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Abstract. Let X1, . . . ,Xn be a random sample coming from a p-dimension 1-dependent Gaussian
population. Assume the adjacent entries of the population distribution have a common correlation
coefficient ρn with |ρn| < 1/2. We derive that the limiting distribution of the largest off-diagonal
entry of the sample covariance matrices is a Gumbel distribution in the ultra-high-dimensional
setting where both n and p tend to infinity with log p = o

(
n1/3

)
. And the law of large numbers

can be obviously obtained from the limiting distribution. The proofs are completed by using the
Chen–Stein Poisson approximation method and the moderation deviation principle.

1. Introduction and Main Results

The rapid progress in computing science and technology has propelled random matrix theory
into a pivotal role, offering statistical foundations for high-dimensional data processing. In such
applications, the dimension p often far exceeds the sample size n. Consequently, classical multivari-
ate statistical methods, assuming a fixed dimension p become impractical. This evolving landscape
necessitates the development of new technical tools and statistical procedures to meet the demands
of contemporary data analysis.

This paper is inspired by the result of Fan and Jiang (2019), focusing on the limiting distribution
of the maximum off-diagonal entry of sample covariance matrices from the equi-correlated normal
population. Consider a random sample X1, . . . ,Xn from the p-dimensional population X with

Received by the editors December 13th, 2023; accepted June 19th, 2024.
2010 Mathematics Subject Classification. 62H10, 62E20.
Key words and phrases. Chen–Stein Poisson approximation, Gumbel distribution, sample covariance matrices,

1-dependent.
*Corresponding author.
This research was supported by National Natural Science Foundation of China (Grant No. 12171198, 11771178);

the Science and Technology Development Program of Jilin Province (Grant No. 20210101467JC); Technology Pro-
gram of Jilin Educational Department during the "14th Five-Year" Plan Period (Grant No. JJKH20241239KJ) and
Fundamental Research Funds for the Central Universities.

1309

http://alea.impa.br/english/index_v21.htm
https://doi.org/10.30757/ALEA.v21-50


1310 Haibin Zhang, Yong Zhang∗ and Yansong Bai

mean µ, covariance matrix Σ and correlation coefficient matrix R. Let Mn,p = (X1, . . . ,Xn)
′ =

(Xk,i)1≤k≤n,1≤i≤p be an n × p random matrix. Our main objects of interest in the present paper
are the following four statistics:

Jn = max
1≤i<j≤p

1

n

n∑
k=1

Xk,iXk,j ,

J ′
n = max

1≤i<j≤p

∣∣∣∣∣ 1n
n∑

k=1

Xk,iXk,j

∣∣∣∣∣ ,
Jn1 = max

1≤i<j≤p,i<j−1

1

n

n∑
k=1

Xk,iXk,j ,

Jn2 = max
1≤i<j≤p,i=j−1

1

n

n∑
k=1

Xk,iXk,j .

(1.1)

The first statistic is the largest magnitude of off-diagonal entries of normalized sample covariance
matrices when µ = 0. Previous researches have shown that Jn plays a vital role in the multivariate
statistical analysis. Jiang (2004) is the first to get the following asymptotic distribution of J ′

n under
the assumption that p elements in X are independent and identically distributed (i.i.d.).

Lemma 1.1 (Lemma 3.2 of Jiang, 2004). Suppose that E|X1,1|30+ε < ∞ for some ε > 0. If
n/p → γ, then

P
(
nJ ′2

n − 4 log n+ log log n ≤ y
)
→ e−Le−y/2

(1.2)

as n → ∞ for any y ∈ R, where L =
(
4γ2

√
2π
)−1.

The limiting distribution appearing in (1.2) is called Gumbel distribution. Besides, some strong
limit theorems for J ′

n were shown by Li and Rosalsky (2006) when n/p is bounded away from 0 and
∞. Li et al. (2010) discovered the similar result to Jiang (2004) under the more relaxed assumption.
Lytova (2018) and Tieplova (2017) studied the limiting behavior of the sample covariance matrices
constructed by the random tensor data. Jiang and Xie (2020) further considered the limiting
distribution of the largest off-diagonal entry of the hypercubic random tensor in the high-dimension
case and the ultra-high-dimension case. Xiao and Wu (2013) obtained the asymptotic distribution
of maximum deviations of sample covariance matrices.

All of these works assumed that the p components in X are independent and identically dis-
tributed (i.i.d.). However, Cai and Jiang (2011) generalized the problem from the independent case
to the dependent case under the assumption that log p = o

(
n1/3

)
. Because of the complexity of

dependent case, they considered a new statistic

Vn,τ = max
1≤i<j≤p,j−i≥τ

1

n

∣∣∣∣∣
n∑

k=1

Xk,iXk,j

∣∣∣∣∣ ,
where τ ≥ 1 is a constant. Then Cai and Jiang (2011) proved that Vn,τ asymptotically obeys
a Gumbel distribution under the (τ –1)-dependent normal assumption. Furthermore, Fan and
Jiang (2019) assumed that X1, . . . ,Xn is a random sample from the p-dimensional equi-correlation
normal population, that is, the entries of the population distribution have a common correlation
coefficient ρn > 0. By using the Chen–Stein Poisson approximation method, they showed the
limiting distribution of Jn as follows.
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Lemma 1.2 (Theorem 2.1 of Fan and Jiang, 2019). Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1/2.
If µ = 0, p = pn → ∞ and log p = o

(
n1/3

)
as n → ∞, then

4
√
log p (

√
nJn − µ0)

d→ ξ, ρn
√
log p → 0,

√
nJn−µ0√

2ρn

d→ ϕ+ λ0ξ, ρn
√
log p → λ1 ∈ (0,∞),

√
nJn−µ0√

2ρn

d→ N(0, 1), ρn
√
log p → ∞,

where ϕ ∼ N(0, 1), λ0 = 1
4
√
2λ1

, µ0 =
√
nρn +

(
2
√
log p− log log p

4
√
log p

)√
1− ρ2n and the distribution

function of ξ is F (x) = e−Ke−x/2, x ∈ R with K = 1
4
√
2π

.

Compared with Cai and Jiang (2011), the present paper does not delve into the limiting properties
of Vn,τ . Instead, we focus on a more general statistic Jn. On the application side, it has been
demonstrated that the largest entry of sample covariance matrices Jn performs effectively in testing
the covariance structure of a high-dimensional random variable. In particular, the equi-correlation
structure, as presented in Fan and Jiang (2019), is deemed too restrictive for several applications. In
practical applications, it is often observed that the correlation between random variables diminishes
as the distance between them increases. Therefore, this paper considers a 1-dependent structure,
which is a weaker and more concise dependence model with broader applicability. The significance of
this work lies in its ability to test not only the independence of a high-dimensional random variable
but also whether the corresponding covariance matrix Σ exhibits a tridiagonal structure.

In this paper, we will consider the ultra-high-dimensional case where log p = o
(
n1/3

)
and assume

that X1, . . . ,Xn are a random sample from the 1-dependent normal population, that is, two ad-
jacent elements in X are dependent. Let X ∼ Np(µ,Σ), where Np(µ,Σ) stands for a p-variate
normal population with the banded correlation matrix R = (rij)p×p, that is,

rij =


1, i = j,

ρn, |i− j| = 1,

0, |i− j| > 1.

(1.3)

Note that the corresponding correlation matrix R has the tridiagonal structure. By Horn and
Johnson (2013), Theorem 6.1.10, we find that R is positive definite if |ρn| < 1/2.

