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Abstract. Tempered stable distributions are frequently used in financial applications (e.g., for
option pricing) in which the tails of stable distributions would be too heavy. Given the non-explicit
form of the probability density function, estimation relies on numerical algorithms which typically
are time-consuming. We compare several parametric estimation methods such as the maximum
likelihood method and different generalized method of moment approaches. We study large sam-
ple properties and derive consistency, asymptotic normality, and asymptotic efficiency results for
our estimators. Additionally, we conduct simulation studies to analyze finite sample properties
measured by the empirical bias, precision, and asymptotic confidence interval coverage rates and
compare computational costs. We cover relevant subclasses of tempered stable distributions such
as the classical tempered stable distribution and the tempered stable subordinator. Moreover, we
discuss the normal tempered stable distribution which arises by subordinating a Brownian motion
with a tempered stable subordinator. Our financial applications to log returns of asset indices and
to energy spot prices illustrate the benefits of tempered stable models.

1. Introduction

We discuss parametric estimation methods for some well-known subclasses of tempered stable
distributions. Estimation relies heavily on numerical methods as the probability density function
is not given in closed form. This paper aims to compare available estimation methods both from
an analytical as well as from a practical point of view.

Tempered stable distributions are relevant from both a theoretical perspective and in the con-
text of financial applications. Since tempered stable distributions are infinitely divisible, they can
be used as the underlying marginal distribution for tempered stable Lévy processes. They arise
by tempering the Lévy measure of stable distributions with a suitable tempering function. Tem-
pered stable distributions were introduced in Koponen (1995), where the associated Lévy process
was called smoothly truncated Lévy flight, which itself is a generalization of Tweedie distribu-
tions Tweedie (1984). Since then, tempered stable distributions have been generalized in several
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directions by mainly generalizing the class of tempering functions. Rosiński (2007) and Rosiński
and Sinclair (2010) present a general framework for tempered stable distributions which contain
the parametric subclasses to be considered in this paper. Further developments are surveyed in
Grabchak (2016b).

The three subclasses we consider in this paper are the tempered stable subordinator (a one-sided
distribution with finite variation), the classical tempered stable distribution (with the classical ex-
ponential tempering), and the normal tempered stable distribution (which is a normal-variance
mixture with a tempered stable subordinator). The CGMY distribution Carr et al. (2002) is a
well-known special case of the classical tempered stable distribution which was introduced to model
log-returns of stock prices. Tempered stable distributions have frequently been used for financial
applications Kim et al. (2008); Rachev et al. (2011); Fallahgoul and Loeper (2021). Furthermore,
Kim et al. (2008) and Küchler and Tappe (2014) propose using tempered stable distributions for
option pricing because the tails of these distributions are not too heavy for modeling financial
returns (contrary to stable distributions). Besides financial applications, tempered stable distrib-
utions have been used for many other domains, for example for modeling cell generation Palmer
et al. (2008), internet traffic Terdik and Gyires (2008), and solar-wind velocity Bruno et al. (2004).

Estimation methods for generalized tempered stable distributions are still an active area of
research. We compare various well-established estimation methods in the literature. The first is the
traditional maximum likelihood (ML) method, which works by numerical optimization and Fourier
inversion, see Kim et al. (2008); Rachev et al. (2011). Grabchak (2016a) proves strong consistency
of the maximum likelihood estimator (MLE). Küchler and Tappe (2013) propose moment methods
which are easier and faster than the MLE. We also use the generalized method of moments estimator
by Feuerverger and McDunnough (1981) that is based on empirical characteristic functions and the
generalized method of moments on a continuum of moment conditions by Carrasco and Kotchoni
(2017). The latter method already turned out to be useful in estimating stable distributions, see
Garcia et al. (2011). Further available methods include the method of simulated quantiles Dominicy
and Veredas (2013); Fallahgoul et al. (2019), and non- or semiparametric methods Belomestny and
Reiß (2015); Figueroa-López et al. (2022).

This paper contributes to the literature in three ways. First, we derive asymptotic theory for
the ML method and the generalized method of moments for the three classes of tempered stable
distributions. More precisely, we prove asymptotic efficiency and asymptotic normality of the
estimators by verifying a set of sufficient conditions. Second, we compare finite sample properties
of the estimators in a Monte Carlo study. Third, we illustrate that tempered stable distributions
are more suitable in financial applications than stable distributions because the tails of the latter
are too heavy. For this, we study log-returns of three financial time series namely the S&P 500,
the German DAX, and the German EEX electricity spot prices.

The remainder of this paper is organized as follows. Section 2 presents formal definitions and
properties of tempered stable distributions and some of their important subclasses. Section 3
discusses the estimation strategies and states their general asymptotic results. Section 4 contains
our theoretical results. All proofs are relegated to the appendix. In Section 5 we conduct a
simulation study to analyze finite sample properties. We discuss financial applications in Section
6. Section 7 concludes.

2. Tempered stable distributions

To establish notation, we describe some general properties of tempered stable distributions and
the considered special cases in this paper. Sato (1999, Section 8) compares different versions of
the Lévy-Khintchine representation to uniquely describe distributions of infinitely divisible random
variable X. In this paper, we make use of two of these versions. In our setting, it depends on
the index of stability parameter α ∈ (0, 2) which version is being used. The first version describes



Parametric Estimation of Tempered Stable Laws 1569

infinitely distributions by the characteristic triple (µ, σ2,Π)1, such that

E
[
eitX

]
= exp

(
itµ− 1

2σ
2t2 +

∫
R

(
eitr − 1 − itr

)
Π(dr)

)
, (2.1)

where µ ∈ R, σ ≥ 0, and Π is a measure on R called Lévy measure satisfying Π({0}) = 0 and∫
R

(|r|2 ∧ |r|)Π(dr) < ∞,

which ensures that Π is σ-finite. We use this characterization in the case of α ∈ (1, 2).
The second decomposition is characterized by the triple (µ0, σ

2,Π)0, such that

E
[
eitX

]
= exp

(
itµ0 − 1

2σ
2t2 +

∫ ∞

0

(
eitr − 1

)
Π(dr)

)
. (2.2)

µ0 is called drift and Π is the Lévy measure, as long as µ0 ≥ 0 and
∫∞

0 (r ∧ 1)Π(dr) < ∞. We use
this characterization for α ∈ (0, 1). We omit to give a parametrization which covers the case α = 1
and refer to Sato (1999, Section 8)

A subordinator is a one-dimensional, (a.s.) non-decreasing Lévy process. For subordinators we
use the decomposition (µ0, σ

2,Π)0, where Π((−∞, 0]) = 0. Although formally there is a difference
between stochastic processes and distributions, we will for simplicity refer to the distribution of
this subordinator process at time 1 as a subordinator as well. Throughout this paper, when we
talk about Lévy processes we are mainly interested in the characterizing distribution at time 1.

Important special cases are so-called stable (or α-stable) Lévy processes (see Sato (1999) or
Nolan (2020)). One-dimensional stable processes are characterized by the Lévy measure

M(dr) =
(
δ+
r1+α

1(0,∞)(r) + δ−
|r|1+α

1(−∞,0)(r)
)

dr,

with α ∈ (0, 2), where α is called the index of stability, and δ+, δ− ≥ 0 s.t. (δ+, δ−) ̸= (0, 0). We
call ρ = δ+−δ−

δ++δ−
∈ [−1, 1] the skewness parameter.

Tempered stable distributions arise by tempering the Lévy measure of a stable distribution by a
tempering function. The Lévy measure is

Q(dr) =
(
δ+q(r,+1)
r1+α

1(0,∞)(r) + δ−q(|r|,−1)
|r|1+α

1(−∞,0)(r)
)

dr

where q : (0,∞) × {±1} → (0,∞) is a Borel function. Rosiński (2007) considered the case where
q(·, u) is completely monotone with limr→∞ q(r, u) = 0 for each u ∈ {±1}, i.e., (−1)n ∂n

∂rn q(r, u) > 0
for all r > 0, u ∈ {±1}, n ∈ N0. It is called a proper tempered stable distribution if, in addition,
limr↓0 q(r, u) = 1 for u ∈ {±1}. Proper tempered stable distributions follow the initial motivation
by modifying the tails of stable distributions to make them lighter. Rosiński and Sinclair (2010)
generalize tempered stable distributions by relaxing the complete monotonicity assumption and
allowing q to only converge in a certain sense to some non-negative function g (see Rosiński and
Sinclair (2010) for details). A number of parametric forms for q have been proposed in the literature,
see Rachev et al. (2011) for some examples. In this paper, we mainly focus on the exponential (or
classical) tempering function where we apply an exponentially decreasing function. See the next
subsections for details. For both stable and tempered stable distributions, the Gaussian term σ2 is
zero.

2.1. Tempered stable subordinator. The first special case we discuss is the tempered stable subor-
dinator (TSS). It is constructed from the stable subordinator which is a non-negative, increasing
Lévy process with α-stable marginals. In this case, the stability parameter α needs to be in (0, 1).
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Considering the characterization (2.2) with parametrization (µ0, σ
2,Π)0, the Lévy measure of a

stable subordinator is
δ

r1+α
1(0,∞)(r)dr,

where δ > 0 is a scale parameter, and the drift µ0 and σ2 are zero. For exponential tempering, the
Lévy measure of the TSS distribution is given by

QT SS(dr) = e−λrδ

r1+α
1(0,∞)(r)dr, (2.3)

where λ > 0 is the tempering parameter.
Let Y ∼ TSS(α, δ, λ) be a TSS distributed random variable defined on R+. Using (2.3) it is

possible to derive the characteristic function of the TSS distribution. See Küchler and Tappe (2013,
Lemma 2.5), for a proof of

φT SS(t; θ) := Eθ

[
eitY

]
= exp

(
δΓ(−α)

(
(λ− it)α − λα)) , (2.4)

with parameter vector θ = (α, δ, λ), where the power stems from the main branch of the complex
logarithm. Eθ is the expectation operator w.r.t. the data generating process indexed by θ.

