �Ct. Notice that
all excursion intervals can be captured by defining, for each rational u ¥ 0,

du � inf ts ¥ u : Xt ¤ ru and gu � sup ts ¤ u : Xs ¤ uu .

Then excursion intervals are of the form pgu, duq, whenever gu   du (which happens whenever
Xu ¡ r). Hence, it suffices to prove that Hgu � Hdu for every rational u. Note that du is a stopping
time. By regularity, for any rational v ¡ du, we have that Xrdu,vs   r. Hence we can define ρv to be
the (unique) instant at which Xrdu,vs � Xρv and note that ρv Ñ du as v Ñ du. Also, we can define
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γv � sup ts ¤ u : Xs ¤ Xρvu, so that Xγv�, Xdv� ¤ Xrγv ,vs   Xv and γv Ñ gu as v Ó du. Using
(4.1), we see that Hρv � Lv

v �Lv
v�ρv and Hγv � Lv

v �Lv
v�γv . However, using the support properties

of local times (cf. Theorem 4.iii of Bertoin (1996)), we see that Lv does not increase on the inverval
rv � γv, v � ρvs so that Hρv � Hγv . By continuity of H, we see that Hgu � Hdu .

Suppose now that t is upward for X�C. Then X�Cpt�q   r. Indeed, this is clear if ∆pX�Cqptq ¡
0. On the other hand, if ∆pX �Cqptq � 0 and t is upward for X �C, the equality X �Ct � r would
then imply the existence of s ¡ t such that X � C is constant on rt, ss, which is impossible thanks
to the proof of Proposition 7 of Lambert and Uribe Bravo (2018). By considering these two cases,
since X �Cpt�q   r, we deduce the existence of a rational u ¡ t such that XpCptq�q ¤ XrCptq,us, so
that Ct is upward for X. Then, for any ε P p0, r�X �Ct�q and s   t, the inequality Xs�Xrs,Cts   ε

implies Xs   r. Also, we have that X � Crs,ts � XrCs,Cts. Then, by change of variables and (4.1):

HupX � Cqt � H�pX � Cqt

� lim inf
kÑ8

1

εk

» t

0
1X�Cs�X�Crs,ts εk ds

� lim inf
kÑ8

1

εk

» t

0
1X�Cs�XrCs,Cts

 εk ds

� lim inf
kÑ8

1

εk

» Ct

0
1Xs�Xrs,Cts

 εk1Xs¤r ds

� lim inf
kÑ8

1

εk

» Ct

0
1Xs�Xrs,Cts

 εk ds

� HpXq � Ct

Finally, HupX � Cq is densely defined (since every jump time t of X �C is upward and these jump
times are dense on the interval of definition of X �C). Hence, its continuous extension is unique. □

To explain why we can construct a continuous version of the height process of X � C under Px

and PÑ, recall that the laws Px and P#
x are equivalent on Ft for each t ¡ 0, so that HpXq � C

is a continuous extension of HupX � Cq under Px. By killing, we see that HupX � Cq admits the
continuous extension H �C under Qx (which stands for the image of Px under killing when reaching
zero) for any x ¥ 0.

Recall that PÑx is the law of the post minimum XÑ process under Px. Hence, if H is a continuous
extension of HupXq and m is the unique time at which X reaches its minimum, then H̃ � Hm��

will be a continuous extension of HupXÑq. The time-change C is the identity until XÑ reaches
the threshold r after which the process has the same law as X under Pr conditioned on remaining
positive. So, H̃ � C is still a continuous extension of HupXÑ � Cq.

We have seen that, for each one of the processes Xi �Ci, there exists a continuous extension H i

of Hu
�
Xi � Ci

�
. We now construct a continuous extension of HupY rq.

Proposition 4.2. Define H as follows: for any i ¥ 1 and t P rTi, Ti�1q, let

gt � sup
!
s ¤ Ti : Y

r
s ¤ Y r

rTi,ts

)
and define

H � H1 on r0, T1s and, recursively, Ht � H i�1
t�Ti

�Hgt for i ¥ 1 and t P rTi, Ti�1q.

Then, H is a continuous extension of HupY rq.

Proof : Recall that H i
0 � 0 � limtÑ0�H i

t . Also, gTi � Ti. We then see that H is continuous at each
Ti. To prove that H is continuous at t P pTi, Ti�1q for some i ¥ 1, it suffices to show that t ÞÑ Hgt
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is continuous there. However, let us note that t ÞÑ gt is decreasing and càglàd on pTi, Ti�1q. It
might then happen that gt�   gt and they fall on different intervals pTk, Tk�1q and pTl, Tl�1q with
k   l   i. However, by definition, this implies

Hgt � Hgt� �H l�1
gt�Tl

and since the minimum of Y r on pTl, Tl�1q is attained at gt, then H l�1
gt�Tl

� 0 and Hgt � Hgt� . Indeed,
note that for any rational v P pgt, Tl�1q, formula (4.1) gives Lv

v�Lv
v�gt and that by support properties

of local times, Lv is constant on rv� gt, vs. It remains to consider the case when gt, gt� P pTl, Tl�1q

for some l   i. In this case, we note that pC l�1
gt��Tl

, C l�1
gt�Tl

q is an excursion interval of X l above its
future minimum process so that in particular gt � Tl is upward. Hence, the height process of X l

is constant on that interval (again by (4.1) and support properties of local times), which implies
Hgt � Hgt� . We conclude that H is continuous.

Let us now prove that H is an extension of HupY rq. We need to prove that Ht � H�pY rqt for
every upward time t P rTi, Ti�1q for Y r and for any i.

On t ¤ T1, we see that Ht � H1
t � H�pY rqt if t is upward for Y r by definition of H and

Proposition 4.1. To proceed by induction, assume that for some j ¥ 1, Ht � H�pY rqt if t ¤ Tj and
t is upward for Y r. If we now work on the set t P pTj , Tj�1q, note that gt P rTi, Ti�1q for some i   j.
Note that both H and H�pY rq can be decomposed as

Ht � Hgt �Hj�1
t�Tj

(4.2)

and

H�pY rqt � H�pY rqgt � lim inf
kÑ8

1

εk

» Ti�1

gt

1Y r
s �Y r

rs,ts¤εk ds (4.3)

� lim inf
kÑ8

1

εk

» Tj

Ti�1

1Y r
s �Y r

rs,ts¤εk ds� lim inf
kÑ8

1

εk

» t

Tj

1Y r
s �Y r

rs,ts¤εk ds

We now prove that almost surely, the first and last summands in both decompositions coincide and
that the second and third summands in the decomposition of H�pY rqt are zero.