In addition, Fan et al. (2018) derived the limiting distribution of the maximum spurious correla-
tion using Gaussian approximation techniques of Chernozhukov et al. (2013). Bai et al. (2007) and
Johnstone (2001) investigated the asymptotic behaviors of the largest eigenvectors and eigenvalues
of sample covariance matrices, respectively. And the limiting behavior of the largest magnitude of
off-diagonal entries of the sample correlation matrices has been studied by several authors in various
cases, including Cai and Jiang (2012), Li et al. (2012), Liu et al. (2008), Shao and Zhou (2014),
Zhou (2007), and Zhao and Zhang (2022).

To investigate the distribution of Jn, we need the following assumptions.

Assumption 1.3. Let X1, . . . ,Xn be a random sample from the population Np(0,R). The data
matrix is given by Mn,p = (X1, . . . ,Xn)

′ = (Xk,i)n×p.

Assumption 1.4. p = pn → ∞ with log p = o
(
n1/3

)
as n → ∞.

We first show the limiting distributions of Jn1 and Jn2.

Theorem 1.5. Under Assumptions 1.3 and 1.4, suppose supn≥1|ρn| < 1/2. Then

4
√
log p

(√
nJn1 − µ1

) d→ ξ and 2
√

2 log p

( √
n√

1 + ρ2n
Jn2 − µ2

)
d→ ξ
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as n → ∞, where µ1 = 2
√
log p − log log p

4
√

log p
, µ2 =

√
2 log p − log log p

2
√

2 log p
+ log 8

2
√

2 log p
+ ρn

√
n√

1+ρ2n
, and the

distribution function of ξ is Fξ(x) = e−Ke−x/2, x ∈ R with K = 1
4
√
2π

.

The above theorem implies immediately the following results.

Corollary 1.6. Under Assumptions 1.3 and 1.4, suppose supn≥1|ρn| < 1/2. Then√
n

log p
Jn1

P→ 2 and

√
n

(1 + ρ2n) log p
(Jn2 − ρn)

P→
√
2 as n → ∞.

Corollary 1.7. Under Assumptions 1.3 and 1.4, suppose ρn = ρ is fixed with |ρ| < 1/2. Then

4
√
log p

(
√
nJn1 − 2

√
log p+

log log p

4
√
log p

)
d→ ξ,

2
√

2 log p

( √
n√

1 + ρ2
Jn2 −

ρ
√
n√

1 + ρ2
−
√

2 log p+
log log p

2
√
2 log p

− log 8

2
√

2 log p

)
d→ ξ

as n → ∞, where ξ is given by Theorem 1.5.

Then, we obtain the limiting distribution of Jn as follows.

Theorem 1.8. Under Assumptions 1.3 and 1.4, suppose supn≥1|ρn| < 1/2. If limn→∞
ρn

√
n√

log p
=

λ ∈ [−∞,∞], then the following holds as n → ∞:
4
√

log p (
√
nJn − µ1)

d→ ξ, λ ∈
[
−∞, 2−

√
2
]
,

2
√
2 log p

( √
n√

1 + ρ2n
Jn − µ2

)
d→ ξ, λ ∈

(
2−

√
2,∞

]
,

where µ1, µ2 and ξ are given by Theorem 1.5.

There are two obvious consequences of Theorem 1.8 as follows.

Corollary 1.9. Under Assumptions 1.3 and 1.4, suppose supn≥1|ρn| < 1/2. If limn→∞
ρn

√
n√

log p
=

λ ∈ [−∞,∞], then the following holds as n → ∞:
√

n

log p
Jn

P→ 2, λ ∈
[
−∞, 2−

√
2
]
,√

n

(1 + ρ2n) log p
(Jn − ρn)

P→
√
2, λ ∈

(
2−

√
2,∞

]
.

Corollary 1.10. Under Assumptions 1.3 and 1.4, suppose ρn = ρ is fixed with |ρ| < 1/2. Then the
following holds as n → ∞:

(i) If ρ ∈ (−1/2, 0], then

4
√
log p

(
√
nJn − 2

√
log p+

log log p

4
√
log p

)
d→ ξ,

where ξ is given by Theorem 1.5.
(ii) If ρ ∈ (0, 1/2), then

2
√

2 log p

( √
n√

1 + ρ2
Jn − ρ

√
n√

1 + ρ2
−
√
2 log p+

log log p

2
√
2 log p

− log 8

2
√
2 log p

)
d→ ξ,

where ξ is given by Theorem 1.5.
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Theorems 1.5 and 1.8 indicate that the limiting distributions of Jn1, Jn2 and Jn are Gumbel
distribution. Corollaries 1.6 and 1.9 show the laws of large numbers for Jn1, Jn2 and Jn.

Next, we make a few remarks as follows.

Remark 1.11. For the maximum statistic J ′
n as in (1.1), Theorem 1.8 still hold with the limiting

distribution Fξ(x) is replaced by

G (x) = exp

(
− 1

2
√
2π

e−x/2

)
, x ∈ R.

In fact, we only change N (0, 1) to |N(0, 1)| in the proof of Theorem 1.8.

Remark 1.12. Cai and Jiang (2011) supposed X comes from (τ − 1)-dependent normal populations
and showed the asymptotic distribution of Vn,τ , where τ ≥ 1 is a constant. Obviously, under their
assumption, Vn,τ is the maximum of (p − τ + 1)(p − τ)/2 random variables, each of which is the
sum of the product of two i.i.d. random variables. In this paper, we relax the condition of Vn,τ and
obtain the limiting distribution of Jn under 1-dependent normal populations assumption. Notice
that under our assumption, Jn is the maximum of p(p−1)/2 random variables, where (p−1)(p−2)/2
random variables are the sum of the product of two i.i.d. random variables, and (p − 1) random
variables are the sum of the product of two dependent random variables. Therefore, our study is
more complex and challenging than that of Cai and Jiang (2011). In addition, when τ = 2, Cai and
Jiang (2011) obtained the asymptotic behavior of Vn,2. According to Remark 1.11, it can be inferred
that the limiting distribution of Jn1 is similar to the limiting distribution of Vn,2. Therefore, we will
omit the proof of the limiting distribution of Jn1 in this paper.

Remark 1.13. Assume random variables {ξk,i; k = 1, . . . , n, i = 0, 1, . . . , p} are i.i.d. as N(0, 1). Set

Xk = (Xk,1, . . . , Xk,p)
′ =

√
θ (ξ0, . . . , ξp−1)

′ +
√
1− θ (ξ1, . . . , ξp)

′ (1.4)

for each k. By some calculations, we find that EXk,i = 0, Var (Xk,i) = 1 and

Cov (Xk,i, Xk,j) =

{
0, |i− j| > 1,√

θ (1− θ), |i− j| = 1,

for 1 ≤ i, j ≤ p. And the decomposition structure (1.4) plays a vital role in the proofs of theorems.

Remark 1.14. For the (τ –1)-dependent case (τ ≥ 3), we find that it is difficult to obtain the limiting
distribution of Jn using the method presented in this paper. In fact, the proofs of our results mainly
rely on the decomposition structure as in Remark 1.13. For the (τ –1)-dependent case, we consider
the simplest covariance structure and assume X ∼ Np(0,R

′), where R′ = (r′ij)p×p is a banded
matrix defined as follows:

r′ij =


1, if i = j,

ρn, if |i− j| ≤ τ − 1,

0, if |i− j| > τ − 1.

However, it is challenging to determine a decomposition structure for the (τ –1)-dependent normal
population. Furthermore, it is possible to observe multiple phase transition phenomena when study-
ing the asymptotic behavior of Jn, but we cannot currently determine how these phase transition
phenomena occur by the method presented in this paper. We will leave this as future work. If we
do not make specific assumptions about the covariance structure of the population and consider
a more general dependent structure, we find that the method presented in this paper is no longer
applicable. We need to seek new theories and methods.

