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Abstract. Consider a compact metric space S and a pair (j, k) with k ≥ 2 and 1 ≤ j ≤ k. For any
probability distribution θ ∈ P(S), define a Markov chain on S by: from state s, take k i.i.d. (θ)
samples, and jump to the j’th closest. Such a chain converges in distribution to a unique stationary
distribution, say πj,k(θ). So this defines a mapping πj,k : P(S) → P(S). What happens when we
iterate this mapping? In particular, what are the fixed points of this mapping? We present a few
rigorous results, to complement our extensive simulation study elsewhere.

1. Introduction

This article discusses a rather novel topic whose motivation may seem obscure, so we start with
informal background that led to the formulation of the topic. Write S = (S, d) for a compact metric
space.. Then the identity function f(s) := s makes sense for every S. Is there any more interesting
explicit function S → S whose definition makes sense for every S? For example one might try
f(s) := argmaxy d(s, y), that is the most distant point from s; this works for any space S with the
property that the most distant point is always unique, but not for all S. Our introspection suggests
that in fact there is no non-trivial such “general” function.

Instead let us write P(S) for the space of probability distributions on S, and recall that P(S) is
a compact metric space under the usual weak topology. The observation above suggests that there
may be no non-trivial function P(S) → P(S) whose definition makes sense for every S. But this is
false! This article investigates a particular family of such functions – the reader may care to try to
invent different examples.
The Markov chain. Given S and θ ∈ P(S), consider the following discrete time Markov chain
on state space S: from point s make the step to the nearer of 2 random points drawn i.i.d. from
θ, breaking ties uniformly at random. This scheme naturally generalizes as follows: fix k ≥ 2 and
1 ≤ j ≤ k, and step from s to the j’th nearest of k random points drawn i.i.d. from θ, again
breaking ties uniformly at random. Write the associated chain as Xθ,j,k = (Xθ,j,k(t), t = 0, 1, 2, . . .).
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Theorem 2.1 proves that this chain always has a unique stationary distribution, which we can call
πj,k(θ). So now we have defined a mapping πj,k : P(S) → P(S) for every S. Theorem 2.1 also
proves that the distributions θ and πj,k(θ) are mutually absolutely continuous, so in particular have
the same support.
Invariant measures for the mappings. These mappings πj,k have apparently not been studied
previously, even for special spaces S and the simplest case k = 2. Amongst the range of questions
one could ask, we will seek to study it as a dynamical system. Given a mapping π from a space to
itself, it is mathematically natural to consider iterates

πn+1(θ) = π(πn(θ)), n ≥ 1. (1.1)

In our setting it seems plausible that (at least for typical initial θ) the iterates should converge to
some limit, that is we expect weak convergence

πn
j,k(θ) →w ϕ as n → ∞ (1.2)

and then we expect1 the limit ϕ to satisfy the fixed point or invariant distribution condition

πj,k(ϕ) = ϕ. (1.3)

Some comments about this set-up.
(a) The iterative procedure (1.1) does not have any simple stochastic process interpretation, in
contrast to the mapping θ → πj,k(θ) derived from the Markov chain.
(b) The equation for the stationary distribution πj,k(θ), which for finite S is the elementary Markov
chain relation π = πP, is a linear equation, whereas the fixed point equation (1.3) is decidedly
non-linear.
(c) On any S and for any (j, k), two types of measures are always invariant: we call these the
omnipresent measures.

• The distribution δs degenerate at one point s;
• The uniform two-point distribution δs1,s2 = 1