First summand: By construction, gt is upward for Y r and gt ¤ Tj . The induction hypothesis
hence implies the equality Hgt � H�pY rqgt .

Last summand: Note that t � Tj is upward for Xj�1 � Cr. Since Hj�1 is a continuous
extension of Hu

�
Xj�1 � Cr

�
, we obtain

Hj�1
t�Tj

� H�
�
Xj�1 � Cr

�
t�Tj

� lim inf
kÑ8

1

εk

» t�Tj

0
1Xj�1�Cr

s�Xj�1�Cr
rs,ts

¤εk
ds

� lim inf
kÑ8

1

εk

» t

Tj

1Y r
s �Y r

rs,ts¤εk ds.

Third summand: Note that Y r
s ¡ Y r

rTj ,ts
for any s P rTi�1, Tjs. Hence,» Tj

Ti�1

1Y r
u�Y r

ru,ts¤ε du � 0

for ε small enough.
Second summand: Note that gt is an upward time. Define also the upward time

gkt � sup
!
s ¤ Ti�1 : Y

r
s ¤ εk � Y r

rTj ,ts

)
,
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which decreases to gt as k Ñ8. Let v be rational in pg1t , Ti�1q and such that Y r
g1t�

¤ Y r
rg1t ,vs

.
Hence, we also get Y r

gkt �
¤ Y r

rgkt ,vs
for any k as well as Y r

gt� ¤ Y r
rgt,vs

. Note that

» Ti�1

gt

1Y r
s �Y r

rs,ts¤εk ds ¤

» gkt �gt

0
1Xi�1�Ci�1

s �Xi�1�Ci�1
rs,8q¤εk

ds.

Thanks to Proposition 4.1 we get

lim inf
εkÑ8

1

εk

» Ti�1

gt

1Y r
s �Y r

rs,ts¤εk ds ¤ lim inf
kÑ8

HpXq � Cgkt �gt
� 0.

Hence, H is a continuous extension of HupY rq. □

Let us now turn to the construction of the supercritical Lévy tree. For this, let Hr denote the
continuous modification of the height process of Y r. We let gr � ppτr, dr, ρrq ,¤r, µrq denote the
TOM tree coded by Hr and define ζr � µrpτrq. Let us see that gr is a subtree of gr1 if r ¤ r1.

Lemma 4.3. If r ¤ r1 then there exists an isometry ι : τr Ñ τr1 such that
(1) if σ1 ¤r σ2 then ιpσ1q ¤r1 ιpσ2q and
(2) the image of µr1 under ι is the trace of µr1 on ιpτrq.

Proof : For this proof, we denote by Ar1,r
t �

³t
0 1Y r1

s ¤r ds and let Cr1,r be its right-continuous inverse.
We will suppose that the time-change consistency of the Y r is valid pathwise, so that Y r1�Cr1,r � Y r.
Also, the proof of Proposition 4.1 allows us to see that: if s is upward for Y r then Y r

s�   r, Cr1,r
s is

upward for Y r1 , and
Hr � Hr1 � Cr1,r.

We will also denote consider the set rssr to be the equivalence class of s under �Hr . Note that Hr

is defined on r0, ζrs.
To construct ι, we will define ι̃ on r0, ζrs by ι̃psq � Cr1,r

s P r0, ζr1s. Let s1   s2. Let us observe
that

Hr1

rCr1,r
s1

,Cr1,r
s2

s
� Hr

rs1,s2s
. (4.4)

Indeed, note first that on any interval of the form I � rCr1,r
s� , Cr1,r

s s with s P rs1, s2s, we have the
inequality Hr1

v ¥ Hr1 � Cr1,r
s� for v P I. We will prove it when v is an upward time. Consider a

rational w P pv, Cr1,r
s q such that Y r1

v� ¤ Y r1

rv,ws. Since Y r1 has an excursion above r on I, we see that
Y r1

Cr1,r
s� �

¤ Y r1

rCr1,r
s� ,ws

and so (4.1) gives

Hr1

v � Lw
w � Lw

w�v ¥ Lw
w � Lw

w�Cr1,r
s�

� Hr1

Cr1,r
s�

.

By continuity of the height process

Hr1 � Cr1,r
s� � Hr

s � Hr1 � Cr1,r
s ¥ Hr

rs1,s2s
.

Hence, the equality Hr � Hr1 � Cr1,r allows us to conclude the validity of equation (4.4).
We now assert that if rs1sr � rs2sr then rCr1,r

s1 sr1 � rCr1,r
s2 sr1 . By hypothesis Hr

s1 � Hr
s2 � Hr

rs1,s2s
.

Hence, Hr1 � Cr1,r
s1 � Hr1 � Cr1,r

s2 and by equation (4.4), we see that

Hr1

rCr1,r
s1

,Cr1,r
s2

s
� Hr1

Cr1,r
s1

.

We can then define
ιprssrq � rCr1,r

s sr1 .
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We have just proved that Cr1,rprssrq � rCr1,r
s sr1 . Although the converse inclusion might be false,

we now see that nonetheless if s� � suprssr (which belongs to rssr) then Cr1,r
s� � suprCr,r1

s sr1 .
Indeed, we have just proved that Cr1,r

s� P suprCr,r1
s sr1 and by hypothesis, for any ε ¡ 0 we have

Hr1

rCr1,r
s� ,Cr1,r

s��εs
� Hr

rs�,s��εs   Hr
s� . We conclude that Cr1,r

s��ε R rCr,r1
s sr1 for any ε ¡ 0, so that

Cr1,r
s� � suprCr,r1

s sr1 .
To see that ι is an isometry, note that if s1   s2 (say) then the distance of rs1sr and rs2sr equals,

by equation (4.4):

Hr
s1 �Hr

s2 � 2Hr
rs1,s2s

� Hr1

Cr1,r
s1

�Hr1

Cr1,r
s2

� 2Hr1

rCr1,r
s1

,Cr1,r
s2

s
,

and the right-hand side is the distance between rCr1,r
s1 sr1 and rCr1,r

s2 sr1 .
The order preserving character of ι is immediate since we have proved that Cr1,r

suprssr
� suprCr,r1

s sr1 .
Hence, if s1 � suprs1sr ¤ suprs2sr � s2 then

suprCr1,r
s1 sr1 � Cr1,r

s1 ¤ Cr1,r
s2 � suprCr1,r

s2 sr1 .