The probability density function of tempered stable distributions is generally not available in
closed form. For the density of the TSS distribution we can make use of the identity

fT SS(y; θ) = e−λy−λαδΓ(−α)fS(α,δ)(y), (2.5)

see Kawai and Masuda (2011, eq. (2.6)). S(α, δ) denotes the distribution of the α-stable subor-
dinator with scale parameter δ and fS(α,δ)(y) denotes its density. Both fT SS(y; θ) and fS(α,δ)(y)
are only defined on R+. fS(α,δ)(y) is (except for a few special cases) not available in closed form.
However, many software packages (like the stabledist or Tweedie packages in R) have fast com-
putation routines based on series or integral representations. Combining such series representation
with (2.5), we obtain a series representation for the TSS distribution

fT SS(y; θ) = e−λy−λαδΓ(−α) −1
π

∞∑
k=1

(−1)k

k! Γ(1 + αk)Γ(1 − α)k

(
δ

α

)k

y−(1+αk) sin(απk), (2.6)

see Bergström (1952); Nolan (2020).
The estimation method in Section 3.3 makes use of matching theoretical with empirical cumu-

lants. Therefore, we state the cumulant generating function of the TSS distribution

ψT T S(t; θ) = δΓ(−α)
(
(λ− t)α − λα) ,

for t ≤ λ, derived in Küchler and Tappe (2013). Thus, the m-th order cumulants κm = dm

dtmψ(t)
∣∣∣
t=0

are given by

κm = Γ(m− α) δ

λm−α
, m ∈ N. (2.7)

Simulation, which we need in the Monte Carlo study, of TSS distributed random variates is
straightforward by an acceptance-rejection algorithm, i.e., we first generate U ∼ U(0, 1) and V ∼
S(α, δ). If U ≤ e−λV we set Y := V , otherwise we repeat the first step, see Kawai and Masuda
(2011). See Hofert (2011) for the more efficient double rejection method. For the generation of
stable random numbers see, e.g., Nolan (2020).
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2.2. Centered and totally positively skewed tempered stable distribution. Closely related to the TSS
distribution is the centered and totally positively skewed tempered stable distribution TS′(α, δ, λ)
which is defined by its characteristic function

exp
(∫

R+

(
eitr − 1 − itr

) e−λrδ

r1+α
dr
)

= exp
(
δΓ(−α)

(
(λ− it)α − λα + itαλα−1

))
,

for α ∈ (0, 2), where the power stems from the main branch of the complex logarithm. Note that
here we use the characterization (2.1) with parametrization (µ, σ2,Π)1 instead of (2.2) although the
Lévy measure e−λrδ

r1+α dr is the same. For α ∈ (0, 1), we have the relation that if Y ∼ TSS(α, δ, λ),
then Y − δΓ(1 − α)λα−1 ∼ TS′(α, δ, λ). In particular,

fT S′(y;α, δ, λ) = fT SS(y − Γ(1 − α)δλα−1;α, δ, λ).

For α ∈ (0, 1) ∪ (1, 2), we additionally have

fT S′(y;α, δ, λ) = e−λy−λαδ(α+1)Γ(−α)fS(α,δ)(y − Γ(1 − α)δλα−1), (2.8)

where S(α, δ) is the totally positively skewed stable distribution with Lévy measure
δr−α−11(0,∞)(r)dr and characteristic function

exp
(

−δΓ(1 − α)
α

cos(πα/2)|t|α
(
1 − i tan(πα/2)sgn(t)

))
,

which is the same as the stable subordinator if α ∈ (0, 1). Note that for α ∈ (0, 1) the TS’
distribution is defined on (Γ(1 − α)δλα−1,∞) instead of R+ as for the TSS distribution. This in
fact makes classical asymptotic theory for the MLE infeasible and we only use the distribution as
a tool for proving results about CTS distributions to be defined in Subsection 2.3. For α ≥ 1, the
TS’ distribution is defined on R.

Simulation of totally positively skewed tempered stable random variables is more involved than
for the subordinator as the simple acceptance-rejection does not work for α ∈ (1, 2). Kawai and
Masuda (2011) present several remedies, e.g., a truncated series representation by Rosiński (2001).
We opt for the simulation approach of Baeumer and Meerschaert (2010), i.e., using an approximate
acceptance-rejection algorithm which works as follows: first fix a number c > 0. Second, simulate
U ∼ U(0, 1) and V ∼ S(α, δ). If U ≤ e−λ(V +c) we set Y := V − Γ(1 −α)δλα−1, otherwise we return
to the second step. The algorithm is not exact, i.e., Y ≁ TS′(α, δ, λ). The number c controls the
degree of approximation and also the acceptance rate. For too small c, the approximation might
not be sufficient. For large c, the approximation improves; yet, the acceptance probability decreases
and therefore the runtime elongates.

2.3. Classical tempered stable distribution. Next, we discuss one-dimensional classical tempered
stable (CTS) distributions. They are defined by their Lévy measure

QCT S(dr) =
(

e−λ+rδ+
r1+α

1(0,∞)(r) + e−λ−|r|δ−
|r|1+α

1(−∞,0)(r)
)

dr

in representation (2.1) with parametrization (µ, σ2,Π)1. α ∈ (0, 2) is the stability parameter,
δ+, δ− > 0 are scaling parameters, λ+, λ− > 0 are tempering parameters and µ is a location
parameter. The indices + and − refer to the positive and negative parts of the distribution
(centered around µ). We collect all parameters in the vector θ = (α, δ+, δ−, λ+, λ−, µ). Note that
for the CTS distribution the parameter vector θ is different than for the TSS distribution.
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Let X ∼ CTS(α, δ+, δ−, λ+, λ−, µ), which is a distribution on R. The characteristic function is
given by

φCT S(t; θ) := Eθ

[
eitX

]
= exp

(
itµ+ δ+Γ(−α)

(
(λ+ − it)α − λα

+ + itαλα−1
+

)
(2.9)

+δ−Γ(−α)
(
(λ− + it)α − λα

− − itαλα−1
−

))
,

for all θ ∈ (0, 2) × (0,∞)4 × R such that α ̸= 1. When α = 1, for θ1 = (1, δ+, δ−, λ+, λ−, µ) the
characteristic function of the CTS distribution has the form

φCT S(t; θ) = exp
(
itµ+ δ+

(
(λ+ − it) log(1 − it/λ+) + it

)
+δ−

(
(λ− + it) log(1 + it/λ−) − it

))
.

Note that the characteristic function and the density function are continuous in α ∈ (0, 2).
As for the TSS distribution, the density function of the CTS distribution does not exist in closed

form. Crucially, even a simple relationship with a stable density as for the TSS distribution in (2.5)
is not available. For numerical evaluations it is therefore necessary to rely on algorithms like the
fast Fourier transform Brigham (FFT, see 1988) applied to the characteristic function (2.9).

As for the TSS distribution, we specify the cumulant generating function

ψCT S(t; θ) = tµ+ δ+Γ(−α)
(
(λ+ − t)α − λα

+ + tαλα−1
+

)
(2.10)

+ δ−Γ(−α)
(
(λ− + t)α − λα

− − tαλα−1
−

)
,

for t ∈ [−λ−, λ+]. We use theoretical cumulants for cumulant matching below. The m-th order
cumulants can be derived from (2.10) and take the form

κm = Γ(m− α) δ+

λm−α
+

+ (−1)mΓ(m− α) δ−

λm−α
−

, (2.11)

for m ≥ 2 and κ1 = µ.
CTS distributed random variables can be constructed from totally positively skewed tempered

stable random variables in the following way. Let Y+ ∼ TS′(α, δ+, λ+) and Y− ∼ TS′(α, δ−, λ−)
be independent and µ ∈ R. Then

X := Y+ − Y− + µ ∼ CTS(α, δ+, δ−, λ+, λ−, µ). (2.12)

2.4. Normal tempered stable distribution. Another model that is often used in financial applications
is the normal tempered stable (NTS) distribution. It is constructed as a classical normal variance
mixture, see Barndorff-Nielsen and Shephard (2001). For this, let Y ∼ TSS(α, δ, λ), with (α, δ, λ) ∈
(0, 1) × (0,∞)2. Let B ∼ N(0, 1) be independent of Y and ρ, µ ∈ R. Set

Z =
√
Y B + βY + µ. (2.13)

Then, Z is NTS(θ) distributed, where for this case θ = (α, β, δ, λ, µ). We can also obtain the
NTS distribution by tempering a stable distribution. The corresponding tempering function can
be found in Rachev et al. (2011, Table 3.4). Note that the tempering function is not completely
monotone but it is in the class of generalized tempered stable distributions of Rosiński and Sinclair
(2010).

For our parametrization, the characteristic function now takes the form

φNT S(t; θ) = Eθ

[
eitZ

]
= exp

(
itµ+ δΓ(−α)

(
(λ− itβ + t2/2)α − λα

))
, (2.14)
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where the power stems from the main branch of the complex logarithm. As for the CTS distribution,
the density function is not available in closed form and numerical computation relies on numerical
methods such as FFT.

In this case the cumulants do not have an easy pattern as for the other examples and so we omit
them. We also do not propose a cumulant matching estimation method here.

Simulation of NTS distributed random variables is easy given independent TSS and standard
normal random variables by invoking (2.13).

3. Estimation Methods

This section discusses some parametric estimation strategies available in the literature. We apply
these to the tempered stable distributions considered above and derive asymptotic efficiency and
normality in the next section. In this section, we briefly present the methods and some known
general asymptotic results. Throughout this section let X be a random variable following one of
the tempered stable distributions of Section 2 and let f(x; θ) denote its density function, depending
on the parameter vector θ. Also, denote by φθ(t) its characteristic function. Let θ0 be the unknown
true parameter vector. In this paper, we only consider the case of an i.i.d. sample X1, . . . , Xn with
density function f(x; θ0).

3.1. Maximum likelihood estimation. Maximum likelihood estimation is standard in the literature
and frequently used, for example in Kim et al. (2008). We numerically maximize the log-likelihood
function

ℓn(θ) =
n∑

j=1
log f(Xj ; θ)

with respect to θ to find the MLE

θ̂n,ML = arg max
θ∈Θ

ℓ(θ).

As described in the preceding section, the density functions of our distributions are not available
in closed form but either via a series representation (TSS) or via the Fourier inversion (CTS and
NTS)

f(x; θ) = 1
2π

∫
R

e−itxφθ(t)dt (3.1)

based on the characteristic function φθ(t), which is feasible because (2.9) and (2.14) are integrable.
In practice, we use the FFT algorithm to approximate (3.1).

Among others, Newey and McFadden (1994, Theorem 3.3) (which we here follow) proved the lim-
iting behavior of the maximum likelihood estimator as given in Proposition 3.2 under the following
assumption.

Assumption 3.1.
(i) θ̂n,ML is consistent for θ0.
(ii) θ0 is an interior point of Θ which is compact.
(iii) f(x; θ) is twice continuously differentiable in θ in a neighborhood N around θ0 and the support
of f is equal to the entire domain D and does not depend on θ.

(iv)
∫

D supθ∈N

∣∣∣∣∣∣∣∣∂f(x;θ)
∂θ

∣∣∣∣∣∣∣∣dx < ∞,
∫

D supθ∈N

∣∣∣∣∣∣∣∣∂2f(x;θ)
∂θ∂θ′

∣∣∣∣∣∣∣∣dx < ∞, with N as in (iii).