2(δs1 + δs2).
(d) If an invariant distribution on S has support S0 ⊂ S then we can regard it as an invariant
distribution on S0. So the essential question is: given S, what are the invariant distributions with
full support? Note that when πn

j,k(θ) →w ϕ the distributions (πn
j,k(θ), n ≥ 1) all have the same

support (by Theorem 2.1) but ϕ may (as usually has, it turns out) have smaller support.
Motivation. There is no notion of “uniform distribution” applicable to every compact metric space
S. The original motivation for this project was the hope that our invariant distributions might
provide a proxy for uniform distributions on a general S. We attempted to find such distributions
via numerically implementing the iterative procedure on various spaces S. What we found was
that, in the absence of some special symmetry property preserved under the iterative procedure,
one almost always obtained a limit supported on only one or two points, the omnipresent measures
mentioned above. This seemed counter-intuitive, and prompted the further study of invariant
measures, even though the original motivation turned out to be unsuccessful.
What numerics and simulation suggest. Our quite extensive study via numerics and simulation
is described in a companion document Aldous et al. (2024), and suggests the following big picture.
(a) For k = 2, there are no invariant measures other than the omnipresent ones, except perhaps for
“exist by symmetry” ones; with that exception, for j = 1, k = 2 the iterates (1.1) converge to some
δs, and for j = 2, k = 2 the iterates (1.1) converge to some δs1,s2 . The precise limits (s, s1, s2) may
depend on the initial θ. In the case of δs1,s2 , the pair (s1, s2) is a local maximum of d(·, ·).
(b) For larger k, for some types of space S there are additional sporadic invariant measures; we
don’t see a pattern.

1As observed in Aldous et al. (2024), the Markov chain is not always a Feller process, so (1.3) does not immediately
follow from (1.2).



Markov Mappings 1409

(c) For large k, as j increases we see (in all the examples we have studied) a transition, around
j/k = 0.7, between convergence to some δs and convergence to some δs1,s2 . However there seems
no reason to believe that there is a universal value near 0.7.
(d) Except for the omnipresent ones, all invariant measures ϕ that we have encountered are unsta-
ble, in that from any initial distribution that is ϕ plus a generic (not symmetry-preserving) small
perturbation, the iterates converge to some δs or δs1,s2 .
What can we actually prove? In short: very little. Here are the results that we will derive in
this article.

• Theorem 2.1 is the Markov chain convergence result.
• Results in Section 3 for |S| = 2 or 3 are consistent with general picture above.
• Theorem 4.1: For every S, the set of invariant distributions for π1,2 is the same as the set

of invariant distributions for π2,2. This is surprising, in that apparently (as in (a) above)
the iterates almost always converge to some δs for π1,2, but to some δs1,s2 for π2,2.

• Theorem 5.1: There are no π1,2 or π2,2-invariant distributions on the interval [0, 1] other
than the omnipresent ones.

• Theorem 6.1: There are no π1,2 or π2,2-invariant distributions on a space of finite binary
tree leaves other than the omnipresent ones.

Of course, for any specific S, one can simply write out the fixed point definition (1.3) and seek
some ad hoc method of finding all solutions. The results above carry this through (for π1,2) for
|S| = 3 and for the interval [0, 1], and for leaf-labeled binary trees. But these are essentially “proofs
by contradiction” using specific features of the specific class of spaces. For general S and π1,2 one
feels there should be some “contraction” argument for the iterates πn

1,2(θ) – the distributions should
become more concentrated as n increases – but we are unable to formalize that general idea.

2. Existence and uniqueness of stationary distributions

Theorem 2.1. Consider a compact metric space (S, d) and a probability distribution θ ∈ P(S).
For each pair 1 ≤ j ≤ k, k ≥ 2, the Markov chain Xθ,j,k = (Xθ,j,k(t), t = 0, 1, 2, . . .) has a unique
stationary distribution πj,k(θ). From any initial point, the variation distance D(t) between πj,k(θ)

and the distribution of Xθ,j,k(t) satisfies

D(2t) ≤ (1− 1/kk−1)t, 1 ≤ t < ∞ (2.1)

and so there is convergence to stationarity in variation distance. Moreover, for π = πj,k(θ)

(θ(A))k ≤ π(A) ≤ kθ(A), A ⊆ S (2.2)

and so π and θ are mutually absolutely continuous.

Note that the bound on variation distance depends only on k.