Consider the image of Lebesgue measure on r0, ζrs under Cr1,r. Since the inverse image of an
interval r0, tq under Cr1,r is r0, Ar1,r

t q, we see that the image of Lebesgue measure on r0, ζrs under Cr1,r

equals the measure induced by Ar1,r. The latter is Lebesgue measure concentrated on
!
t : Y r1

s ¤ r
)
.

By projecting to each of the trees coded by Y r and Y r1 we see that µr1pAX ιpτrqq � µr

�
ι�1pAq

�
. □

Thanks to Lemma 4.3, and a direct limit argument used for the construction of locally compact
TOM trees out of trees consistent under truncation, we deduce the existence of a locally compact
TOM tree ppΓ, d, ρq ,¤, µq and a growing sequence of TOM ppΓr, d, ρq ,¤, µrq (where µr is the
restriction of µ to Γr) such that

�
r Γr � Γ and Γr is isomorphic to the tree coded by Hr. The law

of ppΓ, d, ρq ,¤, µq will be denoted γlc. We also define γc as the law of the tree coded by H under
ν# and finally set γ � γc � bγlc; for us γ represents the law of supercritical Lévy trees.

5. Ray-Knight type theorems for supercritical Lévy trees

We now pass to an interesting property of our supercritical Lévy trees: their Ray-Knight theorem
stated as Theorem 1.5 and Corollary 1.6.

To accomplish it, we will give a grafting description for the genealogical tree under Υ. Then, the
analysis will be extended under Υtree.

5.1. A grafting construction for the genealogy under Υ and the corresponding Ray-Knight theorem.
Recall the construction of the TOM tree S with law Υ as the pointwise direct limit of truncated trees
pSnq coded by pY nq. Formally, we have not defined the genealogy under Υ, for which it suffices to
follow the same path as under Υtree: we define Hn as a continuous modification the height process
of Y n, note that the tree coded by Hn, say Gn, is compatible under pruning, and define G as the
pointwise direct limit of the sequence pGnq.

For this, recall the processes X0, X1, . . . used to build Y n in the proof of Proposition 3.1. Let
H i be a continuous modification of the height process of Xi. We start by noting that H0 has been
analyzed in Lemma 8 of Lambert (2002); to present the analysis (to be used) we first collect some
preliminaries on X0.

For simplicity, we will now only consider the case when κ � 0. First of all, the laws PÑx ,
including the law PÑ0 of X0, satisfy the following Williams type decomposition, first extended to
Lévy processes in Chaumont (1996) and further discussed in the spectrally positive case in Doney
(2007, Ch. 8). For x ¡ 0, PÑx equals Px conditioned on remaining positive (an event of positive
probability). Under Px, the minimum of X is achieved at a unique time and continuously, since
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X is of infinite variation. (This fact was first proved in Millar (1977) and can also be deduced
from Proposition 1 and Theorem 1 in Pitman and Uribe Bravo (2012).) Let T be the time the
minimum is achieved and define the pre and post-minimum processes as XÐ equal to X killed at T
and XÑ � XT�� �XT . Then, these two processes are independent (both under Px as under PÑx ).
(This is a classical and fundamental result of the fluctuation theory of Lévy processes first found in
Greenwood and Pitman (1980b), which can also be deduced without local time considerations from
Theorem 4 in Pitman and Uribe Bravo (2012).) Furthermore, under Px and PÑx , the law of x�XT

is exponential of parameter b (resp. exponential of parameter b conditioned on being smaller than
x) and, conditionally on XT � y P p0, xq, the law of XÑ is PÑ, while the law of XÐ equals the
image of Q#

y�x under the mapping f ÞÑ f � x. The law PÑx,y equal to PÑx conditioned on X8 � y
just described give rise to a weakly continuous disintegration.

Let X0 be the future infimum process of X0 given by

X0
t
� X0

rt,8q � inf
s¥t

X0
s .

Since our Laplace exponent is supercritical, then limtÑ8X0
t
� 8 and the set

Z �
!
t ¥ 0 : X0

t � X0
t

)
is unbounded while being regenerative. More specifically, from Lemma 8.(i) of Lambert (2002), the
process X0�X0 is regenerative at zero and admits the following reconstruction by excursions. Let
L be the regenerative local time of X0

t �X0
t

fixed by the normalization

L
t
� lim

εÑ0

1

ε

» t

0
1X0

s�X0
s
¤ε ds.

By recurrence, we see that L
8
� 8. Let τ be the right continuous inverse of L. Then, with this

normalization of the local time, the point process of excursions¸
s:∆τs�0

δps,pX�Xqpτs���q^τs q
(5.1)

is a Poisson point process on p0,8q � E with intensity

βν# �

» 8
0

e�bxυpxq Q#
x dx. (5.2)

Note that integral equals the intensity of excursions that start at a positive value, corresponding
to excursions above the future minimum which start with a jump. The excursions only record the
jump of X � X. We will need a slightly more precise result which records also the jumps of the
future minimum at the beginnings of excursion times, or equivalently, that records the jump of X.
It is a natural generalization from the aforementioned Lemma 8.(i) in Lambert (2002).

Proposition 5.1. Under PÑ0 , the point process

Ξf �
¸

s:∆τs�0

δps,∆Xτs ,pX�Xqpτs���q^τs q
(5.3)

is a Poisson point process on r0,8q � E with intensity

µf pdy, dfq � δ0pdyqβν
#pdfq �

» y

0
e�bxQ#

x pdfq dx υpdyq .

The proof will be presented at the end of this subsection.
Let gt and dt stand for the beginnings and ends of the excursions of X0 above its future minimum

process
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gt � sup
!
s ¤ t : X0

t
� X0

t

)
and dt � inf

!
s ¡ t : X0

t
� X0

t

)
.