(v) Iθ0 = Eθ0

[(
∂ log f(X;θ)

∂θ

) (
∂ log f(X;θ)

∂θ

)′
]∣∣∣∣∣

θ=θ0

is positive definite.

(vi) Eθ0

[
supθ∈N

∣∣∣∣∣∣∣∣∂2 log f(X;θ)
∂θ∂θ′

∣∣∣∣∣∣∣∣
]
< ∞, with N as in (iii).
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The norm || · || for vectors is the usual Euclidean norm and for matrices the Frobenius norm
(which can be seen as an Euclidean norm for matrices). Some other references for asymptotic
normality results under different sets of assumptions are Cramér (1946) or Le Cam (1956).

The stated form of (iii) is slightly different than (ii) in Newey and McFadden (1994, Theorem
3.3) who require the density to be positive for all x ∈ R. We use the relaxed assumption here
because by nature subordinators have no positive density for negative x. This relaxation, however,
is still within the scope of Newey and McFadden (1994) because their assumption implies the more
general requirement of Newey and McFadden (1994, Theorem 3.1) that the objective function for
maximization 1

n

∑n
j=1 log f(xj , n) is twice continuously differentiable in a neighborhood N of θ0.

This also holds for (iii) above. The essential point is that the density is that the support does not
depend on θ which rules out the TS’ distribution for α < 1.

We remark that we only need to assume the existence of one neighborhood N . It is not necessary
that (iii), (iv) and (vi) hold for any neighborhood around θ0.

Proposition 3.2. Under Assumption 3.1, θ̂n,ML is consistent and

n1/2(θ̂n,ML − θ0) L→ N(0, I−1
θ0

),

as n → ∞, where I−1
θ0

denotes the inverse of the Fisher information matrix (which exists due to
Assumption 3.1(v)).

3.2. Generalized Method of Moments. The generalized method of moments (GMM) by Hansen
(1982) is suitable for estimating tempered stable laws. One approach to define moment conditions
is to use the theoretical characteristic function φθ(t) of X. The sample analogue for the realizations
{Xj}j=1,...,n is

φ̂n(t) = 1
n

n∑
j=1

eitXj .

We form moment conditions
Eθ0

[
h(t,Xj ; θ)

]
= 0

for all t ∈ R, where
h(t,Xj ; θ) = eitXj − φθ(t). (3.2)

The sample analogue is denoted by

ĥn(t; θ) = 1
n

n∑
j=1

h(t,Xj ; θ) = φ̂n(t) − φθ(t).

We now review some approaches on how to choose a set of t’s to obtain appropriate moment
conditions. One way is to choose a finite grid {t1, . . . , tR} ⊂ R, where R denotes the grid size.
Given the grid, we define a vector-valued function g(Xj ; θ) =

(
h(t1, Xj ; θ), . . . , h(tR, Xj ; θ)

)T. We
then minimize the objective function 1

n

n∑
j=1

g(Xj ; θ)

′

Ŵ

 1
n

n∑
j=1

g(Xj ; θ)


in θ, where we choose Ŵ = Ω̂−1 so that the asymptotic variance is optimal. Feuerverger and
McDunnough (1981) show that the asymptotic variance of the estimator can be made arbitrarily
close to the Cramér-Rao bound by selecting the grid sufficiently fine. However, as argued by
Carrasco and Kotchoni (2017), the grid size R must not be larger than the sample size. Otherwise,
the problem becomes ill-posed since the asymptotic variance matrix of the moment conditions
becomes singular. Carrasco and Kotchoni (2017) generalize the empirical characteristic function
GMM approach by introducing an estimator based on a continuum of moment conditions (CGMM).
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They derive that the asymptotic variance attains the Cramér-Rao bound. They solve the singularity
issue of the asymptotic variance matrix by applying a suitable regularization. We discuss this
approach in more detail below. For the case of the GMM estimator based on a discrete set of
moment conditions, we follow Kharrat and Boshnakov (2016) in the numerical computations and
also use a regularization to make the scheme numerically stable.

Next, we describe the CGMM estimation method of Carrasco and Kotchoni (2017), which is
based on Carrasco and Florens (2000) and Carrasco et al. (2007). We start by introducing some
notation. Let π be a probability density on R and L2(π) be the Hilbert space of complex-valued
functions such that

L2(π) =
{
f : R → C :

∫
|f(t)|2π(t)dt < ∞

}
.

The inner product on L2(π) is defined as

⟨f, g⟩L2(π) =
∫
f(t)g(t)π(t)dt

and the norm on L2(π) as
||g||2L2(π) =

∫
|g(t)|2π(t)dt.

Let K be the asymptotic variance-covariance operator associated with the moment functions
h(t,X; θ). K is an integral operator that satisfies

K : L2(π) → L2(π)

f 7→ g, where g(t) =
∫
k(s, t)f(s)π(s)ds,

where k(s, t) is a kernel given by

k(s, t) = Eθ0

[
h(s,X; θ0)h(t,X; θ0)

]
, (3.3)

with h given in (3.2). Carrasco and Kotchoni (2017) noted that the inverse of K exists only on a
dense subset of L2(π). Thus, we use a regularized estimation of the inverse below. The efficient
CGMM estimator is given by

θ̂ = arg min
θ∈Θ

〈
K−1ĥn(·; θ), ĥn(·; θ)

〉
L2(π)

.

The above CGMM is non-feasible because we need an estimate K̂n for K. To get a feasible
estimator we first need to estimate k(s, t) in (3.3) with

k̂n(s, t) = 1
n

n∑
j=1

(
eis′Xj − φ̂n(s)

) (
eit′Xj − φ̂n(t)

)
.

Second, an empirical operator K̂n with kernel function k̂n(s, t) is defined by

(K̂nf)(t) =
∫
k̂(s, t)f(s)π(s)ds. (3.4)

However, this choice is non-invertible. Therefore, Carrasco and Kotchoni (2017) estimate K−1 by
a Tikhonov regularization with

K̂−1
n,γn

=
(
K̂2

n + γnI
)−1

K̂n. (3.5)

γn is (depending on the sample size) a sequence of regularization parameters which allow K̂−1
n,γn

f to
exist for all f ∈ L2(π) and to dampen the sensitivity of K̂−1

n,γn
f to variation in the input f . Then,

the feasible CGMM estimator is given by

θ̂n,CGMM (γn) = arg min
θ∈Θ

〈
K̂−1

n,γn
ĥn(·; θ), ĥn(·; θ)

〉
L2(π)

.
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Carrasco and Kotchoni (2017) show that the CGMM estimator is consistent, asymptotically
efficient and asymptotically normal (for stationary Markov processes) given a set of assumptions.
An earlier version Carrasco and Florens (2002) proves the statement for i.i.d. data with a simpler
set of assumptions. We use their assumptions and prove that the tempered stable distributions
fulfill them. More precisely, the assumptions are the following.
Assumption 3.3.

(i) The observed data {x1, . . . , xn} are i.i.d. realizations of X which has values in R and has
p.d.f. f(x; θ) with θ ∈ Θ ⊂ Rq and Θ is compact.

(ii) π is the p.d.f. of a distribution that is absolutely continuous with respect to the Lebesgue measure
and strictly positive for all x ∈ R.

(iii) The equation
Eθ0

[
eitX

]
− φθ(t) = 0 for all t ∈ R, π−a.s. (3.6)

has a unique solution θ0 which is an interior point of Θ. Since characteristic functions uniquely
determine distributions (3.6) is equivalent to identifiability.

(iv) f(x; θ) is continuously differentiable with respect to θ on Θ.
(v)

∫
D supθ∈Θ

∣∣∣∣∣∣∣∣∂f(x;θ)
∂θ

∣∣∣∣∣∣∣∣dx < ∞.

(vi) Iθ0 = Eθ0

[(
∂ log f(X;θ)

∂θ

) (
∂ log f(X;θ)

∂θ

)′
]∣∣∣∣∣

θ=θ0

is positive definite.

We can take any choice of measure π such that (ii) is fulfilled. However, for some choices,
numerical integration in (3.4) may be easier to perform. For example, we can use the normal
distribution. Instead, Carrasco and Florens (2000) considered the Hilbert space L2([0, T ]) of real-
valued square-integrable functions on [0, T ] with T > 0. However, Carrasco and Florens (2002,
Section 3) discussed that all results transfer by adjusting operations in the corresponding Hilbert
spaces. Therefore, in (ii) we can take π to be the uniform distribution on [0, T ] and replace L2(π)
with L2([0, T ]). T is arbitrary as long as (ii) is satisfied. For simplicity, we chose T = 1.

With this, the CGMM estimator satisfies the following asymptotic result.
Proposition 3.4. Under Assumption 3.3, the CGMM estimator is consistent and

n1/2(θ̂n,CGMM (γn) − θ0) L→ N(0, I−1
θ0

),

as n → ∞, γnn
1/2 → ∞ and γn → 0, where I−1

θ0
denotes the inverse of the Fisher information

matrix (which exists due to Assumption 3.3(vi)).
In practice, we require a reasonable choice of the regularization parameter γn. Carrasco and

Kotchoni (2017) derived the optimal estimator for γn. However, we choose for simplicity an ad-hoc
method for selecting the regularization parameter by simply using a fixed γn = 0.01 throughout. We
justify this because Carrasco and Florens (2002) found that the specific choice of the regularization
parameter does not have a striking impact on the estimation precision in their simulations for the
stable distribution. See Section 5 for more discussions about the regularization in practice.

3.3. Cumulant matching. We also discuss a method of cumulants approach which follows Küchler
and Tappe (2013). They match empirical cumulants with their theoretical counterparts. We
extend this by using Hansen’s (1982) GMM framework. We call the approach generalized method
of cumulants (GMC) to distinguish it from the GMM method using characteristic function moment
conditions. However, it fits well into Hansen’s (1982) framework allowing for standard asymptotic
theory. This is because we can rewrite cumulant conditions as moment conditions by using the
well known relation between cumulants and moments. We start by formulating the problem as a
method of moments. Let

Eθ0

[
g(X; θ)

]
= 0
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denote the theoretical moment conditions and
1
n

n∑
j=1

g(Xj ; θ) = 0

the empirical moment conditions. We build the function g (which belong to moment and not
cumulant conditions) by using the following relation between moments and cumulants

E[X] = κ1,

E[X2] = κ2 + κ2
1,

E[X3] = κ3 + 3κ2κ1 + κ3
1,

E[X4] = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1,

...

E[Xp] =
p∑

m=1
Bp,m(κ1, . . . , κp−m+1),

where Bp,m denote incomplete Bell polynomials. In particular for p moment conditions, we choose
g(X; θ) = (g1, . . . , gp)′ to be

g1 = X − κ1,

g2 = X2 − κ2 − κ2
1,

... (3.7)

gp = Xp −
p∑

m=1
Bp,m(κ1, . . . , κp−m+1).

