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Abstract. We introduce a variation of the step-reinforced random walk with general memory. For
the diffusive regime, we establish a functional invariance principle and show that, given suitable
conditions on the memory sequence, the arising limiting processes are always the sum of a noise
reinforced Brownian motion and a (not independent) Brownian motion.

1. Introduction

Motivated by the study of the effects of memory on the asymptotic behaviour of non-Markovian
processes, Schütz and Trimper (2004) introduced around 20 years ago the so-called elephant random
walk. The elephant random walk can be understood as a fundamental example of a step-reinforced
random walk. Additionally, it stands as one of the simplest models that lead to anomalous diffusion.

Anomalous diffusion appears in many physical, biological or social systems such as human travel
Brockmann et al. (2006) or heartbeat intervals and DNA sequences Buldyrev et al. (1994). Further
examples include telomeres in the nucleus of cells Bronstein et al. (2009), ion channels in the plasma
membrane Weigel et al. (2011), diffusion in porous materials Koch and Brady (1988), or diffusion in
polymer networks Wong et al. (2004) to name only a few. The phenomena of anomalous diffusion
often arises in theoretical models by incorporating memory effects such as modeled by the elephant
random walk.

The elephant random walk is a discrete-time nearest neighbour random walk on the integer
lattice Z with infinite memory, in allusion to the traditional saying that an elephant never forgets.
The dynamics of the elephant random walk are governed by a parameter p between zero and one,
commonly referred to as the memory parameter, that specifies the probability of repetition of certain
steps. Roughly speaking, given an initial step of the elephant, say X1 = 1 a.s., then at each integer
time n ≥ 2, the elephant remembers one of its previous steps chosen uniformly at random; then it
decides, either with probability p to repeat this step, or with complementary probability of 1− p to
walk in the opposite direction. Notably, the steps of the elephant are either plus or minus one. As a
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consequence of the aforementioned dynamics, for p > 1/2, the elephant is more inclined to continue
its walk in the average direction it has already taken up to that point. Conversely, for p < 1/2,
it tends to backtrack. In the borderline case of p = 1/2, the elephant does not intend to make
a decision and its path follows that of a simple symmetric random walk on Z. In particular, the
elephant random walk is a time-inhomogeneous Markov chain, although some works in the literature
improperly assert its non-Markovian character. Indeed, if the elephant is at position k ∈ Z at time
n ∈ N, then it performed (n + k)/2 steps up and (n − k)/2 steps down, more information from
the past is irrelevant for predicting the (n + 1)th step. The asymptotic behaviour after a proper
rescaling of the elephant random walk has in recent years been a topic of interest for many authors
and is well understood, see Baur and Bertoin (2016); Bercu (2018); Coletti et al. (2017a,b); Guevara
and Suárez (2020); Kubota and Takei (2019) and Bertenghi (2022); Bercu and Laulin (2021); Baur
(2020); Laulin (2022b); Gut and Stadtmüller (2022); Bercu and Vázquez Guevara (2022); Guevara
and Suárez (2020); González-Navarrete (2020); Miyazaki and Takei (2020) for variations.

A step-reinforced random walk extends the dynamics of the elephant random walk to allow for
more diverse steps, rather than restricting to plus or minus one. In essence, the steps can follow
an arbitrary distribution, typically on R. Put simply, we are given a sequence X1,X2, . . . of i.i.d.
copies of a random variable X on R and again a memory parameter p between zero and one. We
then create a sequence of step-reinforced random variables X1, X2, . . . as follows: X1 = X1 a.s. and
subsequently, at each integer time n ≥ 2, one of the previous steps is chosen uniformly at random.
Then, with probability p the step is repeated; otherwise, with the complementary probability of
1−p, an independent increment following the same distribution as X is taken. In this setting, when
X follows a Rademacher distribution, Kürsten (2016) (see also González-Navarrete and Lambert,
2018) pointed out that the step-reinforced random walk is then just a version of the elephant random
walk with memory parameter q = (p + 1)/2 ∈ (1/2, 1) in the present notation. Observe that in
the degenerate case p = 1, the dynamics of the step-reinforced random walk become essentially
deterministic. Indeed, when p = 1, then the position of the step-reinforced random walk at time
n is just given by nX1 for all n ≥ 1, in particular the only remaining randomness for this process
stems from the random variable X1. Similarly, when p = 0, then the step-reinforced random walk
reduces to a random walk with i.i.d. increments. In light of this, we will exclude these degenerate
cases in our analysis, that is we will only consider p ∈ (0, 1).