Remark 1.15. In the proofs, Fan and Jiang (2019) used the following decomposition structure, for
each k = 1, . . . , n,

Xk = (Xk,1, . . . , Xk,p)
′ =

√
ρn(ξ, . . . , ξ)

′ +
√
1− ρn (ξk,1, . . . , ξk,p)

′ ,
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where {ξ, ξk,i; k, i = 1, 2, . . . } are i.i.d. as N(0, 1). Compared to our decomposition structure as in
(1.4), where both terms are related to the subscript i of Xk,i, the first term of their decomposition
structure is fixed as ξ, and only the second term is related to the subscript i of Xk,i. Therefore,
for max1≤i<j≤p

∑n
k=1Xk,iXk,j , our decomposition structure will lead to larger and more complex

calculations. Another technical challenge lies in studying how the phase transition phenomenon
occurs. Fan and Jiang (2019) found that if ρn

√
log p tends to 0, ∞ or a positive constant, the

corresponding limiting distribution of Jn is the Gumbel distribution, the normal distribution and a
convolution of the two distributions, respectively. In this paper, we present a different and interesting
phase transition phenomenon. If ρn

√
n√

log p
→ λ ≤ 2−

√
2, then Jn1 contributes to Jn. On the contrary,

if ρn
√
n√

log p
→ λ > 2 −

√
2, then Jn2 contributes to Jn. It is obvious that there is a phase transition

phenomenon at λ = 2−
√
2. Consequently, the threshold depends not only on the dimension p but

also on the sample size n, and this phase transition phenomenon is different from that of Fan and
Jiang (2019).

2. Proof of Main Results

The proofs of Theorems 1.5 and 1.8 are quite complicated. We break them into Sections 2.1–2.4.
If 0 ≤ θn < 1/2 and 0 ≤ |ρn| < 1/2, there is a one-to-one correspondence between

√
θn (1− θn)

and |ρn|. So we will substitute
√

θn (1− θn) for |ρn| in the proofs of theorems.

2.1. Some Notation. The random variables

{ξk, ξk,i; k = 1, 2, . . . , i = 0, 1, 2, . . .} are i.i.d. as N(0, 1). (2.1)

Given θn ∈ [0, 1/2) for each n ≥ 1, set

an = θn, bn = 1− θn, cn =
√
θn(1− θn),

and

a′n =
θn√

1 + θn − θ2n
, b′n =

1− θn√
1 + θn − θ2n

, c′n =

√
θn (1− θn)√
1 + θn − θ2n

.

For x ∈ R and integer p ≥ 1, set

sp =
√
4 log p− log log p+ x

and

s′p =
√
2 log p− log log p+ log 8 + x.

Define

ηkij = anξk,i−1ξk,j−1 + bnξk,iξk,j + sgn(ρn) · cn(ξk,i−1ξkj + ξk,iξk,j−1), (2.2)

η′kij = a′nξk,i−1ξk,j−1 + b′nξk,iξk,j + sgn(ρn) · c′n(ξk,i−1ξkj + ξk,iξk,j−1 − 1), (2.3)

Mnij =
1√
n

n∑
k=1

ηkij and M ′
nij =

1√
n

n∑
k=1

η′kij

for all 1 ≤ i < j ≤ p.
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2.2. Auxiliary Results. In this section, we will show some general results which will be used to prove
Theorems 1.5 and 1.8. According to Fan and Jiang (2019), Lemma 3.8, we can get the following
lemma, and its proof will not be described in detail in this paper.

Lemma 2.1. Let Mn be a random variable for each n ≥ 1 and g > 0 be a constant satisfying

lim
n→∞

P
(
Mn ≤

√
g2 log p− log log p− h · log 8 + x

)
= F (x)

for any x ∈ R, where h = {0, 1} and F (x) is a continuous distribution function on R. Then

Mn = g
√

log p− log log p

2g
√
log p

− h · log 8
2g

√
log p

+
1

2g
√
log p

Un,

where Un converges weakly to a probability measure with distribution function F (x).

Proposition 2.2. Set M ′
n = max1≤i<j≤p,i<j−1Mnij. Under Assumption 1.4, suppose supn≥1|ρn| <

1/2. Then

lim
n→∞

P
(
M ′

n ≤ sp
)
= exp

(
− 1

4
√
2π

e−x/2

)
for any x ∈ R.

Proposition 2.3. Set M ′′
n = max1≤i<j≤p,i=j−1M

′
nij. Under Assumption 1.4, suppose supn≥1|ρn| <

1/2. Then

lim
n→∞

P
(
M ′′

n ≤ s′p
)
= exp

(
− 1

4
√
2π

e−x/2

)
for any x ∈ R.

Proposition 2.4. Set Mn = max1≤i<j≤pMnij. Under Assumption 1.4, suppose supn≥1|ρn| < 1/2.
If ρn

√
n√

log p
→ λ ∈

[
−∞, 2−

√
2
]

as n → ∞, then

lim
n→∞

P (Mn ≤ sp) = exp

(
− 1

4
√
2π

e−x/2

)
for any x ∈ R.

Proposition 2.5. Set Mn = max1≤i<j≤pMnij. Under Assumption 1.4, suppose supn≥1|ρn| < 1/2.
If ρn

√
n√

log p
→ λ ∈

(
2−

√
2,∞

]
as n → ∞, then

lim
n→∞

P
(
Mn ≤ cn

√
n+

√
1 + θn − θ2ns

′
p

)
= exp

(
− 1

4
√
2π

e−x/2

)
for any x ∈ R.

2.3. Proof of Theorem 1.5. In this section, we will prove Theorem 1.5.

Proof : Review (2.1). Write

xk,i =
√
θnξk,i−1 + sgn(ρn) ·

√
1− θnξk,i, 1 ≤ k ≤ n, 1 ≤ i ≤ p. (2.4)

It is obvious that the n rows of the matrix (xk,i)n×p are i.i.d. random vectors and x1,i ∼ N(0, 1) for
each 1 ≤ i ≤ p. In addition, for 1 ≤ i ̸= j ≤ p, we have

Cov (x1,i, x1,j) =

{
0, |i− j| > 1,

sgn(ρn)
√
θn (1− θn), |i− j| = 1,
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where sgn(ρn)
√
θn (1− θn) = ρn. That is, each row of the matrix (xk,i)n×p obeys Np(0,R), where

R is given by (1.3). As a result, Mn,p and (xk,i)n×p have the same distribution. So we assume
Mn,p = (xk,i)n×p in the proofs. Then it follows from (2.2) and (2.4) that

1√
n

n∑
k=1

xkixkj =
1√
n

n∑
k=1

ηkij = Mnij . (2.5)

Then, by Lemma 2.1, Propositions 2.2 and 2.3, we obtain that

M ′
n = 2

√
log p− log log p

4
√
log p

+
1

4
√
log p

Un1,

M ′′
n =

√
2 log p− log log p

2
√
2 log p

+
log 8

2
√
2 log p

+
1

2
√
2 log p

Un2,

where Un1
d→ ξ and Un2

d→ ξ with distribution function Fξ(x) = e
− 1

4
√
2π

e−x/2

for all x ∈ R. Notice

√
nJn1 = max

1≤i<j≤p,i<j−1

1√
n

n∑
k=1

xkixkj = max
1≤i<j≤p,i<j−1

1√
n

n∑
k=1

ηkij = M ′
n,

√
n√

1 + θn − θ2n
Jn2 = max

1≤i<j≤p,i=j−1

1√
n+ nθn − nθ2n

n∑
k=1

xkixkj

=M ′′
n +

sgn(ρn)
√

nθn (1− θn)√
1 + θn − θ2n

.