Proof : First note that for any partition (Bi, 1 ≤ i ≤ k) of S we have∑
i

(θ(Bi))
k ≥ 1/kk−1 (2.3)

because by convexity the sum is minimized when θ(Bi) ≡ 1/k.
We construct the process X(t) = Xθ,j,k(t) in the natural way, by creating i.i.d. θ-distributed

(Y(t) = (Yi(t), 1 ≤ i ≤ k), t ≥ 1) and defining for t ≥ 1

X(t) is the element of (Yi(t), 1 ≤ i ≤ k) attaining the j’th smallest value
of (d(X(t− 1), Yi(t)), 1 ≤ i ≤ k).

In defining the re-ordering to determine “j’th smallest”, we break ties in accordance with the original
i – that is, if d(X(t − 1), Yi1(t)) = d(X(t − 1), Yi2(t)) for i1 < i2 then we put the i1 term before
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the i2 term in the reordering. Because the Yi are i.i.d. this has the same effect as breaking the tie
randomly.

We define the natural coupling (X(t), X ′(t)) of two chains started from arbitrary different states
by using the same realizations of Yi(t) for each chain. We first seek to upper bound the coupling
time T := min{t : X(t) = X ′(t)}. Consider a realization y = (yi, 1 ≤ i ≤ k) of Y(t + 2). This y
induces a partition of S, say (Bi(y), 1 ≤ i ≤ k), where Bi(y) is the set of s ∈ S such that d(s, yi)
is the j’th smallest of (d(s, yu), 1 ≤ u ≤ k), breaking ties as above. The central part of the proof is
the observation that the event {T ≤ t+ 2} includes the event

each component of Y(t+ 1) is in the same set of the partition (Bi(Y(t+ 2)), 1 ≤ i ≤ k). (2.4)

Now Y(t + 1) is independent of Y(t + 2), so we can apply (2.3) to show that event (2.4) has
probability ≥ 1/kk−1. This remains true conditional on (X(t), X ′(t)), and hence conditional on
{X(t) ̸= X ′(t)}, implying that

P(T ≤ t+ 2|T > t) ≥ 1/kk−1.

So inductively
P(T > 2t) ≤ (1− 1/kk−1)t, 1 ≤ t < ∞. (2.5)

This is true for arbitrary initial distributions θ and θ′ ∈ P(S), and so in particular for θ and θ(2),
where θ(t) denotes the distribution of Xθ,j,k(t). So (2.5) bounds the variation distance

||θ(2t+2) − θ(2t)||V D ≤ (1− 1/kk−1)t, 1 ≤ t < ∞
and similarly

||θ(2t+1) − θ(2t)||V D ≤ (1− 1/kk−1)t, 1 ≤ t < ∞.

Now variation distance is a complete metric on P(S), so θ(t) converges in variation distance to
a limit π, and π is a stationary distribution for the kernel Kθ,j,k. Then applying (2.5) to π and
an arbitrary other initial distribution establishes (2.1) and shows that π is the unique stationary
distribution. Then (2.2) follows by considering the first step (X(0), X(1)) of the stationary chain,
because for A ⊂ S

∩i{Yi(1) ∈ A} ⊆ {X(1) ∈ A} ⊆ ∪i{Yi(1) ∈ A}.
□

Remarks. The variation distance bound (2.1) is exponentially decreasing in time, but it is more
natural to consider mixing time in the sense of Levin et al. (2009). The example of the uniform
distribution θ on a 2-point space with j = 1 shows that the mixing time as a function of k can be
order 2k.

The proof of Theorem 2.1 does not say anything about πj,k(θ) except (2.2). We do not know if
there are informative analytic descriptions of πj,k(θ) in terms of θ.

3. Two or 3 points

3.1. Two points – the binomial case. The case of a 2-element space S = {a, b} and general (j, k) is
not completely trivial. Here is an outline – for more details see Aldous et al. (2024).

Parametrizing a distribution θ on S by p := θ(a), we view the mapping πj,k : P(S) → P(S)
as a mapping πj,k : [0, 1] → [0, 1]. From the stationary distribution we find, in terms of binomial
variables,

πj,k(p) =
P(Bin(k, p) > k − j)

P(Bin(k, p) > k − j) + P(Bin(k, p) < j)
.