In this work, we introduce an additional layer of complexity to the step-reinforced random walk
model. Specifically, we consider a more general underlying memory mechanism that incorporates
recent steps being repeated with a higher likelihood, inspired by diminishing memory effects like
amnesia. This dynamic will be governed by yet another parameter α ∈ R+ that we shall henceforth
refer to as the amnesia parameter. In that direction for α ≫ 1, our amnesic step-reinforced random
walk is much more likely to repeat steps from its recent past, whereas for α close (or equal) to 1 it
behaves more (or exactly) like a step-reinforced random walk. Laulin (2022a) considered a version
of the elephant random walk where the underlying memory process also includes amnesia, see also
Chen and Laulin (2023) for the multidimensional extension. In contrast to the aforementioned work,
our study encompasses a broader range of underlying memory distributions, ultimately including
the one detailed in Laulin (2022a). We contend that the memory distribution employed here is both
comprehensive and representative, encapsulating all known cases from the literature as specific
instances. Furthermore, it remains sufficiently tractable for a thorough analysis.

It is our main objective in this work to establish a functional invariance principle for the properly
rescaled amnesic step-reinforced random walk in the so-called diffusive regime. We will show that
the resulting limiting processes comprise the non-independent sum of a noise-reinforced Browian
motion and a Brownian motion. For the properly re-scaled (non-amnesic) step-reinforced random
walk, Bertoin (2021) established the noise-reinforced Brownian motion as the universal scaling limit
in the diffusive regime. Our work corroborates this result and further indicates the presence of a
Brownian motion in the limiting process for all α ̸= 1, which also agrees with Theorem 2.3 in Laulin
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(2022a). A noise-reinforced Brownian motion is a simple real-valued and centered Gaussian process
B̂ = (B̂(t))≥0 with covariance function given by

E
(
B̂(t)B̂(s)

)
=

1

1− 2p
s

(
t

s

)p

for 0 ≤ s ≤ t and p ∈ (0, 1/2).

This process has notably appeared as the scaling limit for diffusive regimes of the ERW and other
Pólya urn related processes, see Baur and Bertoin (2016); Coletti et al. (2017a); Bertenghi (2022);
Bai et al. (2002).

The remainder of the paper is organised as follows: In Section 2 we will give an exact definition of
the amnesic step-reinforced random walk. In Section 3 we will present the main results of our work.
Section 4 contains a short detour to regularly varying sequences, which are quintessential in the
definition (and therefore the analysis) of amnesic step-reinforced random walks. In Section 5 we lay
the ground work of our analysis before presenting the proofs of our main results in Section 6. For
the readers convenience, and to make this work self-contained, technical lemmas and a non-standard
result on martingales are provided in the appendix.

2. The Model

In this section, we formally introduce our model. We start by giving our memory sequence (βn)
which is the main character of our work. To do so, we consider a positive sequence (µn) and the
associated sequence of partial sum (νn), defined as follows:

ν0 = 0, νn = νn−1 + µn for n ≥ 1.

The sole (yet crucial) additional assumption we make regarding the sequence (µn) is the following:
(A) Let α ≥ 1, the sequence (µn) is regularly varying (at infinity) with index α− 1.

This ensures that the sequence (νn) is also regularly varying of index α ≥ 1. Roughly, this means
that this sequences will have a polynomial growth. In Section 4 we provide more details and
references on the topic of regularly varying sequences.

Now, our memory sequence (βn : n ≥ 2) is distributed as follows:

P(βn = k) =
µk∑n
i=1 µi

=
νk − νk−1

νn
, for 1 ≤ k ≤ n.