Set

µ1 = 2
√
log p− log log p

4
√
log p

,

µ2 =
sgn(ρn)

√
nθn (1− θn)√

1 + θn − θ2n
+
√
2 log p− log log p

2
√
2 log p

+
log 8

2
√
2 log p

=
ρn

√
n√

1 + ρ2n
+
√

2 log p− log log p

2
√
2 log p

+
log 8

2
√
2 log p

.

Then, we get the following conclusions

4
√
log p

(√
nJn1 − µ1

)
= Un1

d→ ξ,

2
√
2 log p

( √
n√

1 + ρ2n
Jn2 − µ2

)
= Un2

d→ ξ,

where ξ is defined as above. These prove the theorem. □

2.4. Proof of Theorem 1.8. In this section, we will prove Theorem 1.8.

Proof : We continue to use the notation in the proof of Theorem 1.5. By Lemma 2.1, Propositions
2.4 and 2.5, we have the results as follows.

Case (i): if λ ∈
[
−∞, 2−

√
2
]
, then

Mn = 2
√

log p− log log p

4
√
log p

+
1

4
√
log p

Un3,

where Un3
d→ ξ.
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Case (ii): if λ ∈
(
2−

√
2,∞

]
, then

Mn√
1 + ρ2n

=
ρn

√
n√

1 + ρ2n
+
√

2 log p− log log p

2
√
2 log p

+
log 8

2
√
2 log p

+
1

2
√
2 log p

Un4,

where Un4
d→ ξ.

Recalling the definitions of µ1, µ2, Mn and Jn, we obtain

√
nJn = max

1≤i<j≤p

1√
n

n∑
k=1

xkixkj = max
1≤i<j≤p

1√
n

n∑
k=1

ηkij = Mn.

By the above relation, we then arrive at
Case (i): if λ ∈

[
−∞, 2−

√
2
]
, then

4
√
log p

(√
nJn − µ1

) d→ ξ,

where ξ is defined as above.
Case (ii): if λ ∈

(
2−

√
2,∞

]
, then

4
√

log p

( √
nJn√
1 + ρ2n

− µ2

)
d→ ξ,

where ξ is defined as above. □

3. Proof of Auxiliary Results

3.1. Some Technical Tools. To prove Propositions 2.2–2.5, we need some preliminary lemmas. The
first is the Chen–Stein Poisson approximation method.

Lemma 3.1 (Theorem 1 of Arratia et al., 1989). Let {ηα;α ∈ I} be random variables on an index
set I and {Bα;α ∈ I} be a set of subsets of I, that is, for each α ∈ I,Bα ⊂ I. For any t ∈ R , set
λ =

∑
α∈I P (ηα > t). Then we have∣∣∣∣P (max

α∈I
ηα ≤ t

)
− e−λ

∣∣∣∣ ≤ (1 ∧ λ−1
)
(b1 + b2 + b3) ,

where

b1 =
∑
α∈I

∑
β∈Bα

P (ηα > t)P (ηβ > t) ,

b2 =
∑
α∈I

∑
α ̸=β∈Bα

P (ηα > t, ηβ > t) ,

b3 =
∑
α∈I

E|P {ηα > t | σ (ηβ;β /∈ Bα)} − P (ηα > t)|,

and σ (ηβ;β /∈ Bα) is the σ-algebra generated by {ηβ;β /∈ Bα}. In particular, if ηα is independent
of {ηβ;β /∈ Bα} for each α, then b3 vanishes.

The following lemma is about the moderation deviation of the partial sum of the independent
but not necessarily identically distributed random variables.

Lemma 3.2 (Proposition 4.5 of Chen et al., 2013). Let {ηi; 1 ≤ i ≤ n} be independent random
variables with Eηi = 0 and Eehn|ηi| < ∞ for some hn > 0 and 1 ≤ i ≤ n. Assume that

∑n
i=1Eη2i =

1. Then
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P

(
n∑

i=1

ηi ≥ x

)
= [1− Φ(x)] ·

[
1 + Cn

(
1 + x3

)
γe4x

3γ
]

for all 0 ≤ x ≤ hn and γ =
∑n

i=1E
(
|ηi|3ex|ηi|

)
, where supn≥1|Cn| ≤ C and C is an absolute

constant.

To complete the proofs by using the above lemma, we have to control E
(
|ηi|3ex|ηi|

)
. By the

similar argument to Lemma 3.6 of Fan and Jiang (2019), we obtain the following lemma.

Lemma 3.3. Let U, V,W and Y be i.i.d. N(0, 1) random variables. Let {ai; i = 1, . . . , 5} be real
numbers. Set η=a1UW + a2V Y + a3UY + a3VW + a4WY + a3W

2 − a5. Then
E
(
|η|3ex|η|

)
≤ C · ex|a5| ·

∑4
i=1|ai|3

as 0 < x ≤ 1
12(|a1|+|a2|+2|a3|+|a4|) , where C is a constant not depending on ai.

3.2. Proofs of Propositions 2.2 and 2.3. The proof of Proposition 2.2 can be obtained from Cai and
Jiang (2011), Proposition 6.4. So we only prove Proposition 2.3 in this section.

Lemma 3.4. Under the conditions of Proposition 2.3, we have

lim
n→∞

(p− 1)P

(
1√
n

n∑
k=1

η′k12 > s′p

)
=

1

4
√
2π

e−x/2

for all x ∈ R.

Proof : Write
n∑

k=1

η′k12 =
n∑

k=1

[
a′nξk0ξk1 + b′nξk1ξk2 + sgn (ρn) · c′n

(
ξk0ξk2 + ξ2k1 − 1

)]
.

Obviously,

E

(
n∑

k=1

η′k12

)
= 0 and Var

(
n∑

k=1

η′k12

)
= n. (3.1)

Then, set a′ = a′n/
√
n , b′ = b′n/

√
n and c′ = c′n/

√
n. Define η′k = a′ξk0ξk1 + b′ξk1ξk2 + sgn (ρn) ·

c′
(
ξk0ξk2 + ξ2k1 − 1

)
. Then it follows from (3.1) that

E
(
η′k
)
= 0 and

n∑
k=1

Var
(
η′k
)
= 1 (3.2)

for each k. Furthermore, one has

|a′| ≤ 1

2
√
n

, |b′| ≤ 1√
n

and |c′| ≤ 1

2
√
n
.

By the Hölder inequality and the fact that 2|ξk1ξk2| ≤ ξ2k1 + ξ2k2, we then arrive at

Eeh|η
′
k| ≤ Eexp

[
h
(
|a′ξk0ξk1|+ |b′ξk1ξk2|+ |c′ξk0ξk2|+ |c′ξ2k1|+ |c′|

)]
≤Eexp

{
h

[(
|a′|
2

+
|c′|
2

)
ξ2k0 +

(
|a′|
2

+
|b′|
2

+ |c′|
)
ξ2k1 +

(
|b′|
2

+
|c′|
2

)
ξ2k2 + |c′|

]}
≤C · Eexp

[
h

(
|a′|
2

+
|c′|
2

)
ξ2k0

]
Eexp

[
h

(
|a′|
2

+
|b′|
2

+ |c′|
)
ξ2k1

]
Eexp

[
h

(
|a′|
2

+
|c′|
2

)
ξ2k2

]
<∞

(3.3)
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for all h, k, n satisfying 0 < h < h′n := 2
5

√
n and 1 ≤ k ≤ n. By Lemma 3.3, we have

γ :=

n∑
k=1

E
(
|η′k|3es

′
p|η′k|

)
≤

n∑
k=1

C ·
(
|a′|3 + |b′|3 + |c′|3

)
· es′p|c′| ≤ C√

n
· es′p/

√
n.