So a fixed point is a solution of the equation

πj,k(p) = p. (3.1)
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The omnipresent fixed points are p = 0, p = 1/2, p = 1; are there others? By symmetry it is enough
to consider 0 < p < 1/2.

For given (j, k), we observe in Aldous et al. (2024) three possible types of qualitative behavior:
(i) πn

j,k(p) → 0 as n → ∞, for all 0 < p < 1/2.
(ii) πn

j,k(p) → 1/2 as n → ∞, for all 0 < p < 1/2.
(iii) There exists a critical value pcrit ∈ (0, 1/2) which is unstable: that is,

pcrit is invariant
and πn

j,k(p) → 0 as n → ∞, for all 0 < p < pcrit
and πn

j,k(p) → 1/2 as n → ∞, for all pcrit < p < 1/2.
Case (iii) first arises with k = 5, j = 4; then for larger values of k we see one or more values of j
(depending on k) which fit case (iii). For instance, with k = 8 we observe case (i) for 1 ≤ j ≤ 5,
case (iii) for j = 6 with pcrit = 0.26405, and case (ii) for j = 7, 8.

Of course the 2-point space is very special. The occurrence of these “sporadic” case (iii) fixed
points seems much rarer in other spaces.

3.2. Three elements. Here we consider S = {a, b, c} where the three distances are distinct, say

d(a, b) < d(a, c) < d(b, c). (3.2)

Theorem 3.1. If S satisfies (3.2) then there is no π1,2-invariant distribution except the omnipresent
ones.

Proof : It is enough to prove that there is no invariant distribution θ = (θa, θb, θc) with each term
strictly positive. So suppose, to get a contradiction, such θ exists.

Take Y, Y1, Y2 independent with distribution θ. Invariance says that the random variable X
defined as

X =Y1 if d(Y, Y1) < d(Y, Y2)

=Y2 if d(Y, Y2) < d(Y, Y1)

will also have distribution θ. Writing out the ways that X can be c or b or a gives the equations

θc =θc(1− (1− θc)
2) + θbθ

2
c + θaθ

2
c

θb =θcθ
2
b + θb(1− (1− θb)

2) + θa(θ
2
b + 2θbθc)

θa =θc(θ
2
a + 2θaθb) + θb(θ

2
a + 2θaθc) + θa(1− (1− θa)

2).

Because each term of θ is strictly positive, we can cancel the common terms to get

1 =1− (1− θc)
2 + (1− θc)θc (3.3)

1 =θcθb + (1− (1− θb)
2) + θa(θb + 2θc) (3.4)

1 =θc(θa + 2θb) + θb(θa + 2θc) + 1− (1− θa)
2).

Equation (3.3) reduces to 2θ2c − 3θc + 1 = 0 with solutions θc = 1 or 1/2. The solution with θc = 1
is excluded by supposition, so we must have θc = 1/2. Now we have θa = 1/2 − θb; inserting into
(3.4), the equation reduces to 2θ2b − 2θb +

1
2 = 0 with solution θb =

1
2 . So θa = 0, contradicting the

supposition. □ □

Theorem 6.1 establishes a more general result, but we have given the simpler proof above to
demonstrate the style of “proof by contradiction” to be used later.
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4. The k = 2 case.

Theorem 4.1. For every compact metric space S, the set of invariant distributions for π1,2 is the
same as the set of invariant distributions for π2,2.

Proof : Given θ ∈ P(S), the transition kernel K = Kθ,1,2 for π1,2 can be written as a Radon-Nikodym
density w.r.t. θ as follows.2

dK(x, ·)
dθ(·)

(y) =2θ{z : d(x, z) > d(x, y)}+ θ{z : d(x, z) = d(x, y)}

=

∫
(2 · 1{z:d(x,z)>d(x,y)} + 1{z:d(x,z)=d(x,y)})θ(dz).