Here, the theoretical cumulants κm for the TSS distribution are given in (2.7), and for the CTS
distribution, given in (2.11). For the NTS distribution, cumulants do not have an easy-to-use
pattern which is why we do not use this method for the NTS distribution. The asymptotic result
then is the following proposition. The proof can be found in Newey and McFadden (1994).

Proposition 3.5. Under the assumptions of Theorems 2.6 and 3.4 in Newey and McFadden (1994),
the GMC estimator

θ̂n,GMC = arg min
θ∈Θ

 1
n

n∑
j=1

g(Xj ; θ)

′

Ŵ

 1
n

n∑
j=1

g(Xj ; θ)

 ,
where W is a positive semi-definite weighting matrix and an estimator Ŵ with Ŵ p→ W , is consis-
tent for θ0. Moreover,

n1/2(θ̂n,GMC − θ0) L→ N(0, (G′WG)−1G′WΩW ′G(G′WG)−1),

with G := Eθ0

[
∂g(X;θ)

∂θ

]∣∣∣∣
θ=θ0

, Ω := Eθ0

[
g(X; θ)g(X; θ)′].

In principle, W could be any positive semi-definite weighting matrix. From standard GMM
theory, we however know that taking W = Ω−1 and similarly Ŵ = Ω̂−1 yields the most efficient
GMM estimator Hansen (see, e.g., 1982), as long as Ω is invertible, where Ω = Eθ0

[
g(X; θ)g(X; θ)′]

as above. Invertibility is not necessarily given for all possible data sets for the GMC estimator.
However, it typically holds in practice. To avoid invertibility we use a regularization as in Section
3.2. Under the choice W = Ω−1, the asymptotic variance simplifies to (G′Ω−1G)−1.
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4. Asymptotic results

We present our asymptotic results for the MLE, the CGMM, and the GMC estimation method.
The GMM method of Feuerverger and McDunnough (1981) has already been discussed to have
problems with the singularity of the asymptotic covariance matrix. All proofs can be found in
Appendix A. We start with a theorem for the MLE.

Theorem 4.1. Fix any 0 < ε < M < ∞. The MLE θ̂n,ML for θ0 ∈ int(Θ) of
(a) the TSS(α, δ, λ) distribution with θ = (α, δ, λ) ∈ Θ = [ε, 1 − ε] × [ε,M ]2,
(b) the CTS(α, δ+, δ−, λ+, λ−, µ) distribution with θ = (α, δ+, δ−, λ+, λ−, µ) ∈ Θ = [ε, 2 − ε] ×

[ε,M ]4 × [−M,M ],
(c) the NTS(α, β, δ, λ, µ) distribution with θ = (α, β, δ, λ, µ) ∈ Θ = [ε, 1 − ε] × [−M,M ] ×

[ε,M ]2 × [−M,M ],
is consistent, asymptotically normal and asymptotically efficient as n → ∞.

We introduce the numbers ε and M to ensure that the parameter space Θ is compact. Grabchak
(2016a, Section 3.2 & 3.3) has already established strong consistency. Therefore, it only remains
to show asymptotic normality and efficiency.

We next show that the CGMM also possesses the desired asymptotic properties for our tempered
stable distributions.
Theorem 4.2. The CGMM estimator θ̂n,CGMM (γn) for θ0 ∈ int(Θ) of

(a) the TSS(α, δ, λ) distribution with θ = (α, δ, λ) ∈ Θ = [ε, 1 − ε] × [ε,M ]2,
(b) the CTS(α, δ+, δ−, λ+, λ−, µ) distribution with θ = (α, δ+, δ−, λ+, λ−, µ) ∈ Θ = [ε, 2 − ε] ×

[ε,M ]4 × [−M,M ],
(c) the NTS(α, β, δ, λ, µ) distribution with θ = (α, β, δ, λ, µ) ∈ Θ = [ε, 1 − ε] × [−M,M ] ×

[ε,M ]2 × [−M,M ],
is consistent, asymptotically normal and asymptotically efficient as n → ∞ and γnn

1/2 → ∞ and
γn → 0.

As a side product, in the proofs of the parts (a) and (b) of the Theorems 4.1 and 4.2 we also
verify that the assumptions hold for the TS’ distribution hold. However, asymptotic normality does
not hold for the full range of α ∈ (0, 2) but only for α ≥ 1. The reason is, as already mentioned
in Section 2.2, that the support of the density function of the TS’ distribution depends on θ for
α ∈ (0, 1). We summarize the result in the following corollary.
Corollary 4.3. The ML and the CGMM estimators for the TS′(α, δ, λ) with (α, δ, λ) ∈ Θ =
[1, 2 − ε] × [ε,M ]2 is consistent, asymptotically normal and asymptotically efficient as n → ∞ and
γnn

1/2 → ∞ and γn → 0.
Küchler and Tappe (2013, Lemma 6.1) showed that the method of cumulant matching is locally

identified for α ∈ (0, 1), i.e., the equations of the moment conditions do have a root which is unique
in an open neighborhood around θ0 by the implicit function theorem. Moreover, they showed in
Proposition 5.4 that the TSS is globally identified and thus consistent. We show local identification
for the GMC.
Theorem 4.4. Consider the GMC estimator θ̂n,GMC for θ0 ∈ int(Θ). Then

(a) the TSS(α, δ, λ) distribution with θ = (α, δ, λ) ∈ Θ = [ε, 1 − ε] × [ε,M ]2,
(b) the CTS(α, δ+, δ−, λ+, λ−, µ) distribution with θ = (α, δ+, δ−, λ+, λ−, µ) ∈ Θ = [ε, 2 − ε] ×

[ε,M ]4 × [−M,M ],
is locally identified.

Local identification is necessary but not sufficient for the consistency, see Section 2.2.3 of Newey
and McFadden (1994).
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5. Monte Carlo study

In this section, we compare empirical properties of the proposed estimators in a simulation
study. In order to do so, we simulate n = 100 and n = 1000 random numbers distributed according
to the distributions TSS(0.5, 1, 1), CTS(1.5, 1, 1, 1, 1, 0), and NTS(0.5, 0, 1, 1, 0). We estimate
the parameters using the MLE, the GMM method according to Feuerverger and McDunnough
(1981), and the CGMM method according to Carrasco and Kotchoni (2017). For the TSS and CTS
distributions, we additionally compute the GMC estimator using three different numbers of moment
conditions, i.e., the just-identified case (3 moment conditions for TSS, 6 moment conditions for CTS)
and two overidentified cases (4 and 5 moment conditions for TSS, 7 and 8 moment conditions for
CTS). For all optimization problems we use the optim function in R with the L-BFGS-B method
by Byrd et al. (1995), which is suitable for box-constraint optimization. We evaluate the density
functions with the FFT method for the CTS and NTS distributions using the fft function in
R. For the TSS distribution, we employ the relation with the stable distribution (2.5) and the
stabledist package Wuertz and Maechler (2016) package. We use the uniform distribution on
(0, 1) for π.1 For the GMC estimator, we compute a first step estimator θ̂(1) using the identity
matrix as the weighting matrix. With this, we compute Ω̂ = n−1∑n

j=1 g(Xj ; θ̂(1))g(Xj ; θ̂(1))′ and
next the asymptotically efficient GMC estimator with the weighting matrix Ω̂−1. As mentioned in
Section 3.2, we use the Tikhonov regularization (3.5) for the inversion of K to compute the CGMM
estimator. To avoid problems with numerical inversion of the GMM and the GMC estimators, we
also use a regularization to invert the respective matrices Ω̂. We choose a cut-off regularization
Carrasco and Florens (see 2000) for GMM2 and a Tikhonov regularization (3.5) for GMC. For all
setups, we choose a regularization parameter of 0.01. However, we note that for the regularization
parameter fine-tuning is possible to obtain more precise estimation results. Jüssen (2023), in his
Master’s thesis, reports estimation results for γn = 0.1, finding an improvement of the accuracy.
For the GMM, we use an equally spaced grid with grid size R = 10 (for TSS and NTS) or R = 20
for (CTS). The grid is determined as in Kharrat and Boshnakov (2016) by taking ε as the smallest
and the first root of the real part of the empirical characteristic function as the largest values of the
grid. Other suggestions for grids can be found in Kharrat and Boshnakov (2016). We set ε = 10−6.
Although M theoretically needs to be finite, we made good experiences with the choice of Inf
as upper bounds in R. The implemented routines are in the TempStable R package Massing and
Jüssen (2023). We repeat the experiments in 10,000 independent Monte Carlo replications.

Table 5.1 shows empirical bias and the empirical root mean squared errors (RMSE) (in paren-
thesis) for the TSS distribution for each of the parameters. In the last column, we display the
average runtime for estimation in seconds. The striking difference is that while the GMM and the
GMC estimation perform in less than a second MLE and CGMM need considerably more time
to compute. As expected, the estimates are more precise for a larger sample. Importantly, all
methods (except the MLE) suffer from a small sample size which implies that the algorithms run
into boundary solutions, i.e., finding stability parameters close to zero (boundary solutions for the
other parameters rarely occur). This implies a negative empirical bias for α. The MLE outperforms
the other methods followed by CGMM. The GMC with 4 moment conditions also works fairly well,
adding further moment conditions has no additional value.