Note that s′p < h′n = 2
5

√
n. Then, by (3.2), (3.3) and Lemma 3.2, we find

p · P

(
1√
n

n∑
k=1

η′k12 > s′p

)
= P

(
n∑

k=1

η′k > s′p

)
= p ·

[
1− Φ

(
s′p
)]

·
[
1 +O (1)

(
1 + s′3p

)
γe4s

′3
p γ
]

= p ·
[
1− Φ

(
s′p
)]

·

[
1 +O

(
es

′3
p /

√
n

√
n

)]
=

p√
2πs′p

e−s′2p /2 (1 + o (1))

→ 1

4
√
2π

e−x/2

(3.4)

as n → ∞. In the above equality, we use the formula P (N (0, 1) ≥ x) = 1√
2πx

e−x2/2 as x → ∞,

and the fact s′3p γ = O
(
s′3p n

−1/2es
′
p/

√
n
)
→ 0 as n → ∞ under Assumption 1.4. Then the proof is

completed. □

The following lemma is an obvious consequence of Lemma 3.4.

Lemma 3.5. Under the conditions of Proposition 2.3, we have

lim
n→∞

p ·

[
P

(
1√
n

n∑
k=1

η′k12 > s′p

)]2
= 0.

Lemma 3.6. Under the conditions of Proposition 2.3, we have

lim
n→∞

p · P

(
1√
n

n∑
k=1

η′k12 > s′p,
1√
n

n∑
k=1

η′k34 > s′p

)
= 0.

Proof : Let P1 stand for the conditional probability given {ξk2; 1 ≤ k ≤ n}. By independence,

P

(
1√
n

n∑
k=1

η′k12 > s′p,
1√
n

n∑
k=1

η′k34 > s′p

)
= E

P1

(
1√
n

n∑
k=1

η′k12 > s′p

)2
 . (3.5)

Then, given {ξk2; 1 ≤ k ≤ n}, we have from independence that

1√
n

n∑
k=1

η′k12 ∼ N
(
0, σ2

1n

)
, (3.6)

where

σ2
1n =

1

n

n∑
k=1

(
a′2n + b′2n ξ

2
k2 + c′2n ξ

2
k2 + 2c′2n

)
= a′2n + 2c′2n +

1

n

n∑
k=1

(
b′2n + c′2n

)
ξ2k2.
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Given δ ∈ (0, 1), set

Bδ =

{
1− δ +

a′2n + 2c′2n
b′2n + c′2n

≤ σ2
1n

b′2n + c′2n
≤ 1 + δ +

a′2n + 2c′2n
b′2n + c′2n

}
=

{
1− δ ≤ 1

n

n∑
k=1

ξ2k2 ≤ 1 + δ

}
.

Then, by the large deviation for the sum of i.i.d. random variables, one can get that

P (Bc
δ) = P

(
1

n

n∑
k=1

ξ2k2 ∈ [1− δ, 1 + δ]c
)

≤ e−nCδ

for all δ ∈ (0, 1), where Cδ > 0 for each δ ∈ (0, 1).
Observe that σ2

1n ≤ (1 + δ)
(
b′2n + c′2n

)
+ a′2n + 2c′2n = a′2n + b′2n + 3c′2n +

(
b′2n + c′2n

)
δ ≤ 1 + δ on Bδ.

Therefore, we see from (3.6) that, on Bδ,

P1

(
1√
n

n∑
k=1

η′k12 > s′p

)
= P1

(
N
(
0, σ2

1n

)
> s′p

)
= P1

(
N (0, 1) >

s′p
σ1n

)
≤ exp

(
−

s′2p
2σ2

1n

)
≤ exp

(
−

s′2p
2 (1 + δ)

)
.

We also use the fact that P (N (0, 1) ≥ y) ≤ 1√
2πy

e−y2/2 ≤ 1
2e

−y2/2 for all y ≥ 1 in the above
inequality. Reviewing (3.5), we then conclude

P

(
1√
n

n∑
k=1

η′k12 > s′p,
1√
n

n∑
k=1

η′k34 > s′p

)

≤E

P1

(
1√
n

n∑
k=1

η′k12 > s′p

)2

IBc
δ

+ exp

(
−

s′2p
1 + δ

)

≤P (Bc
δ) + exp

(
−

s′2p
1 + δ

)

≤e−nCδ + exp

(
−

s′2p
1 + δ

)
.

By choosing δ > 0 small enough, we get the desired conclusion. □

The proof of Proposition 2.3.

Proof : Set
I ′ = {(i, j); 1 ≤ i < j ≤ p, i = j − 1} .

For α = (i, j) ∈ I ′, define

Zα =
1√
n

n∑
k=1

η′kij

=
1√
n

n∑
k=1

(
a′nξk,i−1ξk,j−1 + b′nξk,iξk,j + sgn(ρn) · c′n (ξk,i−1ξk,j + ξk,iξk,j−1 − 1)

)
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and
B′

α =
{
(k, l) ∈ I ′; k ∈ {i− 2, i− 1, i, i+ 1, i+ 2} , (k, l) ̸= α

}
.

Obviously, random variable Zα is independent of {Zβ;β /∈ B′
α}. By Lemma 3.1, we have∣∣∣∣P (max

α∈I′
Zα ≤ s′p

)
− e−λp1

∣∣∣∣ ≤ v1 + v2,

where

λp1 =
∑
α∈I′

P
(
Zα > s′p

)
= (p− 1)P

(
1√
n

n∑
k=1

η′k12 > s′p

)
,

v1 =
∑
α∈I′

∑
β∈B′

α

P
(
Zα > s′p

)
P
(
Zβ > s′p

)
≤ (p− 1) · 5 · P

(
1√
n

n∑
k=1

η′k12 > s′p

)2

and

v2 =
∑
α∈I′

∑
α̸=β∈B′

α

P
(
Zα > s′p, Zβ > s′p

)
≤ (p− 1) · 5 · P

(
1√
n

n∑
k=1

η′k12 > s′p,
1√
n

n∑
k=1

η′k34 > s′p

)
.

By Lemmas 3.4–3.6, we obtain that e−λp1 → exp
(
− 1

4
√
2π
e−x/2

)
, v1 → 0 and v2 → 0 as n → ∞.

These imply Proposition 2.3. □

3.3. Proof of Proposition 2.4. In this section, we will use the Chen–Stein Poisson approximation
method (Lemma 3.1) to get the asymptotical distribution of Mn when λ ∈

[
−∞, 2−

√
2
]
.

Lemma 3.7. Under the conditions of Proposition 2.4, suppose ρn ≥ 0. Then

lim
n→∞

(p− 1) · P

(
1√
n

n∑
k=1

ηk12 > sp

)
= 0.

Proof : If ρn ≥ 0, then
n∑

k=1

(ηk12 − cn) =

n∑
k=1

[
anξk0ξk1 + bnξk1ξk2 + cn

(
ξk0ξk2 + ξ2k1 − 1

)]
.