So the identity θ = θK characterizing a π1,2-invariant distribution θ can be written in density form
as

1 =

∫
θ(dx)

dK(x, ·)
dθ(·)

(y)

=

∫ ∫
(2 · 1{z:d(x,z)>d(x,y)} + 1{z:d(x,z)=d(x,y)})θ(dz)θ(dx) (4.1)

where the equality holds for θ-a.a. y. Because

1 =

∫ ∫
1 θ(dz)θ(dx)

=

∫ ∫
(1{z:d(x,z)>d(x,y)} + 1{z:d(x,z)=d(x,y)} + 1{z:d(x,z)<d(x,y)}) θ(dz)θ(dx)

we have from (4.1) that∫ ∫
1{z:d(x,z)>d(x,y)} θ(dz)θ(dx) =

∫ ∫
1{z:d(x,z)<d(x,y)} θ(dz)θ(dx). (4.2)

Analogous to (4.1), the identity characterizing a π2,2-invariant distribution ϕ can be written as

1 =

∫ ∫
(2 · 1{z:d(x,z)<d(x,y)} + 1{z:d(x,z)=d(x,y)})ϕ(dz)ϕ(dx). (4.3)

By (4.1) and (4.2), any π1,2-invariant distribution θ satisfies (4.3) and is therefore a π2,2-invariant
distribution. The converse holds via the analog of (4.2) for ϕ. □

5. The case S = [0, 1]

Numerical study in Aldous et al. (2024) suggests that there are no invariant distributions on [0, 1]
with full support, for any (j, k). Theorem 5.1 proves a slightly stronger result in the case k = 2
(recall that by Theorem 4.1 the cases j = 1 and j = 2 here are identical). The stronger form is
not true for general (j, k), for instance the uniform distribution on the 4 points {0, 0.4, 0.6, 1} is
invariant for π3,4.

Theorem 5.1. There are no π2,2-invariant distributions on [0, 1] other than those of the form δs
or δs1,s2.

By considering the endpoints of the support of an invariant distribution, and scaling, this reduces
to proving

equivalent assertion: The only π2,2-invariant distribution on [0, 1] whose support
contains both 0 and 1 is the distribution δ0,1.

2In a step from x with sampled Y1, Y2, to jump to y we need (Y1 = y, d(Y2, x) > d(x, y)) or (Y2 = y, d(Y1, x) >
d(x, y)) or Y1 = Y2 = y.
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We will prove this in two steps.

Lemma 5.2. There is no π2,2-invariant distribution whose support contains 0 and which assigns
zero weight to the point 0.

Proof : For a proof by contradiction, suppose such an invariant distribution θ exists. Take Y, Y1, Y2
independent with distribution θ. Invariance says that the random variable X defined as

X =Y2 if |Y − Y1| < |Y − Y2|
=Y1 if |Y − Y2| < |Y − Y1|

(with our usual convention about ties) will also have distribution θ. Fix 0 < x < 1. From the
definition we have the inclusion of events

{X ≤ x} ⊆ A1 ∪A2 ∪A3

where

A1 :={Y1 ≤ x, Y2 ≤ x}
A2 :={Y1 ≤ x, Y2 > x, Y ≥ 1

2(Y1 + Y2)}
A3 :={Y2 ≤ x, Y1 > x, Y ≥ 1

2(Y1 + Y2)}

and the (Ai) are disjoint. Now note that

A2 ⊆ {Y1 ≤ x, Y ≤ 1
2(x+ Y2)}

and similarly for A3. So by independence, the distribution function F of θ satisfies

F (x) ≤ F 2(x) + 2F (x)P(Y ≤ 1
2(x+ Y2)). (5.1)

By hypothesis, F (x) > 0 for small x > 0 and F (x) ↓ 0 as x ↓ 0. So we can divide both sides of (5.1)
by F (x) and take limits as x ↓ 0 and deduce

P(Y ≤ 1
2Y2) ≥

1
2 .

By symmetry we also have P(Y2 ≤ 1
2Y ) ≥ 1

2 , and so

P(12Y < Y2 < 2Y ) = 0.

But this is impossible for i.i.d. samples from a distribution θ on (0, 1], because it would remain true
for θ conditioned on an interval of the form [y, 3y/2]. □

Using Lemma 5.2 and reflection-symmetry of [0, 1], to prove the equivalent assertion and hence
Theorem 5.1 it will be sufficient to prove

Lemma 5.3. If θ is a π2,2-invariant distribution and θ0 > 0, θ1 > 0 then θ = δ0,1.