We also deduce, by the approximation result of (4.1) applied at time gt, that

H
�
X0

�
t
� L

t
� lim

kÑ8

1

εk

» t

g
t

1X0
s�X0

rs,ts εk ds and H
�
X0

�
gt
� L

gt
� L

t
. (5.4)

In any case, we see that H
�
X0

�
¥ L (actually L is the future minimum process of H

�
X0

�
) and so

H
�
X0

�
t
Ñ 8 as t Ñ 8. We can also describe the excursions of H

�
X0

�
above its future minimum

process: on an excursion interval pgt, dtq, we note that H
�
X0

�
t
� Lt is a continuous extension of

Hu
�
X0

gt��

�
��gt

; in other words, it is the image under the height process of the excursion of X0

above X0. To finish the construction of G, let Ci,n be the time-change that removes what is above
n from Xi, say defined on r0, Tn

i � Tn
i�1s (with Tn

0 � 0). Then, define Hn � H
�
X0

�
on r0, Tn

1 s and,
recursively, for t P rTn

i , T
n
i�1s

gnt � sup
!
s ¤ Tn

i : Y n
s ¤ Y n

rTn
i ,ts

)
and Hn

t � Hn
gnt
�H

�
Xi

�
� Ci,n

t�Tn
i
.

Arguing as in the proof of Proposition 4.1, we note that Hn is a continuous extension of HupY nq
and that the sequence of trees pGnq coded by pHnq is consistent under pruning, so that G can be
built as a pointwise direct limit pGnq.

Let Q#
x be the image of P#

x by killing upon reaching zero.

Proposition 5.2. The tree G is a sin tree. Let γ# and γ#x be the laws of the height process under
ν# and Q#

x . Let Ξ1 �
°

δpr1n,f1
nq

, Ξ2 �
°

δpr2n,f2
nq

and Ξ �
°

δprn,f l
n,f

r
nq

be Poisson point processes
on E, E and E2 with intensities νc, νc and νd given by

νcpdfq � βγ#pdfq ,

and

νdpA�Bq �

»
e�bx1x¤yγ

#
x pAq γ

#
y�xpBq dx υpdyq .

On the TOM tree r0,8q rooted at zero, graft the trees coded by f1
n and f l

n to the left at heights r1n
and rn and graft the trees coded by f2

n and f r
n to the right at heights r2n and rn. The resulting TOM

tree has the same law as G.

Proof : The reader is asked to recall the proof of Proposition 3.1. During that proof, we identified
trees grafted to the left of the infinite line of descent of S as excursions of X0 above its future
minimum process as well as trees grafted to the right as excursions above the past minimum process
of X1, X2, . . .. The grafting heights are the heights in each Xi at which the corresponding excursion
ends. A similar analysis is valid for G except that we use excursions of the height processes involved.
Note first that the future minimum process of H

�
X0

�
is L

�
X0

�
as follows from (5.4). Since the

left-hand side of the infinite line of descent G can be coded by H
�
X0

�
, then trees grafted to the

left of the infinite line of descent of G are coded by excursions of H
�
X0

�
above L

�
X0

�
. Let pg, dq

be an excursion interval of X0 above its future minimum process. Since upward times are dense
(recall the discussion after (4.1)), and g is one of them, we can use the approximation (4.1) at any
rational u ¡ d and continuity of the height process and deduce that H

�
X0

�
g
� H

�
X0

�
d
. Now the

analysis breaks down into two cases: when X0
g� � X0

g (or in other words, when the excursion starts
continuously for X0) or when X0

g�   X0
g . In the former case, note that H

�
X0

�
¡ H

�
X0

�
g

on
pg, dq (by support properties of local times) so that H on rg, ds codes a subtree grafted to the left
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of the infinite line of descent and d and g correspond in G to a binary branchpoint (upon removal,
it disconnects the tree into 3 components), while in the latter case, we have H

�
X0

�
t
� H

�
X0

�
g

for
t P pg, dq if and only if X0

t� � X0
rg,ts. Note then that all such t correspond to the same point on G

and the (sub)excursion interval codes a tree grafted to the left of the infinite line of descent. Hence,
the element of G corresponding to them is an infinite branch point (upon removal, it disconnects
the tree into an infinite number of components). To find subtrees to the right of the infinite line
of descent, the analysis is also divided between those corresponding to infinite branch points and
those corresponding to binary branch points. The former are constructed as follows: consider the
(vertical) interval I � pX0

g�
, X0

d
q X rn � 1, ns for n ¥ 1. If pg1, d1q is an excursion of Xn above its

past minimum and Xn
d1 P I then, by definition, Hn

Tm
n �t � Hg� � L

g�
for all m ¥ n and t P rg1, d1s

such that Xn
t� � Xn

t , in particular g1 or d1. Again, the element of G corresponding to all such t

is an infinite branch point. The binary branch points are constructed from excursions of Xi above
their past minimum process, say on the excursion interval pg1, d1q where Xn

d1 does not belong to the
jump intervals pX0

g�
, X0

d
q.

Let us now see at which heights the compact trees are grafted to the left of the infinite line of
descent of G. Since the height along the infinite line of descent equals the local time of X0 �X0,
(since H � L at ends of excursions), then an excursion of X0 on rg, ds gives rise to a tree grafted to
the left of the infinite line of descent of G at height Lg. If X0

g ¡ X0
g�, then we must graft a tree at

the same height at the right of the infinite line of descent; the tree is coded, using the same notation
as before, by Hn

Tm
n �� on rg1, d1s for large enough m. We see that the left of the infinite line of descent

can be given a Poissonian construction as follows, thanks to Proposition 5.1: along r0,8q (viewed as
a vertical locally compact TOM tree), graft trees to the left with intensity βγ#�

³8
0 e�bxυpxq γ#x dx.