Thus,

E

(
n∑

k=1

(ηk12 − cn)

)
= 0 and Var

(
n∑

k=1

(ηk12 − cn)

)
= n

(
1 + θn − θ2n

)
:= nσ2

n0. (3.7)

It is obvious that 1 ≤ σ2
n0 < 5/4 due to θn ∈ [0, 1/2). Then, we take a′ = an/(

√
nσn0) , b′ =

bn/(
√
nσn0) and c′ = cn/(

√
nσn0). Set η′k = a′ξk0ξk1 + b′ξk1ξk2 + c′

(
ξk0ξk2 + ξ2k1 − 1

)
. Then it

follows from (3.7) that

E
(
η′k
)
= 0 and

n∑
k=1

Var
(
η′k
)
= 1 (3.8)

for each k. Furthermore, we have

|a′| ≤ 1

2
√
n

, |b′| ≤ 1√
n

and |c′| ≤ 1

2
√
n
.
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Then, by using the Hölder inequality, and the fact that 2|ξk1ξk2| ≤ ξ2k1 + ξ2k2, we see

Eeh|η
′
k| ≤E exp

[
h
(
|a′ξk0ξk1|+ |b′ξk1ξk2|+ |c′ξk0ξk2|+ |c′ξ2k1|+ |c′|

)]
≤E exp

[
h

(
|a′|
2

+
|c′|
2

)
ξ2k0

]
· E exp

[
h

(
|a′|
2

+
|b′|
2

+ |c′|
)
ξ2k1

]
· E exp

[
h

(
|a′|
2

+
|c′|
2

)
ξ2k2

]
· e < ∞

(3.9)

for all h, k, n satisfying 0 < h < h′n := 2
5

√
n and 1 ≤ k ≤ n. Set x0 = (sp − cn

√
n)/σn0. By Lemma

3.3, we have

γ :=
n∑

k=1

E
(
|η′k|3ex0|η′k|

)
≤

n∑
k=1

C
(
|a′|3 + |b′|3 + |c′|3

)
· ex0|c′| ≤ C√

n
· ex0|c′|.

Since x0 < h′n = 2
5

√
n, we see from (3.8), (3.9) and Lemma 3.2 that

p · P

(
1√
n

n∑
k=1

ηk12 > sp

)

= p · P

(
1√
n

n∑
k=1

(ηk12 − cn) > sp − cn
√
n

)

= p · P

(
n∑

k=1

η′k > x0

)
= p · [1− Φ (x0)] ·

[
1 +O (1)

(
1 + x30

)
γe4x

3
0γ
]

= p · [1− Φ (x0)] ·

[
1 +O

(
es

3
p/

√
n

√
n

)]

=
p · σn0√

2π(sp − cn
√
n)

e
− (sp−cn

√
n)2

2σ2
n0 (1 + o (1))

=
σn0√

2π(sp − cn
√
n)

exp

(
log p−

s2p
2σ2

n0

− c2nn

2σ2
n0

+
cn
√
nsp

σ2
n0

)
(1 + o (1))

(3.10)

as n → ∞. In the above equality, we use the formula P (N (0, 1) ≥ x) = 1√
2πx

e−x2/2 as x → ∞, and

the fact x30γ = O
(
s3pn

−1/2esp/
√
n
)
→ 0 as n → ∞ under Assumption 1.4. If λ ∈

[
−∞, 2−

√
2
]
,

then σ2
n0 = 1 + θn − θ2n = 1 + o (1/

√
n). Hence σ−2

n0 = 1 + o (1/
√
n). It follows that

exp

(
log p−

s2p
2σ2

n0

− c2nn

2σ2
n0

+
cn
√
nsp

σ2
n0

)

= exp

(
log p−

s2p
2

− c2nn

2
+ cn

√
nsp + o(1)

)
→ 0

as n is sufficiently large. Now combining this with (3.10), we prove the lemma. □

The above lemma has the following implication.
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Lemma 3.8. Under the conditions of Proposition 2.4, suppose ρn ≥ 0. Then

lim
n→∞

p ·

[
P

(
1√
n

n∑
k=1

ηk12 > sp

)]2
= 0.

Lemma 3.9. Under the conditions of Proposition 2.4, suppose ρn ≥ 0. Then

lim
n→∞

p · P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)
= 0.

Proof : Let P1 stand for the conditional probability given {ξk2; 1 ≤ k ≤ n}. By indenpendence,

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)
= E

P1

(
1√
n

n∑
k=1

(ηk12 − cn) > sp − cn
√
n

)2
 . (3.11)

Then, given {ξk2; 1 ≤ k ≤ n}, we have from independence that

1√
n

n∑
k=1

(ηk12 − cn) ∼ N
(
0, σ2

2n

)
, (3.12)

where

σ2
2n =

1

n

n∑
k=1

(
a2n + b2nξ

2
k2 + c2nξ

2
k2 + 2c2n

)
= a2n + 2c2n +

1

n

n∑
k=1

(
b2n + c2n

)
ξ2k2.

For a given δ ∈ (0, 1), set

Dδ =

{
1− δ +

a2n + 2c2n
b2n + c2n

≤ σ2
2n

b2n + c2n
≤ 1 + δ +

a2n + 2c2n
b2n + c2n

}
=

{
1− δ ≤ 1

n

n∑
k=1

ξ2k2 ≤ 1 + δ

}
.

Then, by the large deviation for the sum of i.i.d. random variables, we can deduce that

P (Dc
δ) = P

(
1

n

n∑
k=1

ξ2k2 ∈ [1− δ, 1 + δ]c
)

≤ e−nCδ

for all δ ∈ (0, 1), where Cδ > 0 for each δ ∈ (0, 1). Furthermore, notice that σ2
2n ≤ (1 + δ)

(
b2n + c2n

)
+

a2n + 2c2n = a2n + b2n + 3c2n +
(
b2n + c2n

)
δ < 5

4 + δ on Dδ. Then, we have from (3.12) that, on Dδ,

P1

(
1√
n

n∑
k=1

(ηk12 − cn) > sp − cn
√
n

)
=P1

(
N
(
0, σ2

2n

)
> sp − cn

√
n
)

=P1

(
N (0, 1) >

sp − cn
√
n

σ2n

)
≤exp

(
−(sp − cn

√
n)

2

2σ2
2n

)

≤exp

(
−(sp − cn

√
n)

2

2 (5/4 + δ)

)
.
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Recalling (3.11), we conclude

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)

≤E

P1

(
1√
n

n∑
k=1

(ηk12 − cn) > sp − cn
√
n

)2

IDc
δ

+ exp

(
−(sp − cn

√
n)

2

5/4 + δ

)

≤P (Dc
δ) + exp

(
−(sp − cn

√
n)

2

5/4 + δ

)

≤e−nCδ + exp

(
−(sp − cn

√
n)

2

5/4 + δ

)
.

By choosing δ > 0 small enough, we know the last expectation is identical to o (1/p). Then the
proof is completed. □

Lemma 3.10. Under the conditions of Proposition 2.4, suppose ρn < 0. Then

lim
n→∞

(p− 1) · P

(
1√
n

n∑
k=1

ηk12 > sp

)
= 0.

Proof : If ρn < 0, then
n∑

k=1

(ηk12 + cn) =
n∑

k=1

[
anξk0ξk1 + bnξk1ξk2 − cn

(
ξk0ξk2 + ξ2k1 − 1

)]
.

Obviously,

E

(
n∑

k=1

(ηk12 + cn)

)
= 0 and Var

(
n∑

k=1

(ηk12 + cn)

)
= n

(
1 + θn − θ2n

)
.

Review the proof of Lemma 3.7, (3.10), and the definition of σ2
n0. Then, we obtain that,

p · P

(
1√
n

n∑
k=1

ηk12 > sp

)
=p · P

(
1√
n

n∑
k=1

(ηk12 + cn) > sp + cn
√
n

)

≤p · P

(
1√
n

n∑
k=1

(ηk12 + cn) > sp

)

=p ·
[
1− Φ

(
sp
σn0

)]
· (1 + o(1))

=
p · σn0√
2πsp

e
−

s2p

2σ2
n0

≤
√
5 (log p)3/5

2
√
2πsp · p3/5

→ 0

as n → ∞. This proves the lemma. □

Lemma 3.10 implies the following lemma.
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Lemma 3.11. Under the conditions of Proposition 2.4, suppose ρn < 0. Then

lim
n→∞

p ·

[
P

(
1√
n

n∑
k=1

ηk12 > sp

)]2
= 0.