Here we write θs for θ({s}).

Proof : First note an elementary fact:

if 0 < x < 1 and β ≥ 0 and x ≥ x2 + 2x(1− x)β then β ≤ 1/2. (5.2)
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Figure 6.1. A BTL space S with |S| = 7.

From the construction with (Y, Y1, Y2, X) we have

θ0 =θ20 + 2P(Y1 = 0, Y2 > 0, Y > Y2/2) + P(Y1 = 0, Y2 > 0, Y = Y2/2)

=θ20 + 2θ0(P(2Y > Y2, Y2 > 0) + 1
2P(2Y = Y2, Y2 > 0))

=θ20 + 2θ0(1− θ0)(P(2Y > Y2|Y2 > 0) + 1
2P(2Y = Y2|Y2 > 0))

≥θ20 + 2θ0(1− θ0)(P(Y > 1/2) + P(Y = 1/2, Y2 < 1|Y2 > 0) + 1
2P(Y = 1/2, Y2 = 1|Y2 > 0))

(5.3)

=θ20 + 2θ0(1− θ0)(P(Y > 1/2) + θ1/2 [P(Y2 < 1|Y2 > 0) + 1
2P(Y2 = 1|Y2 > 0)])

=θ20 + 2θ0(1− θ0)(P(Y > 1/2) + θ1/2 [12 + 1
2P(Y2 < 1|Y2 > 0)])

≥θ20 + 2θ0(1− θ0)(P(Y > 1/2) + 1
2P(Y = 1/2)). (5.4)

By hypothesis θ0 > 0, so by (5.2) we have P(Y > 1/2) + 1
2P(Y = 1/2) ≤ 1/2. However we have the

analogous sequence of equalities and inequalities for θ1, which imply P(Y < 1/2) + 1
2P(Y = 1/2) ≤

1/2, and so we must have

P(Y > 1/2) + 1
2P(Y = 1/2) = 1/2 = P(Y < 1/2) + 1

2P(Y = 1/2).

The quantity (5.4) now equals θ0, so the inequalities at (5.3) and (5.4) must in fact be equalities.
In order for the inequality leading to (5.4) to be an equality, we must have either θ1/2 = 0 or
P(Y2 < 1|Y2 > 0) = 0. In the latter case, θ is supported on {0, 1} and so θ = δ0,1, as desired. So the
remaining case is θ1/2 = 0. In this case, for the inequality leading to (5.3) to be an equality, we must
have P(Y2 < 2Y, Y < 1/2|Y2 > 0) = 0. But, as at the end of the proof of Lemma 5.2, this can only
happen if P(0 < Y < 1/2) = 0. By the analogous argument for θ1 we have P(1/2 < Y < 1) = 0,
and so the distribution is supported on {0, 1} and must be δ0,1, as desired. □

This line of argument can be extended to some other values of (j, k) – see Aldous et al. (2024).

6. A class of tree spaces

In this section we consider binary3 tree leaves (BTL), illustrated in Figure 6.1, as a class of finite
spaces. Here S is the finite set of leaves; the edges have lengths which serve to determine the

3Essentially the same argument works without the binary assumption.
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distance between two leaves as the length of the unique path between them; the edges also define
|S| − 2 branchpoints. To “break symmetry” we assume

all distances (d(si, sj), j ̸= i) are distinct. (6.1)

We claim that, as suggested by the general picture from numerics, for k = 2 there are no invariant
measures other than the omnipresent ones. An invariant measure supported on a subset of leaves is
an invariant measure on the induced spanning tree of that subset, so to prove that claim it suffices
to prove

Theorem 6.1. On a BTL space S with |S| ≥ 3 and satisfying (6.1), and for k = 2, there are no
invariant measures with full support.