Table 5.2 shows similar experimental results for the CTS distribution. Again, we report the
empirical bias and the RMSE for each of the parameters. As expected, estimating 6 parameters
is more demanding than estimating 3 as above. We see that for the GMC and GMM methods

1As explained above, the uniform distribution does not fulfill Assumption 3.3.(ii) but the assumptions of Carrasco
and Florens (2000). For comparison, we therefore have also used the normal distribution, but the results are robust
to this choice and hence not reported.
2We also tried the LF and the Tikhonov regularization with no qualitative difference.
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n α δ λ time
CGMM 100 -0.071 0.458 0.206 43

(0.22) (1.041) (0.594)
1000 -0.011 0.057 0.031 1256

(0.073) (0.262) (0.192)
GMC (p = 3) 100 -0.169 0.982 0.448 0.2

(0.282) (1.637) (0.796)
1000 -0.028 0.127 0.072 0.6

(0.096) (0.358) (0.243)
GMC (p = 4) 100 -0.142 0.752 0.345 0.4

(0.27) (1.388) (0.687)
1000 -0.002 0.02 0.005 0.8

(0.068) (0.226) (0.177)
GMC (p = 5) 100 -0.037 0.489 0.489 0.5

(0.292) (1.359) (0.742)
1000 -0.033 0.139 0.099 1

(0.089) (0.347) (0.215)
GMM 100 -0.103 0.706 0.292 0.6

(0.261) (1.488) (0.749)
1000 -0.013 0.063 0.034 0.6

(0.077) (0.275) (0.198)
MLE 100 -0.004 0.098 0.056 82

(0.117) (0.518) (0.409)
1000 -0.001 0.013 0.01 802

(0.038) (0.137) (0.125)

Table 5.1. Empirical bias and RMSE (in parenthesis) for the parameters of the
TSS distribution for different estimation methods. Last column shows average run-
time in seconds. Smallest values in bold.

extremely high values of bias and RMSEs occur, which is due to rare extremely high parameter
estimates. Therefore, we also compute the median absolute deviation (MAD) from the true pa-
rameters, printed in square brackets. Generally, we observe that all methods fail to provide good
estimates for 100 observations. In this case, the optimization algorithms find boundary solutions
for many of the randomly drawn sets. Thus, the CTS distribution should only be used as a model
if the sample size is not too small. The GMC and GMM methods also fail for 1000 observations for
most of the Monte Carlo replications. For 1000 observations, the MLE performs better than the
latter methods. However, it still has difficulties to estimate the stability index correctly in some
instances. The CGMM method has the longest runtime but works fairly well especially compared
with the other estimators. Boundary estimates rarely occur.

Table 5.3 presents the results for the NTS distribution. For this distribution, we only use the
CGMM, the GMM, and the ML methods. As before, a larger sample is beneficial since small
samples lead to boundary estimates. For example, the bias and RMSE for β are very large for
the GMM method because of large outliers. As for the CTS above, the CGMM method seems to
perform better than MLE and much better than the GMM method, which performs poorly even
for a larger sample.

Next, we test the asymptotic normality of the parameters by computing the coverage of asymp-
totic confidence intervals based on the inverse of the Fisher information matrix. Unfortunately, the
Fisher information matrix is cumbersome to compute for the CTS and NTS distributions because
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n α δ+ δ− λ+ λ− µ time
CGMM 100 -0.518 2.207 2.377 2.918 2.76 0.001 143

(0.778) (6.096) (6.369) (6.398) (6.091) (0.184)
[0.427] [0.999999] [0.999999] [1.114] [1.117] [0.124]

1000 -0.05 0.607 0.671 1.841 1.781 0 5443
(0.157) (2.028) (2.01) (3.949) (3.88) (0.059)
[0.074] [0.788] [0.8] [0.626] [0.624] [0.039]

GMC (p=6) 100 -0.903 1.48E5 1.14E5 1.55E8 2.12E8 0 1
(1.206) (4.92E6) (4.96E6) (9.84E9) (2E10) (0.221)

[1.49999] [1.432] [1.571] [1.825] [1.82] [0.145]
1000 -0.865 2.79E5 6.11E5 3.16E8 7.82E8 0 3

(1.113) (9.47E6) (2.34E7) (2.17E7) (7.4E4) (0.06)
[1.175] [3.521] [3.959] [1.584] [1.636] [0.039]

GMC (p=7) 100 0.281 275.6 361.6 2.65E5 5918 -0.001 3
(0.563) (9876) (1.24E4) (2.5E7) (2.86E5) (0.482)

[0.499] [0.9995] [0.99995] [0.92] [0.918] [0.166]
1000 0.158 1.5E4 1.26E5 5.27E8 9.41E7 0.001 4

(0.586) (8.9E5) (1.1E7) (3.4E10) (5.9E9) (0.07)
[0.479] [0.99998] [0.99998] [0.888] [0.861] [0.043]

GMC (p=8) 100 -0.313 3044 2302 3.18E5 1.14E6 0.002 2
(0.887) (2.13E5) (1.6E5) (1.67E7) (7.1E7) (0.109)

[0.499995] [0.99999] [0.99999] [0.964] [0.987] [0.19]
1000 -0.26 1425 9768 2.47E5 5.63E5 -0.001 4

(0.83) (9.04E4) (8.61E5) (2.1E7) (5.1E7) (0.208)
[0.499998] [0.999999] [0.999999] [1.135] [1.202] [0.051]

GMM 100 -1.207 19.7 20.31 18.3 17.7 -0.001 5
(1.318) (56.63) (59.25) (120.9) (92.04) (0.256)

[1.499999] [1.91] [2.129] [2.263] [2.2] [0.128]
1000 -0.802 13.16 13.57 7.828 8.015 0 13

(1.021) (28.13) (28.46) (23.88) (24.91) (0.074)
[0.816] [3.755] [4.222] [2.724] [2.728] [0.043]

MLE 100 -0.856 5.69 6.02 1.695 2.204 0.002 390
(1.131) (13.01) (13.94) (10.75) (18.71) (0.183)
[1.1239] [0.999999] [0.999999] [10.013] [1.045] [0.123]

1000 -0.292 2.6 2.775 0.809 0.842 0 3919
(0.716) (6.638) (6.877) (1.382) (1.409) (0.058)
[0.399] [0.97] [0.975] [0.819] [0.827] [0.039]

Table 5.2. Empirical bias, RMSE (in parenthesis) and MAD [in square brackets]
for the parameters of the CTS distribution for different estimation methods. Last
column shows average runtime in seconds. Smallest values in bold.

they rely on several numerical algorithms (FFT, numerical derivation, and numerical integration)
such that the result is numerically unstable. For the TSS distribution, there exists the relation to
the stable distribution (2.5) and series representations like (2.6). Thus, we restrict ourselves to the
analysis for the TSS distribution. Table 5.4 reports the coverage (in %) of asymptotic confidence
intervals with a nominal confidence level of 95% for the three different parameters. To compute
these, we have used the very same setup and parameter estimation results as for Table 5.1 above.
As for the comparison of the bias and RMSE, the MLE outperforms the other methods but this
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n α β δ λ µ time
CGMM 100 0.084 -0.033 0.128 2.515 0.044 75

(0.278) (2.535) (0.938) (5.641) (3.146)
1000 0.025 0.001 -0.039 0.081 -0.0004 1653

(0.121) (0.21) (0.375) (0.73) (0.333)
GMM 100 -0.063 −2.38E6 1.891 15.606 0.231 3

(0.412) (2.38E8) (19.062) (169.6) (8.757)
1000 -0.14 -0.002 1.572 0.972 -0.037 5

(0.417) (5.44) (2.985) (3.012) (6.719)
MLE 100 0.011 -0.007 0.334 1.873 0.021 185

(0.403) (3.952) (3.716) (7.831) (1.744)
1000 -0.105 0.002 1.0377 0.129 -0.003 2063

(0.366) (0.172) (2.101) (1.173) (0.279)

Table 5.3. Empirical bias and RMSE (in parenthesis) for the parameters of the
NTS distribution for different estimation methods. Last column shows average run-
time in seconds. Smallest values in bold.

time very clearly. The reason is that the bias is decisively smaller for the MLE method so that for
the other methods the point estimates and thus the confidence intervals are simply too far away
from the true values. We note that because we use asymptotic confidence intervals the widths for
the different methods are similar. This leads to a smaller coverage which is far from the nominal
level and we do not observe an improvement with increasing sample size in all of the cases. On the
other hand, the MLE coverage rate is close to the nominal confidence level for large sample sizes.
It is not fully clear why there is a higher estimation variance and bias of the CGMM than of the
MLE for the TSS distribution. One explanation might be due to the nature of the TSS distribution
which is only on R+. It is likely that more fine-tuning for the many estimation parameters is needed
to obtain more precise results. Especially, there may be room for improvement by using an optimal
regularization parameter instead of the ad-hoc rule.

n α δ λ

CGMM 100 68.19 67.54 72.64
1000 62.59 68.94 73.71

GMC (p = 3) 100 63.12 62.71 65.7
1000 52.56 59.68 64.95

GMC (p = 4) 100 63.35 63.25 70.51
1000 66.95 71.84 76.79

GMC (p = 5) 100 66.4 67.58 71.86
1000 65.37 73.7 80.29

GMM 100 59.3 58.64 63.77
1000 60.66 67.35 72.88

MLE 100 83.28 81.34 85.94
1000 88.6 89.07 89.45

Table 5.4. Confidence interval coverage (in %) for the parameters of the TSS
distribution for different estimation methods with a confidence level of 95%. Largest
values in bold.
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We have also tried other parameter constellations for θ without any qualitative difference except
for α when it is close to the boundary. We omit the details here. To conclude, the CGMM works well
for all three examples and is the only reliable estimator for the CTS distribution. Unfortunately, the
runtime is quite lengthy as well as for the MLE, which finds boundary solutions more frequently.
The GMM and GMC estimators are only reasonable for the TSS subordinator. Therefore, we
recommend using the CGMM estimator for the CTS and NTS distribution.

6. Applications

We discuss financial applications to motivate the use of tempered stable distributions. Tem-
pered stable distributions have already been proposed to model log-returns of financial assets, see
e.g., Carr et al. (2002); Fallahgoul and Loeper (2021). In the case of electricity markets, e.g.,
Sabino (2022) models the evolution of electricity spot prices by a tempered stable driven Ornstein-
Uhlenbeck process.

Here, we analyze log-returns of three financial assets. We consider the S&P 500 index (2012-06-01
to 2022-05-31), the German DAX index (2012-06-01 to 2022-05-31), and base-load spot prices from
the German power exchange EEX (2018-09-30 to 2022-05-31). We obtain daily data from Refinitiv’s
Eikon. Before modeling tempered stable distributions we perform some simple manipulations and
fit preliminary models to clean the data. In this order, we first deseasonalize the data of the EEX
regarding its weekly profile by applying a moving average filter, see Weron (2005, 2007). Second,
we exclude the rare cases of negative prices of the EEX. Next, we compute log-returns for the three
indices (for the EEX we also omit all log-returns next to days with negative prices). Last, we fit
GARCH(1,1) models (with normal errors) using the tseries package Trapletti and Hornik (2020)
to each of the log-return series to remove stochastic volatility from the data which can mistakenly
interpreted as evidence for heavy tailed distributions Fallahgoul and Loeper (2021). We then fit
the CTS, the NTS, and the stable distributions to the residuals of the GARCH model. With this
approach, we follow Goode et al. (2015) who found that this quasi-MLE performs nearly identically
as a correctly specified MLE of a GARCH model with CTS or NTS distributed errors.

Figures 6.1 to 6.3 show the original time series (a), the (deseasonalized where appropriate) log-
returns (b), and the GARCH residuals (c). We observe in panels (b) that for each of the series
of log-returns stochastic volatility is apparent. The GARCH residuals do not exhibit volatility
clustering anymore. However, the residuals reveal skewness and heavy tails which is why we next
fit tempered stable distributions to them.