Lemma 3.12. Under the conditions of Proposition 2.4, suppose ρn < 0. Then

lim
n→∞

p · P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)
= 0.

Proof : Let P1 stand for the conditional probability given {ξk2; 1 ≤ k ≤ n}. By independence,

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)
= E

P1

(
1√
n

n∑
k=1

(ηk12 + cn) > sp + cn
√
n

)2
 . (3.13)

Reviewing the proof of Lemma 3.9 and the definitions of σ2
2n and Dδ, we find that 1√

n

∑n
k=1(ηk12 +

cn) ∼ N
(
0, σ2

2n

)
. Since σ2

2n < 5/4 + δ on Dδ, we have that, on Dδ,

P1

(
1√
n

n∑
k=1

(ηk12 + cn) > sp + cn
√
n

)
=P1

(
N
(
0, σ2

2n

)
> sp + cn

√
n
)

≤exp

(
−(sp + cn

√
n)

2

2σ2
2n

)

≤exp

(
−(sp + cn

√
n)

2

2 (5/4 + δ)

)
.

Therefore, we see from (3.13) that

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)

=E

P1

(
1√
n

n∑
k=1

(ηk12 + cn) > sp + cn
√
n

)2

IDc
δ

+ exp

(
−(sp + cn

√
n)

2

5/4 + δ

)

≤P (Dc
δ) + exp

(
−(sp + cn

√
n)

2

5/4 + δ

)

≤e−nCδ + exp

(
−(sp + cn

√
n)

2

5/4 + δ

)
.

Choosing δ > 0 small enough, we know the last expectation is identical to o (1/p). Then we obtain
the desired conclusion. □

The proof of Propositon 2.4. Set

I = {(i, j) ; 1 ≤ i < j ≤ p} ,
I ′′ = {(i, j) ; 1 ≤ i < j ≤ p, i < j − 1} ,
Bα = {(k, l) ∈ I; {k, l} ∩ {i− 1, i, i+ 1, j − 1, j, j + 1} ≠ ∅, (k, l) ̸= α} ,
B′′

α =
{
(k, l) ∈ I ′′; {k, l} ∩ {i− 1, i, i+ 1, j − 1, j, j + 1} ≠ ∅, (k, l) ̸= α

}
.
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For α = (i, j) ∈ I, define Xα = Mnij . Note that Xα is independent of {Xβ;β /∈ Bα}. Review the
definitions of I ′ and B′

α. By Lemma 3.1, we have∣∣∣∣P (max
α∈I

Xα ≤ sp

)
− e−λp2

∣∣∣∣ ≤ u1 + u2,

where

λp2 =
∑
α∈I

P (Xα > sp) =
∑
α∈I′

P (Xα > sp) +
∑
α∈I′′

P (Xα > sp)

= (p− 1)P

(
1√
n

n∑
k=1

ηk12 > sp

)
+

(p− 1) (p− 2)

2
P

(
1√
n

n∑
k=1

ηk13 > sp

)
,

u1 =
∑
α∈I

∑
β∈Bα

P (Xα > sp)P (Xβ > sp)

=
∑
α∈I′

∑
β∈B′

α

P (Xα > sp)P (Xβ > sp) +
∑
α∈I′′

∑
β∈B′′

α

P (Xα > sp)P (Xβ > sp)

≤(p− 1) · 5 · P

(
1√
n

n∑
k=1

ηk12 > sp

)2

+
(p− 1) (p− 2)

2
· (6p) · P

(
1√
n

n∑
k=1

ηk13 > sp

)2

and

u2 =
∑
α∈I

∑
α ̸=β∈Bα

P (Xα > sp, Xβ > sp)

=
∑
α∈I′

∑
β∈B′

α

P (Xα > sp, Xβ > sp) +
∑
α∈I′′

∑
β∈B′′

α

P (Xα > sp, Xβ > sp)

≤(p− 1) · 5 · P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk34 > sp

)

+
(p− 1) (p− 2)

2
· (6p) · P

(
1√
n

n∑
k=1

ηk13 > sp,
1√
n

n∑
k=1

ηk15 > sp

)
.

By Cai and Jiang (2011), Proposition 6.4, we can obtain

lim
n→∞

(p− 1) (p− 2)

2
· P

(
1√
n

n∑
k=1

ηk13 > sp

)
=

1

4
√
2π

e−x/2,

lim
n→∞

p3 ·

[
P

(
1√
n

n∑
k=1

ηk13 > sp

)]2
= 0,

lim
n→∞

p3 · P

(
1√
n

n∑
k=1

ηk13 > sp,
1√
n

n∑
k=1

ηk15 > sp

)
= 0.

Then, combining the above equalities with Lemmas 3.7–3.12, we have e−λp2 → exp
(
− 1

4
√
2π
e−x/2

)
,

u1 → 0 and u2 → 0 as n → ∞. These prove Proposition 2.4. □

3.4. Proof of Proposition 2.5. In this section, we will use the Chen–Stein Poisson approximation
method (Lemma 3.1) to get the asymptotical distribution of Mn when λ ∈

(
2−

√
2,∞

]
. Reviewing

the definition of σn0, set τ = cn
√
n+ σn0s

′
p.
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Lemma 3.13. Under the conditions of Proposition 2.5, we have

lim
n→∞

(p− 1) (p− 2) · P

(
1√
n

n∑
k=1

ηk13 > τ

)
= 0.

Proof : If λ ∈
(
2−

√
2,∞

]
, then

n∑
k=1

ηk13 =
n∑

k=1

[anξk0ξk2 + bnξk1ξk3 + cn (ξk0ξk3 + ξk1ξk2)] .

It is obvious that

E

(
n∑

k=1

ηk13

)
= 0 and Var

(
n∑

k=1

ηk13

)
= na2n + nb2n + 2nc2n = n. (3.14)

Then, we take a = an/
√
n , b = bn/

√
n and c = cn/

√
n.

Set ηk = aξk0ξk2 + bξk1ξk3 + c (ξk0ξk3 + ξk1ξk2). It follows from (3.14) that

E (ηk) = 0 and
n∑

k=1

Var (ηk) = 1 (3.15)

for each k. Furthermore, we have

|a| ≤ 1

2
√
n

, |b| ≤ 1√
n

and |c| ≤ 1

2
√
n
.

Next, by using the Hölder inequality, and the fact that 2|ξk1ξk2| ≤ ξ2k1 + ξ2k2, we arrive at

Eeh|ηk| ≤E exp [h (|aξk0ξk2|+ |bξk1ξk3|+ |cξk0ξk3|+ |cξk1ξk2|)]

<E exp
[

h

4
√
n

(
2ξ2k0 + 3ξ2k1 + 2ξ2k2 + 3ξ2k3

)]
=E

[
exp

(
h

2
√
n
ξ2k0

)
· exp

(
3h

4
√
n
ξ2k1

)
· exp

(
h

2
√
n
ξ2k3

)
· exp

(
3h

4
√
n
ξ2k3

)]
< ∞,

(3.16)

for all h, k, n satisfying 0 < h < hn := 2
3

√
n and 1 ≤ k ≤ n. We see from Lemma 3.3 that

γ :=
n∑

k=1

E
(
|ηk|3esp|ηk|

)
≤

n∑
k=1

C
(
|a|3 + |b|3 + |c|3

)
≤

n∑
k=1

C

n3/2
=

C√
n
.