The intensity with density x ÞÑ e�bxυpxq corresponds to the sizes of overshoots ∆
�
X0 �X0

�
above

the future minimum process. However, to the trees with law γ#x , which correspond to the overshoot
of X0 when the future minimum jumps, we must add the corresponding trees to the right of the
infinite line of descent but at the same height. If we want to capture not only the overshoot but
also the complete size of the jump ∆X0 at each jump over the future minimum, then the intensity
becomes px, yq ÞÑ e�bx1x¤y dx υpdyq thanks to Proposition 5.1. With the trees that get grafted, we
obtain the intensity νd of the statement. Finally, to the right of the infinite line of descent we also
have trees which come from the continuous excursions of the Xi (i ¥ 1) above its past minimum
processes. In their natural local time scale, these arrive at rate ν#. We now prove that in the time
scale of L, the intensity is actually βγ#, which concludes the proof of the theorem. Let τ be the
right-continuous inverse of L. We recall that binary branch points along the right of the infinite line
of descent are coded by HpXnq on excursion intervals pg, dq of Xn �Xn where Xn

d belongs to the
range of X0. To examine the latter, recall that Lemme 4 in Bertoin (1991) tells us that the joint law
of pX0 �X0, X0q is the same as that of pRpX �Xq, X � dq under P, where RpX �Xq is a process
obtained by reversing time in each excursion of X �X and dt is the right endpoint of the excursion
of X �X straddling time t. However, local times in the Duquesne-Le Gall normalization of (4) are
invariant under time-reversal, so that the joint law of pL,X0q coincides with that of pL,X �dq under
P. Finally, noting that composition is measurable as in Whitt (1980) or Whitt (2002) and using the
equality d � L�1 � L�1, we see that the law of L is the same as that of the ladder height process
X �L�1. Lemma 1.1.2 in Duquesne and Le Gall (2002) tells us that X �L�1 has drift coefficient β
(in the particular normalization of local time), and so Proposition 1.8 of Bertoin (1999, p.13) tells
us that

βt � Leb
�!

X
s
: s ¥ 0

)
X r0, τ

t
s
	
.
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Hence, we deduce that trees to the right of the infinite line of descent of G that are rooted at binary
branch points are still a Poisson point process with intensity βγ#. □

We now turn to the Ray-Knight theorem associated to the tree G. Recall that G is the genealogical
tree associated to the tree S with law Υ. Recall also that Υ was constructed out of Ψ, that β is the
Gaussian coefficient in Ψ, υ is its Lévy measure and b is its greatest root. The reader may consult
Duquesne (2009) for Ray-Knight type theorems of sin trees featuring more general CBI processes.

Proposition 5.3. Suppose that G � ppτ, d, ρq,¤, µq and let δpσq � dpρ, σq. Then, the random
measure Ξ � µ � δ�1 admits a càdlàg density Z. The process Z is a CBI process with subcritical
branching mechanism Ψ# and immigration mechanism Φ given by

Φpλq � 2βλ�

» 8
0
p1� e�λxq

1� e�bx

b
υpdxq �

Ψpλ� bq �Ψpλq

b
.

The main tools in the proof are the Ray-Knight theorems under η# as well the spinal decomposi-
tion of CBI processes that we now briefly recall. For the details of spinal depompositions, the reader
can consult Li (2012, Sect. 2.4) in full generality or Chu and Ren (2011) under Grey’s condition, as
well as the streamlined exposition in Foucart and Uribe Bravo (2014, Sect. 4). For details regarding
the Ray-Knight theorems, we refer the reader to Duquesne and Le Gall (2002) and Duquesne and
Le Gall (2005). With Ψ# and Ψ as in the statement, let Px be the law of a CB

�
Ψ#

�
(continuous-state

branching process with branching mechanism Ψ#) that starts at x. It is then known that there ex-
ists a measure Q (the Kuznetsov measure of Ψ#) on E such that if Ξ �

°
n δptn,fnq is a Poisson point

process with intensity βQ�
³8
0

1�e�bx

b Px υpdxq then the process Z given by Zt �
°

tn¤t fnpt� tnq is
a CBI

�
Ψ#,Φ

�
(a continuous state branching process with immigration with branching mechanism

Ψ# and immigration mechanism Φ). The law Q, called the Kuznetsov measure of Px, is Markovian
and admits same semigroup as Px. On the other hand, the Ray-Knight theorem states that under
ν# or under Q#

x , the random measure A ÞÑ Lebptt P p0, ζqu : Ht P Aq admits a càdlàg density Z

which has law Q or Px. For the case of Q#
x , this is the content of Theorem 1.4.1 in Duquesne and

Le Gall (2002). We were unable to find the case of ν# reported in the literature. However, a quick
proof of it can be given by the fact that ν#

�
1� e�λt

�
� � logP1pe

�λXtq (by the proof of Theorem
1.4.1 in Duquesne and Le Gall (2002)) and this equals Q

�
1� e�λXt

�
(as in equation (2) in Chu and

Ren (2011)). On the other hand, both measures are Markovian and have the same semigroup as
pPxq; in the case of Q this follows by equation (2) in Chu and Ren (2011) while for ν#, this follows
from the regenerative property (of the tree coded by H) and the Ray-Knight theorem under Q#

x .

Proof : Let L be the unique infinite line of descent of G. We first show that µpLq � 0. Indeed,
consider first X0 and its future infimum process X0. Since the set

L 0 �
!
t ¥ 0 : X0

t � X0
t

)
has the same law as

 
t ¥ 0 : Xt � Xt

(
under P, as recalled in the proof of Proposition 5.2, we see

that Leb
�
L 0

�
� 0 since, as noted in the proof of Proposition 7 in Lambert and Uribe Bravo (2018),

the upward ladder time process under P has zero drift. On the other hand, for each n ¥ 1, the sets

L n � tt ¥ 0 : Xn
t � Xn

t u

have measure zero whenever the inverse of X under P has zero drift. Since the Laplace exponent of
the latter equals to the right continuous inverse of Ψ, we see that it has no drift whenever β ¡ 0 since
this implies Ψpλq � βλ2 as λ Ñ 8. Finally, when β � 0, the set R �

!
X0 � L

t
: t ¥ 0

)
has zero

Lebesgue measure, as shown in the proof of Proposition 5.2. Hence, the set tt ¥ 0 : Xn
t � Xn

t P Ru
has zero Lebesgue measure. Under the mapping sending t to its equivalence under �Y n , the sets
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we have considered are projected into the infinite line of descent, which therefore has zero measure
under µ.

Suppose that the compact trees grafted to the left and to the right of the infinite line of descent
are enumerated as pti, τiq, where ti is the distance from ρ to the root ρi of τi. Then

ΞpAq � µptσ P L : dpρ, σq P Auq �
¸
i

µptσ P τi : dpρi, σq P A� tiuq .