We compare the CTS and the NTS distributions with a univariate stable distribution as a baseline
model (the TSS distribution is not considered since it only models positive data and here data can
be negative). Needless to say, there are plenty of other models for log-returns in the literature, e.g.,
generalized hyperbolic models (and their subclasses) by Barndorff-Nielsen (1977), or finite mixture
models Massing and Ramos (2021). For conciseness, we do not present them here but refer to the
aforementioned references and Massing (2019b) for a comparison.

To compare the goodness-of-fit we use the Kolmogorov-Smirnov (KS) and the Anderson-Darling
(AD) statistics. Lower statistics indicate a better fit. It is known that the KS distance better
reflects the fit around the center of the distribution while the AD statistic concentrates on the
tails of the distributions Razali et al. (2011). Of course, the CTS and the NTS distributions have
a larger number of parameters hence a better fit is to be expected. Therefore, we also compute
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) to penalize
large models to avoid overfitting. The penalization of larger models is higher for the BIC.

For brevity, we decide to only present estimates and plots obtained with the CGMM estimator.
Table 6.5 shows parameter estimates for the three time series and the three distributions. Table
6.6 presents KS, AD, AIC, and BIC statistics.
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(a) Price process

(b) Log-returns

(c) GARCH residuals

Figure 6.1. Price process (a), log-returns (b) and GARCH residuals (c) for the
S&P 500 index from 2012-06-01 to 2022-05-31.
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(a) Price process

(b) Log-returns

(c) GARCH residuals

Figure 6.2. Price process (a), log-returns (b) and GARCH residuals (c) for the
DAX index from 2012-06-01 to 2022-05-31.
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(a) Price process

(b) Log-returns

(c) GARCH residuals

Figure 6.3. Price process (a), deseasonalized log-returns (b) and GARCH residuals
(c) for the EEX from 2018-09-30 to 2022-05-31.
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α β δ+ δ− λ+ λ− µ

S&P Stable 1.847 0 0.114 0.177
(n = 2514) CTS 0.659 0.37 0.996 1.218 1.139 0.054

NTS 0.31 -0.382 0.788 1.185 0.404
DAX Stable 1.87 0.009 0.091 0.11
(n = 2527) CTS 0.614 0.513 0.984 1.255 1.212 0.025

NTS 0.224 -0.231 0.952 1.229 0.248
EEX Stable 1.713 0.023 0.123 0.107
(n = 1322) CTS 0.369 0.514 0.378 1.24 0.7 -0.032

NTS 0.702 -0.251 0.155 0.125 0.175

Table 6.5. Parameter estimates for the stable, the CTS and the NTS distributions
fitted to S&P 500, DAX and EEX GARCH residuals. The numbers in parenthesis
are the sample sizes of the GARCH residuals.

KS AD AIC BIC
S&P Stable 0.028 2.891 7027 17075

CTS 0.034 3.41 6965 22037
NTS 0.029 3.206 6941 19501

DAX Stable 0.033 4.682 7078 17178
CTS 0.02 2.321 6986 22136
NTS 0.013 3.855 6973 19598

EEX Stable 0.043 2.004 3442 8722
CTS 0.031 5.135 3335 11255
NTS 0.025 1.961 3322 9922

Table 6.6. Goodness-of-fit statistics (lower statistics indicate a better fit) for the
stable, the CTS and the NTS distributions fitted to S&P 500, DAX and EEX
GARCH residuals. Smallest values in bold.

For the KS and AD statistics, we observe a mixed pattern. For the S&P 500 the stable distri-
bution is favored while for the DAX and EEX the CTS or NTS distributions have lower values.
While in each case the NTS distribution has the lowest AIC, the stable distribution always has the
lowest BIC. To visualize goodness-of-fit we moreover depict QQ-plots. Figures 6.4–6.6 plot sample
quantiles versus theoretical quantiles for the different scenarios. The solid line is the reference line.
We observe that, although in some cases the stable distribution has lower KS or AD statistics, the
QQ-plots suggest that the tails of the stable distribution are too heavy. CTS and NTS distributions
seem to provide a better fit.

7. Conclusions and Future Work

This paper derived asymptotic efficiency results for parametric estimation methods of the tem-
pered stable subordinator, the classical tempered stable distribution, and the normal tempered
stable distribution. We conducted a Monte Carlo study to establish finite sample properties. It
turned out that the generalized methods of moments estimator with a continuum of moment con-
ditions and the maximum likelihood estimator outperformed the other methods. We discussed
why tempered stable distributions are relevant in financial applications. Asymptotic results for
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(a)

(b)

(c)

Figure 6.4. QQ-Plots comparing the goodness-of-fit of the stable, the CTS and
the NTS distributions for the S&P 500. The solid line is the reference line.
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(a)

(b)

(c)

Figure 6.5. QQ-Plots comparing the goodness-of-fit of the stable, the CTS and
the NTS distributions for the DAX. The solid line is the reference line.
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(a)

(b)

(c)

Figure 6.6. QQ-Plots comparing the goodness-of-fit of the stable, the CTS and
the NTS distributions for the EEX. The solid line is the reference line.
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other tempering functions or the derivation of a set of conditions to ensure asymptotic efficiency
for general tempering functions are a subject of future work.

Appendix A. Appendix: Proofs

Proof of Theorem 4.1:
(a) We now prove the asymptotic normality of the TSS by verifying the conditions (i)–(vi) of

Assumption 3.1. In order to do so, we follow DuMouchel (1973) who proved asymptotic
normality for stable distributions. He showed the statement for stable distributions which
are not totally skewed. More precisely, he explicitly excluded the subordinator case in
his paper. However, we do not contradict his statements here. This is because (in our
notation) the skewness parameter ρ is fixed at ρ = 1 (i.e., total positive skewness) and does
not need to be estimated in our setting. (In his notation, the skewness parameter ρ fulfills
|ρ| < min{α, 2 − α}, i.e., total positive skewness means that ρ is fixed at ρ = α.) In the
setting of DuMouchel (1973), the skewness parameter ρ still needed to be estimated, for
which the usual asymptotics do not work. In our setting, the proof for stable subordinators
follows analogously by checking Conditions 1-6 of DuMouchel (1973) with minor changes
summarized now. We only estimate the stability index and the scale parameter here so
the Fisher information is a 2 × 2-matrix. Conditions 1,2,4-6 of DuMouchel (1973) follow
analogously. For his Condition 3, we refer to (vi) below where we prove the statement for
the TSS and for the stable subordinator as an intermediate step.

We now check the conditions of Assumption 3.1. Grabchak (2016a, Section 3.2.1) proved
condition (i). (ii) Θ is compact by construction. The density function (2.5) for the TSS
distribution is twice continuously differentiable with respect to the parameters by the twice
continuous differentiability of the density of the stable subordinator DuMouchel (1973,
Condition 1) and the continuous differentiability of the gamma function for α > 0. Also
fT SS(y; θ) > 0 for all y > 0. This implies (iii).

To show (iv), we make use of (2.5) and bound the partial derivatives

∣∣∣∣∣∂fT SS(y; θ)
∂ϑ

∣∣∣∣∣ ≤ Cθ ·


fT SS(y; θ) +

∣∣∣∂fS(α,δ)(y)
∂α

∣∣∣, ϑ = α,

fT SS(y; θ) +
∣∣∣∂fS(α,δ)(y)

∂δ

∣∣∣, ϑ = δ,

fT SS(y; θ) + yfT SS(y; θ), ϑ = λ,

where Cθ is a positive, finite constant which depends on θ but not on y. Because θ ∈ Θ
which is compact and because Cθ can be taken to be continuous in θ which follows from (iii),
Cθ can be bounded by a constant C. The result now follows because the expected value of
a TSS distribution exists and because the derivatives of stable densities are integrable as
discussed in the proof of Condition 4 in DuMouchel (1973). Integrability also holds when
taking the supremum as can be verified analogously to Condition 3 in DuMouchel (1973) by
analyzing the supremum of the series representation (5.1). The second part of (iv) follows
analogously by using

∣∣∣∣∣∂2fT SS(y; θ)
∂ϑ2

∣∣∣∣∣ ≤ Cθ ·


fT SS(y; θ) +

∣∣∣∂fS(α,δ)(y)
∂α

∣∣∣+ ∣∣∣∂2fS(α,δ)(y)
∂α2

∣∣∣, ϑ = α,

fT SS(y; θ) +
∣∣∣∂fS(α,δ)(y)

∂δ

∣∣∣+ ∣∣∣∂2fS(α,δ)(y)
∂δ2

∣∣∣, ϑ = δ,

fT SS(y; θ) + yfT SS(y; θ) + y2fT SS(y; θ), ϑ = λ

and that the second moment of the TSS distribution is finite.
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In order to show (v), we follow DuMouchel (1973, Condition 6’) and show the equivalent
condition that for every θ ∈ Θ and for every a = (a1, a2, a3) ∈ R3 the function

g(a, y) = a1
∂fT SS(y; θ)

∂α
+ a2

∂fT SS(y; θ)
∂δ

+ a3
∂fT SS(y; θ)

∂λ
is identically 0 for all y if and only if a1 = a2 = a3 = 0. It holds

g(a, y) =
∫
R

e−iyt (a1ϕ1 + a2ϕ2 + a3ϕ3) dt =
∫
R

e−iytϕ(a, t)dt, (A.1)

where ϕ is a linear combination of derivatives of the TSS characteristic function given in
(2.4), i.e., the partials are

ϕ1 = ∂φT SS(t; θ)
∂α

= φT SS(t; θ)δΓ(−α)

·
((

(λ− it)α log(λ− it) − λα log(λ)
)

−
(
(λ− it)α − λα)ψ(−α)

)
,

ϕ2 = ∂φT SS(t; θ)
∂δ

= φT SS(t; θ)Γ(−α)
(
(λ− it)α − λα) ,

ϕ3 = ∂φT SS(t; θ)
∂λ

= φT SS(t; θ)δΓ(−α)
(
α(λ− it)α−1 − αλα−1

)
,

where ψ(x) = Γ′(x)
Γ(x) denotes the digamma function. To show that the interchange of in-

tegration and differentiation in (A.1) is permitted we can use inequality (A3) of Lemma
A.7 in Xia and Grabchak (2022), i.e., it exists a constant C > 0 such that |φT SS(t; θ)| ≤
e−C(|t|α∧|t|2) for the TSS distribution. This implies that both

∫
R |e−iyt| |φT SS(t; θ)|dt < ∞

and
∫
R |e−iyt| |ϕ(a, t)|dt < ∞. Then g(a, y) ≡ 0 iff ϕ(a, t) ≡ 0 because Fourier transforms

uniquely determine functions. The characteristic function given in (2.4) is non-zero for each
t which implies that it is sufficient to study the latter terms of ϕ1, ϕ2, ϕ3. ϕ1 is a linear
combination of