Since λ ∈
(
2−

√
2,∞

]
, we assume ρn

√
n = cn

√
n =

(
2−

√
2 + ε

)√
log p for some ε > 0. Notice

that τ = cn
√
n + σn0s

′
p ≥

(
2−

√
2 + ε

)√
log p + s′p > 2−

√
2+ε√
2

s′p + s′p =
(√

2 + ε
)
s′p. From (3.15),

(3.16) and Lemma 3.2, we then have

p2

2
· P

(
1√
n

n∑
k=1

ηk13 > τ

)
<

p2

2
· P

(
1√
n

n∑
k=1

ηk13 >
(√

2 + ε
)
s′p

)

=
p2

2
·
[
1− Φ

((√
2 + ε

)
s′p

)]
·
[
1 +O

(
1√
n

)]
=

p2

2
√
2π
(√

2 + ε
)
s′p

e−
(
√
2+ε)2s′2p

2 [1 + o (1)]

=
C ·
(√

log p
)1+ε

pε
e−(1+ε)x [1 + o (1)] → 0

(3.17)

as λ ∈
(
2−

√
2,∞

]
and n → ∞. This proves the lemma. □
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From the above lemma, we immediately have the following result.

Lemma 3.14. Under the conditions of Proposition 2.5, we have

lim
n→∞

p3 ·

[
P

(
1√
n

n∑
k=1

ηk13 > τ

)]2
= 0.

Lemma 3.15. Under the conditions of Proposition 2.5, we have

lim
n→∞

p3 · P

(
1√
n

n∑
k=1

ηk13 > τ,
1√
n

n∑
k=1

ηk15 > τ

)
= 0.

Proof : Let P2 stand for the conditional probability given {ξk0, ξk1; 1 ≤ k ≤ n}. By independence,

P

(
1√
n

n∑
k=1

ηk13 > τ,
1√
n

n∑
k=1

ηk15 > τ

)
= E

P2

(
1√
n

n∑
k=1

ηk13 > τ

)2
 . (3.18)

If λ ∈
(
2−

√
2,∞

]
, then

n∑
k=1

ηk13 =

n∑
k=1

(anξk0 + cnξk1) ξk2 +

n∑
k=1

(bnξk1 + cnξk0) ξk3.

Given {ξk0, ξk1; 1 ≤ k ≤ n}, we have

1√
n

n∑
k=1

ηk13 ∼ N
(
0, σ2

0n

)
, (3.19)

where

σ2
0n =

1

n

[
n∑

k=1

(anξk0 + cnξk1)
2 +

n∑
k=1

(bnξk1 + cnξk0)
2

]
=

1

n

n∑
k=1

(√
a2n + c2nξk0 +

√
b2n + c2nξk1

)2
.

For a given δ ∈ (0, 1), set

Aδ =

{
1− δ ≤ σ2

0n

a2n + b2n + 2c2n
≤ 1 + δ

}
.

Notice that
√
a2n + c2nξk0 +

√
b2n + c2nξk1

d
=
√
a2n + b2n + 2c2nξk due to (2.1). Thus, σ2

0n
a2n+b2n+2c2n

d
=

1
n

∑n
k=1 ξ

2
k. Then, by the large deviation for the sum of i.i.d. random variables, we obtain

P (Ac
δ) = P

(
1

n

n∑
k=1

ξ2k ∈ [1− δ, 1 + δ]c
)

≤ e−nCδ

for all δ ∈ (0, 1), where Cδ > 0 for each δ ∈ (0, 1). Furthermore, σ2
0n ≤ (1 + δ)

(
a2n + b2n + 2c2n

)
=

1 + δ on Aδ. Then, we have from (3.19) that, on Aδ,

P2

(
1√
n

n∑
k=1

ηk13 > τ

)
= P2

(
N
(
0, σ2

0n

)
> τ

)
≤ exp

(
− τ2

2σ2
0n

)
≤ exp

(
− τ2

2 (1 + δ)

)
.
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By the same argument as in (3.17), we see from (3.18) that

P

(
1√
n

n∑
k=1

ηk13 > τ,
1√
n

n∑
k=1

ηk15 > τ

)

≤E

P2

(
1√
n

n∑
k=1

ηk13 > τ

)2

IAc
δ

+ exp
(
− τ2

1 + δ

)

≤P (Ac
δ) + exp

(
−
(√

2 + ε
)2

s′2p
1 + δ

)

≤e−nCδ + exp

(
−
(√

2 + ε
)2

s′2p
1 + δ

)
.

Choosing δ > 0 small enough, we know the last expectation is identical to o
(
1/p3

)
. These prove

the lemma. □

The proof of Propositon 2.5.

Proof : Recalling the proof of Proposition 2.4, by Lemma 3.1, we have∣∣∣∣P (max
α∈I

Xα ≤ τ

)
− e−λp3

∣∣∣∣ ≤ m1 +m2,

where

λp3 = (p− 1)P

(
1√
n

n∑
k=1

ηk12 > τ

)
+

(p− 1) (p− 2)

2
P

(
1√
n

n∑
k=1

ηk13 > τ

)
and

m1 ≤ (p− 1) · 5 · P

(
1√
n

n∑
k=1

ηk12 > τ

)2

+
(p− 1) (p− 2)

2
· (6p) · P

(
1√
n

n∑
k=1

ηk13 > τ

)2

and

m2 ≤(p− 1) · 5 · P

(
1√
n

n∑
k=1

ηk12 > τ,
1√
n

n∑
k=1

ηk45 > τ

)

+
(p− 1) (p− 2)

2
· (6p) · P

(
1√
n

n∑
k=1

ηk13 > τ,
1√
n

n∑
k=1

ηk15 > τ

)
.

Lemmas 3.4–3.6 and Lemmas 3.13–3.15 say that e−λp3 → exp
(
− 1

4
√
2π
e−x/2

)
, m1 → 0 and

m2 → 0 as n → ∞. Then the proof of Proposition 2.5 is completed. □

4. Applications

The limiting distribution presented in Section 1 holds significance for various statistical applica-
tions, one of which involves testing structures of covariance matrices. Let X1, . . . ,Xn be a random
sample from the p-variate normal population Np(µ,Σ) with known mean µ and unknown covariance
matrix Σ.

Example 4.1. An important problem is testing for independence in the Gaussian case. Consider the
test

H0 : Σ = Ip v.s. H1 : Σ ̸= Ip,
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where Ip is the p× p identity matrix. Based on the limiting law derived in Theorem 1.8, we choose
Jn as the test statistic. Under H0 and Assumption 1.4, we have

4
√

log p
(√

nJn − µ1

) d→ ξ,

where µ1 and ξ are given by Theorem 1.5. For a given α ∈ (0, 1), set

qα = − log(32π)− 2 log log(1− α)−1.

We find that qα is the (1− α)-quantile of the distribution Fξ(x). Then, we will reject H0 when
√
nJn − 2

√
log p+

log log p

4
√

log p
≥ qα

4
√
log p

.

Example 4.2. As the application of Theorem 1.8, we wish to test whether Σ has the tridiagonal
structure like R as in (1.3). Consider the testing problem

H0 : Σ = R v.s. H1 : Σ ̸= R.

By the same argument as in Example 4.1, we will use Jn as our test statistic. Let qα denote the
(1 − α)-quantile of the distribution Fξ(x). By Theorem 1.8, we will show two rejection regions Ω1

and Ω2 when λ ∈
[
−∞, 2−

√
2
]

and λ ∈
(
2−

√
2,∞

]
, respectively,

Ω1 =

{
√
nJn − 2

√
log p+

log log p

4
√
log p

≥ qα

4
√

log p

}
,

Ω2 =

{ √
nJn√
1 + ρ2n

− ρn
√
n√

1 + ρ2n
−
√
2 log p+

log log p

2
√
2 log p

− log 8

2
√

2 log p
≥ qα

2
√
2 log p

}
.
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