The regularly varying assumption ensures that the above memory process tends to prioritize recent
times over older ones.

Hereafter, consider a sequence X1,X2, . . . of i.i.d. copies of a random variables X on R with
finite second order moment. We define X1, X2, . . . recursively as follows: Let (εn : n ≥ 2) be an
independent sequence of Bernoulli random variables with parameter p ∈ (0, 1), also independent of
(βn). Initially, set X1 = X1, and next for n ≥ 1, define

Xn+1 =

{
Xn+1, if εn+1 = 0,

Xβn , if εn+1 = 1.
(2.1)

Finally, the sequence

Sn = X1 + · · ·+Xn

is referred to as a step-reinforced random walk. The definition of the sequence (Xn) implies that
for any bounded and measurable f : R → R+

E(f(Xn+1)) = (1− p)E(f(Xn+1)) +
p

νn

n∑
k=1

µkE(f(Xk)) (2.2)

and it follows by induction that each Xn also has law X .
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Finally, for the rest of the paper, we will assume that we are in the diffusive regime which
corresponds in our case to α−1

α < p < 2α−1
2α (see Proposition 3.1 for more details). The upper bound

condition appears when we study the quadratic variations of our martingales from Section 5 as we
want the variations to be regularly varying of positive index.

In precise terms, our work holds true for α > 1/2. However, we chose to focus on the case of
α ≥ 1 to underscore the presence of amnesia. Indeed, the tendency shifts for 1/2 < α < 1, as the
process exhibits a preference for moments from the early times of the past.

3. Main results

In this section we introduce our main results, Theorem 3.2 and Theorem 3.3. The following
proposition ensures that we can indeed speak of diffusive regime in our setting.

Proposition 3.1. For α−1
α < p < 2α−1

2α , the mean square displacement of the amnesic step-
reinforced random walk is of order n, that is

E(S2
n) ∝ n.

3.1. Law of large numbers. The (strong) law of large numbers will be an essential tool in establishing
the functional invariance principle for the amnesic step-reinforced random walk. As such, Section 6
will first focus on establishing a proof of Theorem 3.2.

Theorem 3.2 (Strong law of large numbers). For α−1
α < p < 2α−1

2α we have the almost sure
convergence

lim
n→∞

Sn

n
= E(X ).

We remark that Theorem 3.2 is trivially true for p = 0. Indeed, in said case the step-reinforced
random walk is just a sequence of centered i.i.d. increments and therefore the (strong) law of large
number applies.

In the setting under which we are in this work, it is sufficient to have the above LLN for p < 2α−1
2α .

However, we strongly believe that this holds for the greater range α−1
α < p < 1 (as long as α > 0).

Proving this convergence goes beyond the purpose of this paper, hence we provide the proof in the
diffuse regime only.

3.2. A functional invariance principle. The main result of this exposition is the following statement:

Theorem 3.3. Suppose that α−1
α < p < 2α−1

2α , then we have the following convergence in distribution
in D([0,∞)) as n tends to infinity(

S⌊nt⌋ − ntE(X )√
nVar(X )

, t ≥ 0

)
=⇒ (Wt, t ≥ 0)

where (Wt, t ≥ 0) is a real-valued, continuous and centered Gaussian process starting from the origin
with covariance given for 0 ≤ s ≤ t by -

E (WsWt) = c1(p, α)s+
c2(p, α)

2α(1− p)− 1
s
( t
s

)1−α(1−p)

where c1(p, α) =
1−α

(1−p)(1−α(1−p)) and c2(p, α) =
p(α(2−p)−1)

(1−p)(1−α(1−p)) .

Observe that for α = 1, Theorem 3.3 recovers Theorem 3.3 in Bertoin (2021). Moreover, we notice
that our scaling coefficients in the covariance of (Wt, t ≥ 0) agree with Display (2.4) of Theorem 2.3
in Laulin (2022a). Furthermore, we notice that as the amnesia parameter α increases, the memory
parameter p also tends towards one which means that reinforcement of the steps is more likely to
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occur. However, as α ↗ ∞ we have p = 1 and in said case Theorem 3.3 clearly does not apply.
Furthermore, as α gets close to 1/2, we notice that this forces the memory parameter p to be close
to zero.