(
(λ− it)α log(λ− it) − λα log(λ)

)
and

(
(λ− it)α − λα

)
, ϕ2 is a multiple of(

(λ− it)α − λα
)
, and ϕ3 is a multiple of

(
α(λ− it)α−1 − αλα−1

)
. These terms are linearly

independent which can be seen, e.g., by checking that the Wronskian determinant is non-
zero. Since ϕ1 is the only part of the linear combination with term (λ − it)α log(λ − it) it
follows a1 = 0, otherwise, ϕ would not be equal to 0 for each t. Because ϕ2 is the only
remaining part of the linear combination with term

(
(λ− it)α − λα

)
and ϕ3 is the only part

of the linear combination with term
(
α(λ− it)α−1 − αλα−1

)
, it is necessary for ϕ(a, t) = 0

for all t that also a2 = a3 = 0.
To show (vi), we recall that DuMouchel (1973, Condition 3) proved the statement for

the stable distribution. However, he explicitly excluded totally skewed stable distributions
if both the stability index and the skewness parameter need to be estimated. We adapt his
proof and show the statement for fixed and known total positive skewness, i.e., the stable
subordinator. By (2.5),

∂2

∂θ∂θ′ log fT SS(y; θ) = ∂2

∂θ∂θ′
(
−λy − λαδΓ(−α)

)
+ ∂2

∂θ∂θ′ log fS(α,δ)(y),

the statement for the TSS distribution then follows immediately. Following DuMouchel
(1973, Proof of Condition 3), the absolute value of the matrix-elements of ∂2 log fS(α,δ)(y)

∂θ2

have a maximum C(y), for fixed y and θ in the compact set Θ. Therefore, it is only
necessary to study the behavior of C(y) at its limit points. DuMouchel (1973) showed that
for y → ∞ the corresponding C(y) for the stable distribution is of the order O(log2 |y|) by
deriving the series representation given in (5.1) of DuMouchel (1973) and computing the
order of the bound. The result for y → ∞ transfers to our situation. Since the totally
skewed subordinator has no left tail we have to study the behavior of C(y) for y → 0.



Parametric Estimation of Tempered Stable Laws 1593

However, the series representation given in (2.6) does not work for y → 0 (with or without
the tempering term). There is another series representation which holds for 1 < α < 2
given by

fS(α,δ)(y) = −1
π

∞∑
k=1

(−1)k

k! Γ(1 + k/α)Γ(1 − α)−k/α

(
δ

α

)−k/α

yk−1 sin(πk), (A.2)

see Bergström (1952); Nolan (2020), adapted to our parametrization, for y → 0. For α < 1,
the series is divergent but the partial sum of the first n terms is an asymptotic expansion
for all n such that the remainder is of order O(yn) for y → 0. For 1 < α < 2, the series
(A.2) is absolutely convergent which allows changing sum and differentiation with respect
to y and the parameters. The coefficients for the series representation for the derivatives
are cumbersome and thus omitted. We now use the same argument as DuMouchel (1973,
Section 5) that coefficients for asymptotic expansions are unique which implies that the
derivatives have the same coefficients for α < 1 as for α > 1. The derivatives with respect
to θ are lengthy but not complicated, in particular, they do not interfere with y. Therefore,
C(y) = O(1) for y → 0. All in all, this implies that

∫∞
0 C(y)fS(α,δ)(y)dy < ∞ and hence∫∞

0 C(y)fT SS(y; θ)dy < ∞ for each θ ∈ Θ.
(b) Conditions (i) and (ii) work just as in (a). For (iii), the differentiability follows by (A.3)

and (A.4) below and Theorem 28.4 in Sato (1999) that gives differentiability in x which
is needed to guarantee differentiability in µ. Moreover, Theorems 24.10 and 53.1 in Sato
(1999) imply the density fCT S(x; θ) is unimodal and strictly positive.

For (iv), we use that by (2.12)

fCT S(x+ µ; θ) =
∫ ∞

−∞
f+(x+ y)f−(y)dy, (A.3)

where f+ is the density of Y+ ∼ TS′(α, δ+, λ+) and f− is the density of Y− ∼ TS′(α, δ−, λ−).
We remark that for α ∈ (0, 1) the lower limit of the integral is technically not −∞ but the
minimum value on which both f+ and f− are non-zero. This value depends on θ and is
the reason why MLE asymptotics do not hold for the TS’ distribution if α ∈ (0, 1). Then,
the functions f+(y) and f−(y) are identical zero for all y smaller than Γ(1 − α)δ+λ

α−1
+ and

Γ(1 − α)δ−λ
α−1
− , respectively. Thus the right tail has a different behavior than the left if

α ∈ (0, 1). If α ∈ [1, 2), f+ and f− are strictly positive on R and we can use the same
bounds for both left and right tails. We will make repeated use of this case distinction
throughout part (b) of the proof. Although Assumption 3.1.(iii) does not hold for the TS’
density if α ∈ (0, 1), it is possible to derive Assumption 3.1.(iv) for α ∈ (0, 2) analogously
to part (a) for the TSS density by replacing relation (2.5) with (2.8). This and the fact that
supθ∈Θ

∣∣∣∣∣∣∣∣∂f±(x)
∂θ

∣∣∣∣∣∣∣∣ and supθ∈Θ

∣∣∣∣∣∣∣∣∂2f±(x)
∂θ∂θ′

∣∣∣∣∣∣∣∣ can be bounded in x ensures that we can change the
order of differentiation and integration in (A.3) (the product of two integrable functions is
integrable if at least one function is bounded). Thus,

∂fCT S(x; θ)
∂θ

= ∂

∂θ

∫ ∞

−∞
f+(x+ y − µ)f−(y)dy (A.4)

=
∫ ∞

−∞

∂

∂θ

(
f+(x+ y − µ)f−(y)

)
dy

=
∫ ∞

−∞

(
∂f+(x+ y − µ)

∂θ
f−(y) + ∂f−(y)

∂θ
f+(x+ y − µ)

)
dy.
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In the second line we used that we can change the order of integration and differentiation.
Hence,∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂fCT S(x; θ)

∂θ

∣∣∣∣∣
∣∣∣∣∣dx

≤
∫ ∞

−∞

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂f+(x+ y − µ)

∂θ
f−(y)

∣∣∣∣∣
∣∣∣∣∣dydx+

∫ ∞

−∞

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂f−(y)

∂θ
f+(x+ y − µ)

∣∣∣∣∣
∣∣∣∣∣dydx

=
∫ ∞

−∞

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂f+(x+ y − µ)

∂θ
f−(y)

∣∣∣∣∣
∣∣∣∣∣dxdy +

∫ ∞

−∞

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂f−(y)

∂θ
f+(x+ y − µ)

∣∣∣∣∣
∣∣∣∣∣dxdy

≤
∫ ∞

−∞
sup
θ∈Θ

|f−(y)|
∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂f+(x+ y − µ)

∂θ

∣∣∣∣∣
∣∣∣∣∣dxdy

+
∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂f−(y)

∂θ

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

−∞
sup
θ∈Θ

∣∣f+(x+ y − µ)
∣∣ dxdy (A.5)

< ∞,

where we used Fubini’s Theorem in the second step. To see the finiteness (A.5) we will
in the following find bounds for the two series representations/asymptotic expansions (2.6)
and (A.2) that are independent of θ and show that they are integrable. We need to discuss
the several integrals separately.

For the inner integral of the left term in (A.5), we use the asymptotic expansions for the
integrand as in part (a) and the relation (2.8).

• Its right tail (without the sup) can be bounded by Cθ log(x+ y)(x+ y)−α−1, where Cθ

is a constant only depending on θ. This follows by equation (5.1) of DuMouchel (1973)
and by differentiating (2.8). (Note that the exponential function of the tempering
part in (2.8) can be bounded by Cθ.) The bound Cθ log(x+ y)(x+ y)−α−1 attains its
supremum for α = ε in the right tail (recalling that α ∈ [ε, 2 − ε]).

• For α ∈ (0, 1) the left tail is bounded by Cθ(x + y) which follows by bounding the
derivative of (A.2) (which exact form we omit, see the discussion below equation (A.2)).
Thus for α ∈ (0, 1), the inner integral exists and is bounded by C(y2 + log(y)/yε), x-
integral of the sum of both bounds, where C is a constant. For α ∈ [1, 2), the left tail
has the same bound as the right tail (because the (5.1) of DuMouchel (1973) holds for
both tails) and hence the inner integral is bounded by C log(y)/yε (by integrating over
x).

In both cases, the bound is integrable with respect to the TS’ density and hence the left
double integral is finite. Next, we turn to the right inner integral.

• We see that the function is bounded on the right and left (if α ∈ [1, 2)) tail by Cθ(x+
y)−α−1 via the expansion (2.6) and (2.8) and for the left tail (if α ∈ (0, 1)) by a constant
Cθ via (A.2) and (2.8). Thus, the inner integral is bounded by C(y+1/yε) if α ∈ (0, 1)
and by C/yε if α ∈ [1, 2).

• For the right outer integral, we again have to consider the parameter derivatives of
(2.6) (right tail and left tail if α ∈ [1, 2)) and of (A.2) (left tail if α ∈ (0, 1)). All in all,
this can be bounded by C(y−2ε−1 log(y)) (right tail and left tail if α ∈ [1, 2)) and by
C (left tail if α ∈ (0, 1)).

Therefore, both double integrals are finite. The second part of (iv) follows analogously by
first interchanging the order of integration and second derivative and then analyzing the
behavior of the four resulting double integrals using our asymptotic expansions.

(v) follows analogously to part (a), in particular, if we denote (ϕ1, . . . , ϕ6)′ = ∂φCT S(t;θ)
∂θ

we observe that ϕ1 is the only linear combination with terms (λ+ − it)α log(λ+ − it) and
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(λ− + it)α log(λ− + it), which implies a1 = 0. ϕ2 is a linear combination of t and (λ+ − it)α,
ϕ3 is a linear combination of t and (λ−+it)α, ϕ4 is a linear combination of t and (λ+−it)α−1,
ϕ5 is a linear combination of t and (λ− + it)α−1, and ϕ6 is a multiple of t. This implies
a2 = a3 = a4 = a5 = 0 and hence a6 = 0.