As we have just seen, the first summand is zero. For the second sum, call each summand ΞipAq.
Thanks to the Ray-Knight theorem under ν# and under Qx, let Zi be a density for the measure
Ξi, which has the semigroup of a CB processes with branching mechanism Ψ#. Then

ΞipAq �

»
A
Zi
t�ti dt

and so Ξ is absolutely continuous with respect to Lebesgue measure and a version of its density
is Z �

°
i Z

i
��ti . Note that this is independent of the side of the infinite line of descent to which

the trees τi are grafted. Since the concatenation of two processes with laws γ#x and γ#y has law
γ#x�y, then the image of ν in Proposition 5.2 under the concatenation of both trajectories equals³8
0 p1 � e�byq{b γ#y υpdyq. Thanks to the spine representation and the Poisson construction of G in

Proposition 5.2, we see that Z is a CBI process with branching mechanism Ψ# and the immigration
mechanism Φ as stated. The stated relationship between Ψ and Φ can be checked by computation.

□

A further consequence of the spinal decomposition of CBI
�
Ψ#,Φ

�
started at zero is the following.

At any time t ¡ 0, the post-t evolution is decomposed into two parts: that corresponding to fnpt�tnq
for tn ¤ t and that corresponding to what attaches to the spine above t. If Zt � x, then the first
part evolves as CB

�
Ψ#

�
started at x (thanks to the Markovian character of Q and the branching

property). Furthermore, the second contribution evolves as an independent CBI
�
Ψ#,Φ

�
started at

zero. This remark be important to the proof of Theorem 1.5.
We finally present the pending proof of this subsection.

Proof of Proposition 5.1: We first comment on the regenerative character of Z in a way that handles
the jump of X when X also jumps. First, consider Gt � F

X,X

t and note that it coincides with

FX
t _ σ

�
X

t

	
due to the equality X

s
� X

t
^ Xrs,ts valid whenever s ¤ t. We first assert that

pX,Xq is a Markov process under any PÑx . Indeed, note that for any A P FX
t , the Markov property

and the definition of PÑx,y give

EÑx
�
1A,X

t
PBg

�
Xt�s, Xt�s

		
� EÑx

�
1A,X

t
PBh

�
Xt, Xt

		
where

hpx, yq � EÑx,y
�
g
�
Xs, Xs

		
.

This gives us the Markovian character of pX,Xq; by weak continuity of Px,y, it is even a Feller
process. We now assert that X �X is Markovian with respect to the filtration pGtq. Indeed, note
that the image of PÑx,y under the mapping f ÞÑ f � y is PÑx�y,0, as follows from its definition and
the spatial homogeneity of Lévy processes. It follows that

EÑx,y
�
g
�
Xs �X

s

		
� EÑx�y,0

�
g
�
Xs �X

s

		
,

so that
EÑx

�
1A,X

t
PBg

�
Xt�s �X

t�s

		
� EÑx

�
1A,X

t
PBh

�
Xt �X

t

		



Splitting trees II 1301

with hpx� yq � EÑx�y,0

�
g
�
Xs �X

s

		
. Hence, X � X is Markovian (and indeed Feller) under

PÑx with respect to the filtration pGtq. In conclusion, Z is regenerative with respect to the fil-
tration pGtq. It follows that Ξf is a Poisson point process. Indeed, let ε ¡ 0 and, starting
with T0 � d0 � 0, let Tn�1 � inf

!
t ¥ dn : Xt �X

t
¥ ε

)
, dn�1 � inf tt ¥ Tn�1 : t P Z u and

gn�1 � sup tt ¤ Tn�1 : t P Z u. Then Tn and dn are stopping times with respect to the filtra-
tion pGtq. Because of the strong Markov property applied at times dn, we see that

�
X �X

�
Tn�1��

is independent of Gdn and in particular of Y n � X �X
pgm��q^dm

and of ∆Xgm� for any m ¤ n.
Therefore, the sequence p∆XgTm�, Y

nq is iid. When varying ε, the sequences p∆XgTm�, Y
nq con-

form a nested array as introduced in Greenwood and Pitman (1980a); the main result in that paper
allows us to deduce that Ξf is a Poisson point process, whose intensity we now compute. Note,
however, that we can write its intensity µ̃f as δ0pdyq ñpdfq� µ̃f,d, where µ̃f,d is the restriction of µ̃f

to excursions which start with at a non-zero value.
We first need the following fact. Almost surely: a time t ¡ 0 is the beginning of a discontinuous

excursion of X � X if and only if t is a time of a common jump of X and X. At any such time
t, we have the inequalities ∆Xt ¡ ∆X

t
¡ 0. Indeed, if t is the beginning of a discontinuous

excursion, then by definition we get that 0   ∆pX � Xq � ∆Xt � ∆X
t

and Xt� � X
t�

� 0.
Since X is non-decreasing, then ∆Xt ¡ 0. However, by ennumerating jumps of X of size ¡ ε for
any ε ¡ 0 and applying the strong Markov property and the absolute continuity of the law of the
minimum of X, we see that Xt� � X

t
and X

t
  Xt at any jump time of X. Hence, we deduce

that Xt� � X
t
  X

t
  Xt which implies that t is a common jump of X and X and indeed the

inequalities 0   ∆X
t
  ∆Xt. On the other hand, if t is a common jump of X and X then X

t
¡ X

t�

which implies that Xt� � X
t�

, so that
�
X �X

�
t�

� 0. As we have remarked, since t is a jump
time of X we then get the inequalities Xt�   X

t
  Xt so that t is a jump time of X �X and the

beginning of a discontinuous excursion. We have also obtained the inequality ∆X
t
  ∆Xt.

We will now construct a nested array of discontinuous excursions. For any ε ¡ 0, let Tn be
the time of the n-th jump jump of X of size greater than ε that is common to X and X and let

ρn � inf
!
t ¥ Tn : Xt � X

t

)
. Note that both Tn and ρn are stopping times with respect to the

filtration pGtq. Define

Vn � ∆XpTnq , On � XTn �X
Tn

and Fn � XpTn��q^ρn �X
Tn
.

Note that On � Fnp0q. Because of the strong Markov property, the random variables tpVn, On, Fnqu
are independent and identically distributed, with a law depending on ε. Note that as we vary ε, we
get a nested array that exhausts the discontinuous excursions of X by the preceeding paragraph.
The main theorem in Greenwood and Pitman (1980a) implies the existence of a σ-finite measure
ν̃f such that the law of pV1, O1, F1q is ν̃f conditioned on R� � pε,8q � E. In fact, all measures
satisfying this conditional property differ by a constant factor. Also, the conditional law of F1 given
pV1, O1q � py, xq is the image of Q#

y�x under the mapping f ÞÑ x� f . We now compute the law of
pV1, O1q and show that

PpV1 P dy,O1 P dx, F1 P dfq �
1ε¤ybe

�bxQ#
x pdfq dx υpdyq³8

ε p1� e�byq υpdyq
.