Proof : As in previous proofs, consider a π1,2 - invariant distribution θ with full support on S, where
|S| ≥ 3. Take Y0, Y1, Y2 independent with distribution θ. Invariance says that the random variable
X defined as

X =Y1 if d(Y0, Y1) < d(Y0, Y2)

=Y2 if d(Y0, Y2) < d(Y0, Y1) (6.2)

will also have distribution θ. We proceed to a proof by contradiction.
We quote an elementary fact.

Lemma 6.2. For any probability distribution θ on a BTL space S, either
(i) θ(s0) >

1
2 for some s0 ∈ S

or (ii) there exists a centroid, that is a branchpoint such that the associated partition S = ∪3
i=1Ai

of leaves satisfies 0 < θ(Ai) ≤ 1
2 for all i.

Consider case (i). That is, suppose θ is invariant and θ(s0) ∈ (12 , 1). From the invariance relation
(6.2), in order that X = s0 it is sufficient that

(Y0 ̸= s0, Y1 = s0, Y2 = s0) or (Y0 = s0, Y1 or Y2 = s0).

So, setting θ(s0) = x ∈ (12 , 1),
x ≥ (1− x)x2 + x(2x− x2).

Cancelling x, this reduces to 2x2 − 3x+ 1 ≥ 0, but this inequality is false for x ∈ (12 , 1).
Now consider case (ii). There is a centroid branchpoint defining a partition S = ∪3

i=1Ai. Consider
the leaf s1 which is closest to the centroid. We may assume s1 ∈ A1. From the invariance relation
(6.2), in order that X = s1 it is sufficient that the following condition (*) holds:

exactly one of (Y1, Y2) equals s1
and
Y0 and the other4 Y are in different components of ∪3

i=1Ai.
For instance, if Y0 ∈ A2 and Y1 = s1 and Y2 ∈ A3, then Y2 is some leaf in A3 which is farther from
the centroid than is s1, so d(Y0, s1) < d(Y0, Y2). The other possibilities are similar.

By considering the three possibilities for “ different components of ∪3
i=1Ai” we see that the

probability of (*) equals θ(s1) times

2θ(A1)θ(A2) + 2(θ(A1)− θ(s1))θ(A2)

+2θ(A1)θ(A3) + 2(θ(A1)− θ(s1))θ(A3)

+4θ(A2)θ(A3)

which rearranges to

θ(s1)[4(θ(A1)θ(A2) + θ(A1)θ(A3) + θ(A2)θ(A3))− 2θ(s1)(θ(A2) + θ(A3))]

4The leaf from (Y1, Y2) that is not s1.
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= θ(s1) ·B, say. (6.3)
A disjoint sufficient condition for X = s1 is that Y1 = Y2 = s1, which has probability θ2(s1). So

θ(s1) = P(X = s1) ≥ θ(s1)(B + θ(s1)).

Cancelling the θ(s1) term,

1 ≥ 4(θ(A1)θ(A2) + θ(A1)θ(A3) + θ(A2)θ(A3))− 2θ(s1)(θ(A2) + θ(A3)− 1
2).

Because
∑

i θ(Ai) = 1 we have θ(A2) + θ(A3)− 1
2 = 1

2 − θ(A1) and

2(θ(A1)θ(A2) + θ(A1)θ(A3) + θ(A2)θ(A3)) = 1−
∑
i

θ2(Ai)

and the inequality above reduces to

1 ≥ 2− 2
∑
i

θ2(Ai)− 2θ(s1)(
1
2 − θ(A1)).

Because θ(s1) ≤ θ(A1), this implies

C :=
∑
i

θ2(Ai) + θ(A1)(
1
2 − θ(A1)) ≥ 1

2 . (6.4)

We need to show that C ≥ 1
2 cannot in fact occur under the constraints 0 < P (Ai) ≤ 1

2 and∑
i θ(Ai) = 1. Given θ(A1) = x, the quantity C is maximized when (θ(A2), θ(A3)) = (12 ,

1
2 −x) and

so
C ≤ x2 + 1

4 + (12 − x)2 + x(12 − x) = x2 − 1
2x+ 1

2 .

This implies that C < 1
2 on the open interval x ∈ (0, 12), and we cannot have x = 0 or 1

2 by the
θ(Ai) > 0 constraint. □
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