For (vi), we have to study the limiting behavior of C(x) which is the function which
bounds each of the elements of ∂2

∂θ∂θ′ log fCT S(x; θ) in absolute value. We make use of the
bound

∂2

∂θ∂θ′ log fCT S(x; θ) ≤
∂2

∂θ∂θ′ fCT S(x; θ)
fCT S(x; θ) . (A.6)

We recall the convolution property (A.3), and that we are allowed to interchange integration
and differentiation we therefore need to study

∂2

∂θ∂θ′ f+(x+ y − µ)f−(y) (A.7)

for that we can apply the product rule for differentiation. We have to use the same trick
as above to make a case distinction for α < 1 and for α ≥ 1 to analyze the behavior of the
right and of the left tail separately. The right tail and the left tail of (A.7) for α ≥ 1 can be
analyzed with the asymptotic expansion (2.6) analogously as above and its elements can be
bounded by Cθ(x + y)−1−α log(x + y)2. The left tail for α ∈ (0, 1) can be bounded by Cθ.
Therefore, the dy-integral over (A.7) can be bounded by Cθx

−α log(x). Given that series
(2.6) is alternating, we can also find a lower bound for the denominator in (A.6) such that
(A.6) can be bounded by Cθ log(x)2. Since Θ is compact, the expectation in (vi) is finite
which completes the proof for (b).

(c) (i) and (ii) as above. For the remainder we use the subordination property of the NTS
distribution, i.e.,

fNT S(z; θ) =
∫ ∞

0
fN (z;µ+ βy, y)fT SS(y;α, δ, λ)dy,

where fN (z;m, s2) denotes the density of the normal distribution with mean m and variance
s2. Similarly to Massing (2019a), we can show that

∣∣∣∂fN (z;µ+βy,y)
∂µ

∣∣∣ ≤ C
y and

∣∣∣∂fN (z;µ+βy,y)
∂β

∣∣∣ ≤
C for all θ ∈ Θ. Additionally, because |fN (z;µ+βy, y)| ≤ C√

y , we have for ϑ ∈ (α, δ, λ) that∣∣∣∂fN (z;µ+βy,y)fT SS(y;α,δ,λ)
∂ϑ

∣∣∣ ≤ C√
y

∣∣∣∂fT SS(y;α,δ,λ)
∂ϑ

∣∣∣. Thus,

∂fNT S(z; θ)
∂θ

=
∫ ∞

0

∂

∂θ
(fN (z;µ+ βy, y)fT SS(y;α, δ, λ))dy

holds by property (iv) for the TSS distribution. This implies (iii).
(iv) follows analogously as in (b) because

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣∂fNT S(z; θ)

∂θ

∣∣∣∣∣
∣∣∣∣∣dz

≤
∫ ∞

−∞

∫ ∞

0
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ ∂∂θ (fN (z;µ+ βy, y)fT SS(y;α, δ, λ)

) ∣∣∣∣∣
∣∣∣∣∣dydz

=
∫ ∞

0

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ ∂∂θ (fN (z;µ+ βy, y)fT SS(y;α, δ, λ)

) ∣∣∣∣∣
∣∣∣∣∣dzdy. (A.8)
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In order to bound (A.8), we discuss the partial derivatives separately. For ∂
∂ϑ , ϑ ∈ (α, δ, λ),∫ ∞

0

∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣ ∂∂ϑ (fN (z;µ+ βy, y)fT SS(y;α, δ, λ)
) ∣∣∣∣∣dzdy

≤
∫ ∞

0
sup
θ∈Θ

∣∣∣∣∣ ∂∂ϑfT SS(y;α, δ, λ)
∣∣∣∣∣
∫ ∞

−∞
sup
θ∈Θ

|fN (z;µ+ βy, y)|dzdy

≤
∫ ∞

0

C
√
y

sup
θ∈Θ

∣∣∣∣∣ ∂∂ϑfT SS(y;α, δ, λ)
∣∣∣∣∣dy

< ∞.

The third line follows because Θ is a compact set such that the integrands can be bounded
away from zero and ∞. We can decompose the inner integral

∫∞
−∞ supθ∈Θ |fN (z;µ +

βy, y)|dz =
∫ z∗

z∗
supθ∈Θ |fN (z;µ+ βy, y)|dz +

∫
R\[z∗,z∗] supθ∈Θ |fN (z;µ+ βy, y)|dz. The first

integral attains the maximum value C√
y . The second integral is bounded by one because we

integrate the normal density with the same value θ∗ ∈ Θ which makes the exponent in the
exponential function maximal for all z ∈ R\[z∗, z

∗]. The finiteness in the fourth line thus
follows analogously to part (a) condition (iv) (using that we can find a bound independent
of the parameters for the series representations that is integrable). For ∂

∂µ , (A.8) is bounded
by ∫ ∞

0
sup
θ∈Θ

|fT SS(y;α, δ, λ)|
∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣ ∂∂µfN (z;µ+ βy, y)
∣∣∣∣∣dzdy

≤ C

∫ ∞

0

1
√
y

sup
θ∈Θ

|fT SS(y;α, δ, λ)|dy

< ∞.

The second line follows because the inner integral is easy to analyze (derive w.r.t. µ, take
the sup on a compact set and integrate w.r.t. z) and bounded by C√

y . Thus, we obtain that
the double integral is finite which follows by the series representation (2.6) for the right tail
and the asymptotic expansion (A.2) near the origin. For ∂

∂β ,∫ ∞

0
sup
θ∈Θ

|fT SS(y;α, δ, λ)|
∫ ∞

−∞
sup
θ∈Θ

∣∣∣∣∣ ∂∂β fN (z;µ+ βy, y)
∣∣∣∣∣dzdy

≤ C

∫ ∞

0

√
y sup

θ∈Θ
|fT SS(y;α, δ, λ)|dy

< ∞.

The second part of (iv) follows analogously. (v) follows in a similar fashion as in (a) and
(b).

As in (a)&(b), it is for (vi) enough to consider the behavior of C(z) for z → ±∞, where
C(z) is the function which bounds the elements of ∂2

∂θ∂θ′ log fNT S(z; θ) in absolute value.
With the same arguments as above it holds that

∂2fNT S(z; θ)
∂θ∂θ′ =

∫ ∞

0

∂2

∂θ∂θ′

(
fN (z;µ+ βy, y)e−λy−λαδΓ(−α)fS(y;α, δ)

)
dy. (A.9)

We use that by the series representation for the parameter derivatives of DuMouchel (1973)
the second derivatives of the stable distribution are bounded by Cθy

−α−1 log(y)2 for large y.
Using this bound in (A.9) and integrating w.r.t. y yields that C(z) = O(z−1−2ε log(|z|)2),
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where ε is the lower boundary of admissible values for α ∈ [ε, 1−ε] (i.e., the value of α that
maximizes the bound). This implies (vi).

□

Proof of Theorem 4.2: We check the conditions of Assumption 3.3 for the tempered stable subor-
dinator. The other two cases follow analogously. (i) Θ is compact by construction and π is chosen
in such a way that it fulfills (ii). (iii) holds if

exp
(
δΓ(−α)

(
(λ− it)α − λα)) = exp

(
δ0Γ(−α0)

(
(λ0 − it)α0 − λα0

0
))

(A.10)

holds for each t. Recall that the Lévy triplet by the Lévy-Khtinchine representation uniquely
determines the distribution. Thus, (A.10) is equivalent to

e−λrδ

r1+α
1(0,∞)(r) = e−λ0rδ0

r1+α0
1(0,∞)(r) (A.11)

for each r. By taking the logarithm, (A.11) is equivalent to the linear independence of 1, log r and
r, which is true. (iv)–(vi) have been shown in the proof of Theorem 4.1. □

Proof of Theorem 4.4: (a) The crucial assumption of Newey and McFadden (1994, Theorem
2.6) for consistency of a GMM estimator is that WEθ0 [g(Xj ; θ)] = 0 only if θ = θ0, where
W = Ω−1 if it is invertible. Küchler and Tappe (2013, Lemma 6.1) showed that cumulant
matching for the CTS distribution holds locally by the local inverse function theorem.
In their Lemma 5.4, they explicitly solved the cumulant matching for the parameters for
the TSS distribution. We here follow the standard GMM theory by verifying that G =
(gmi)1≤m≤p,1≤i≤3 = Eθ0

[
∂g(X;θ)

∂θ

]∣∣∣∣
θ=θ0

is of full column rank (in this case 3 which is the

number of parameters). This implies local identification, see Rothenberg (1971, Theorem 2).
Recall that function g is given in (3.7), that first moments are equal to the first cumulants,
and that the cumulants for the TSS are given in (2.7). To show that G has full rank, it
is enough to consider the first three row of G. This is because if the matrix with the first
three row has full rank then this is the maximal number of linearly independent rows for
the restricted matrix as well as of G (because the column rank can be at most 3). The
entries of the first three rows are

g11 = δλα−1Γ(1 − α) log(λ) − δλα−1Γ(1 − α)ψ(1 − α)
g12 = λα−1Γ(1 − α)
g13 = (α− 1)δλα−2Γ(1 − α)
g21 = 2δ2λ2α−2Γ(1 − α)2 log(λ) − 2δ2λ2α−2Γ(1 − α)2ψ(1 − α) + δλα−2Γ(2 − α) log(λ)

− δλα−2Γ(2 − α)ψ(2 − α)
g22 = 2δλ2α−2Γ(1 − α)2 + λα−2Γ(2 − α)
g23 = (2α− 2)δ2λ2α−3Γ(1 − α)2 + (α− 2)δλα−3Γ(2 − α)
g31 = 3δ3λ3α−3Γ(1 − α)3 log(λ) − 3δ3λ3α−3Γ(1 − α)3ψ(1 − α) + 6δ2λ2α−3Γ(1 − α)Γ(2 − α) log(λ)

− 3δ2λ2α−3Γ(1 − α)Γ(2 − α)ψ(1 − α) − 3δ2λ2α−3Γ(1 − α)Γ(2 − α)ψ(2 − α)
+ δλα−3Γ(3 − α) log(λ) − δλα−3Γ(3 − α)ψ(3 − α)

g32 = 3δ2λ3α−3Γ(1 − α)3 + 6δλ2α−3Γ(1 − α)Γ(2 − α) + λα−3Γ(3 − α)
g33 = (3α− 3)δ3λ3α−4Γ(1 − α)3 + 3(2α− 3)δ2λ2α−4Γ(1 − α)Γ(2 − α) + (α− 3)δλα−4Γ(3 − α).
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The determinant of this 3 × 3 matrix is given by
δ2λ3α−7Γ(1 − α)Γ(2 − α)Γ(3 − α)(ψ(0)(1 − α) − 2ψ(0)(2 − α) + ψ(0)(3 − α)).

A three-dimensional plot with Mathematica shows that the determinant is never zero for
α ∈ (0, 1) and λ ∈ (0,∞). (The factor δ2 is always positive.) Hence the rank of G is full.
This implies local identification of the GMC.

(b) The proof works analogously.
□
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