If we let µ̃f be the image of ν̃f by the map py, x, fq ÞÑ py, fq, then our construction implies the
existence of a constant c such that µ̃f equals cµf on discontinuous excursions and we will then argue
that c � 1.

Let us compute the law of pV1, O1q. Since PÑ is the law of the post-minimum process under P,
it suffices to do the computation using the latter law. Let S1, S2, . . . be the succesive jumps of X of
size greater than ε and consider two Borel sets B1, B2 of pε,8q and p0,8q. Then, using the Strong
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Markov property, the law of the overall minimum under Px, as well as the master formula of Poisson
point processes, we obtain

P
�
∆XT1 P B1, XT1 �X

T1
P B2

	
�

¸
k

P
�
Sk � T1,∆XSk

P B1, XSk
�X

Sk
P B2 X p0,∆XSk

q
	

�
¸
k

E

�
1XrSi,Skq

¤XSi�
,i k1∆XSk

PB1

»
B2Xp0,∆XSk

q
be�bx dx

�

� E
�» 8

0
1XrSi,lq

¤XSi�
if Si l dl


»
B1

»
B2Xp0,yq

be�bx dx υεpdyq .

In particular, taking B1 � pε,8q and B2 � p0,8q, we see that

P
�
∆XT1 P dy,XT1 �X

T1
P dx

	
�

be�by³8
ε p1� e�byq υpdyq

1ε,x¤y dx υpdyq .

Finally, as mentioned before, we have shown that Ξf is a Poisson point process with intensity
δ0pdyq ñpdfq � c

³y
0 e

�bxQ#
x pdfq dxυpdyq. Note that the point process in (5.1) is the image of the

point process in (5.3) under the mapping ps, y, fq ÞÑ ps, fq, which shows that ñ � βν# and that
c � 1, so that the intensity of Ξf is precisely µf . □

Remark 5.4. The proof in Lambert (2002) that allows us to conclude that c � 1 depends on the
theory of scale functions. A more simple argument would be to substitute the proof of Lemma 9
in Lambert (2002) for the proof of Lemma 1.2.1 in Duquesne and Le Gall (2002). Furthermore,
elementary computations as the ones we used to compute the law of pV1, O1q allow us to conclude
that the post minimum process under PÑx has law PÑ, thereby making the above arguments more
self-contained.

5.2. A grafting construction for the genealogy under Υtree and the corresponding Ray-Knight the-
orem. In this subsection, we present the proof of Theorem 1.5 and Corollary 1.6. Recall that γlc

stands for the limit of trees coded by the height process H under the image of Υtree under trunca-
tion at height r as r Ñ8. The strategy will be similar: we first prove a Poisson description of γlc.
The difference will be that the Poisson description will only be recursive. We then use this Poisson
description, as well as the known Ray-Knight theorems under n# and Q#

x , to conclude. To do this,
we will need the notion of concatenation of trees, which is a particular form of grafting, performed
at the root. First, if f and g are excursions in E, we define their concatenation f \ g by

f \ gptq �

$'&
'%
fptq 0 ¤ t   ζpfq

gpt� ζpfqq ζpfq ¤ t   ζpfq � ζpgq

: t ¥ ζpfq � ζpgq

.

Then, if c1 and c2 are two TOM trees coded by f1 and f2, we define c1 \ c2 as the tree coded by
f1 \ f2. Finally, if c1 and c2 are two locally compact TOM trees with coding sequence pfn

1 q and
pfn

2 q we let c1 \ c2 have coding sequence pfn
1 \ fn

2 q. The image of the product measure γ1 � γ2 on
locally compact TOM trees under concatenation is denoted γ1 \ γ2. In our Poissonian description,
we will use the measure γkz given by

γkz �

»
0�z0 z1 ��� zk zk�1�z

γ#z1�z0 \ γlc \ γ#z2�z1 \ γlc \ � � � \ γlc \ γ#zk�1�zk
dz1 � � � dzk.

This measure corresponds to the intertwining of k � 1 compact trees and k locally compact trees
and uses the measure γlc in its definition.
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Proposition 5.5. Let Ξ1 �
°

δpr1n,f1
nq

, Ξ2 �
°

δpr2n,f2
nq

and Ξ3 �
°

δprn,f l
n,f

r
nq

be Poisson point
processes with intensities νc, νc � βbγlc and νd where

νc � βγ#

and

νdpA�Bq �
8̧

k�0

»
bke�by1x¤yγ

#
x pAq γ

k
y�xpBq dx υpdyq .

On the TOM tree r0,8q rooted at zero, graft the trees coded by f1
n and f l

n to the left at heights r1n
and rn and graft the trees coded by f2

n and f r
n to the right at heights r2n and rn. The resulting TOM

tree has law γlc.

Proof : Let us recall that Υtree is obtained from Υ by grafting, to the right of the unique infinite
line of descent, iid trees with law Υtree at rate b. Specifically, if SH has law Υ and S�1 , S

�
2 , . . .

are iid with law Υtree and we graft S�i to the right of SH at height Ti, where pTi � Ti�1q are iid
exponentials with rate b, to obtain S�, then S� has law Υtree. We now use the Poisson description
of the genealogical tree associated to SH stated as Proposition 5.2 and use very similar arguments
to prove the present proposition; only the differences will be explained. Let GH and G�

1 , G
�
2 , . . .

be the genealogical trees associated to SH and S�1 , S
�
2 , . . .. We have already identified the parts of

the tree SH that give rise to the Poisson description of GH. It only remains to see how G�
1 , G

�
2 , . . .

are grafted to the right of the unique infinite line of descent of GH. For this, suppose that the
left of the infinite line of descent of SH is coded by XH,0 (which has law PÑ). Recall that the
infinite line of descent of SH was identified with the heights XH,0

t
corresponding to t such that

XH,0
t � XH,0

t
. These heights leave open gaps corresponding to the jumps of XH,0 and anything

grafted on these gaps gets contracted to the same point when considering the genealogy. However,
additionally to what is grafted on these gaps to form SH, we now graft independently the trees pSiq

at rate b. More formally, suppose that ∆XH,0
t

¡ 0, where XH,0
t � XH,0

t
� x, XH,0

t � XH,0
t�

� y

(so that x ¤ y) and where the minimum of XH,0 on rt,8q is reached at d
t
. Then, the quantity

K of trees pSiq that get grafted to the right of the gap pX0,H
t�

, X0,H
t

q (of size y � x) equals k with
probability e�bpy�xqpbpy � xqqk{k!. Conditionally on K � k (recall that k can be zero), the heights
a � z1 ¤ � � � ¤ a � zk at which they are grafted are the order statistics of k iid uniform random
variables on p0, y�xq, hence have density k!{py�xqk on the adequate simplex. Then, when passing
to the genealogy, what gets grafted to the infinite branch point are iid processes with laws γ#x (to
the left) and, in alternating fashion, γ#zk�zk�1

, γlc, . . . , γ#z2�z1 , γ
lc and γ#z1�z0 . Using the description

of the jumps and overshoots of XH,0 above its past infimum process of Proposition 5.1, we see that
infinite branch points get grafted along the leftmost infinite line of descent in γlc as a Poisson point
process with the intensity νd of the statement.

On the other hand, the pSiq that get attached along the infinite line of descent of SH, not on a
gap but at a height of the form X0,H

t
for some t, when passing to the genealogy, corresponds to

a tree with law γlc that gets attached at height L
t
. As in Proposition 5.2, we see that the trees

G�
1 , G

�
2 , . . . not grafted at infinite branch points get grafted as a Poisson point process along the

leftmost infinite line of descent of GH at rate βb. Together with the Poisson description of Υ, we
deduce our statement. □

Armed with our Poisson description of γlc we can give a proof of the Ray-Knight theorem for this
measure. As before, we suppose that Γ � ppτ, d, ρq ,¤, ρq has measure γlc and set δpσq � dpσ, ρq for
any σ P τ . Recall that the pair pZ1, Z2q is defined by letting Z1

t be the number of prolific individuals
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at distance t from the root of our supercritical Lévy tree Γ, and that Z2 is the density of µ � δ�1

with respect to Lebesgue measure.

Proof of Theorem 1.5: Let us turn to the analysis of the bivariate process pZ1, Z2q under γlc.
We first describe the semigroup Ptppn, zq, �q that will be relevant. For pn, zq let Zz be a CB

�
Ψ#

�
process starting at z and, for i between 1 and n, let pZi,1, Zi,2q have the same law as pZ1, Z2q.
Furthermore, assume independence for these n� 1 processes. Now, define

Ptppn, zq, �q as the law of pZ1,1
t � � � � � Zn,1

t , Zz
t � Z1,2

t � � � � � Zn,2
t q.

Because of the branching property of CB
�
Ψ#

�
, we see that pPt, t ¥ 0q has the following branching

property:

the convolution Ptppn1, z1q, �q � Ptppn2, z2q, �q equals Ptppn1 � n2, z1 � z2q, �q .

Hence, to prove both that pZ1, Z2q is a two-type branching process and that pPtq is a semigroup, it
suffices to prove that pZ1, Z2q is Markovian with transition kernels pPtq.

To prove that pZ1, Z2q is Markovian, we will add the results obtained on each infinite line of
descent. Suppose that Z1

t � n, so that there are n infinite lines of descent intersecting height t.
Recall that as a consequence of the spine decomposition of CBI, the contribution after t of each
spine naturally decomposes as the contribution of the trees that attach below t (evolving as a
CB

�
Ψ#

�
), and the contribution from each spine above t, evolving as a CBI

�
Ψ#,Φ

�
. Recall that

spines are independent. Thanks to the branching property, the first contribution then evolves as
a CB

�
Ψ#

�
started at Z2

t , while the second contribution evolves as a CBI
�
Ψ#, nΦ

�
. Their sum is

therefore independent of Z1 and Z2 on r0, ts given pZ1
t , Z

2
t q and evolves using the transition kernels

P we have just described. We conclude that pZ1, Z2q is a two-type branching process, where Z1 is
piecewise constant and non-decreasing. The same argument proves that Z1 is a branching process
all by itself whose jump rates are determined by the Poisson description of Proposition 5.5 and
equal those in the statement of Theorem 1.5.

We now compute the infinitesimal generator of pZ1, Z2q. For this, we decompose at the first
jump T of Z1. Suppose that ∆Z1

T � n, so that we get n additional infinite lines of descent; we
additionally obtain some compact trees, which thanks to the branching property, make a jump of
Z2. When Z1 � 1, the Poisson description of Proposition 5.5 tells us that a jump of pZ1, Z2q of
size in tnu �A arrives at rate

βb1n�1 �

»
A

bnxn�1

pn� 1q!
υpdxq .

Since on any interval on which Z1 equals n, Z2 behaves as a CBI
�
Ψ#, nΦ

�
, we see that if fpn, zq �

sne�λz then

d

dt

����
t�0

Ptfpn, zq � e�λzsn
�
zΨ#pλq � nΦpλq

�
� e�λzsnn rs� 1sβb

�
8̧

n�1

» 8
0
rfpn� ñ, z � z̃q � fpn, zqsn

bnxn�1

pn� 1q!
υpdxq .

The geometric series and algebraic manipulations (based on the equality Ψpbq � 0 and the definition
of Φ) then let us write the above as

βbsps� 1q � 2βλs�
1

b

» 8
0

�
e�pλ�bp1�sqqx � e�pλ�bqx � se�bx � s

�
υpdxq .
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In Bertoin et al. (2008), the two-type branching process with values on N�r0,8q has a semigroup
characterized by

P̃tfpn, zq � e�zrutpλ�bq�bs

�
1

b
rutpλ� bq � utpλ� bp1� sqqs

�n
.

where the function ut satisfies

utpλq � λ�

» t

0
Ψputpλqq .

We then observe that the infinitesimal generator of P̃t satisfies:

d

dt
P̃tfpn, zq

����
t�0

� e�λxsn rzΨpλ� bqs � e�λxnsn�1 1

b
rΨpλ� bp1� sqq �Ψpλ� bqs .

Again, algebraic manipulations show us that the generators of Pt and P̃t at f are the same. By the
monotone class theorem for functions we conclude that Pt and P̃t coincide. □
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