Let us define the coefficients in the covariance function in Theorem 3.3 for fixed but arbitrary
α−1
α < p < 2α−1

2α as c1(p, α) := c1(α) respectively c2(p, α) := c2(α).

α ∈ (1/2, 1) {1} (1,∞)
sgn(c1(α)) + 0 −
sgn(c2(α)) + + +

Table 3.1. Distribution of the signs of the coefficients c1, c2 with respect to the
amnesia parameter α.

Remark 3.4. The covariance’s structure of the process (Wt, t ≥ 0) looks a lot like the covariance
structure of the sum of two independent Gaussian processes: a Brownian motion with scaling
coefficient

√
c1(α) and a noise reinforced Brownian motion with reinforcement 1 − α(1 − p) and

a scaling coefficient
√

c2(α). However, as we will see in the proof of the Theorem, the process
(Wt, t ≥ 0) is indeed the sum of such two processes, but those are in fact not independent. The two
“scaling quantities” can be negative (see Table 3.1) and thus cannot be scaling Brownian motions.

4. Regularly varying sequences

To make this exposition self-contained, we recall here some useful results from the theory of
regularly varying sequences and functions, see Bojanic and Seneta (1973); Galambos and Seneta
(1973) for more details on this subject.

Definition 4.1 (Regularly varying function). A function R : (0,+∞) → (0,+∞) is called regularly
varying (at infinity) of index α ∈ R

R(tx)

R(x)

x→∞−−−→ tα, for all t > 0.

Proposition 4.2 (Regularly and slowly varying function). A function L : (0,+∞) → (0,+∞) is
called slowly varying if

L(tx)

L(x)
−−−→
x→∞

1, for all t > 0.

Then, a function R is regularly varying of index α ∈ R if and only if if there exists a slowly varying
function L such that

R(x) = xαL(x).

Intuitively the meaning of Propostion 4.2 is that the growth rate of the function L does not
change drastically as its input becomes large. Observe that Definition 4.1 entails that the index α
determines how the function behaves at infinity. Indeed, if α = 0, then R is (always) slowly varying.
For x large enough, if α > 0, then R roughly behaves like an increasing function, whereas if α < 0,
then R roughly behaves like a decreasing function. Moreover, Definition 4.1 immediately yields that
R

Definition 4.3 (Regularly varying sequence). A sequence of positive terms (un) is called regularly
varying of index α ∈ R if there exists a regularly varying function R of index α such that un = R(n).

We next give two examples of regularly varying sequences related to our work.
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Example 4.4. (1) Let µn = 1, then (µn) is regularly varying of index 0 and νn = n so that (νn)
is regularly varying of index α = 1. This setting corresponds to the classical ERW.

(2) Let µn = Γ(n+δ)
Γ(n)Γ(δ+1) , then (µn) is regularly varying of index δ and (νn) is regularly varying

of index α = δ+1. This is exactly the memory introduced by Laulin (2022a, Display (1.3)).

During our computations, we will often make use of the following results:

Theorem 4.5 (See Display (1.1) and Theorem 6 in Bojanic and Seneta, 1973). A sequence of
positive numbers (un) is regularly varying of index α > −1 if and only if

1

nun

n∑
k=1

uk −→
n→∞

1

1 + α
.

Theorem 4.6 (Theorem 4 in Bojanic and Seneta, 1973). A sequence (un) of positive numbers is
a regularly varying sequence of index α if and only if there is a sequence of positive numbers (vn)
such that un ∼ vn and

lim
n→∞

n
(
1− vn−1

vn

)
= α. (4.1)

In particular, the sequences (vn) which satisfy condition (4.1) are regularly varying sequences of
index α. A direct consequence of Theorem 4.5 is that

Corollary 4.7. If (un) is regularly varying of index α then,

un+1

un
= 1 +

α

n
+ o
( 1
n

)
.

Further, see condition (B) in Galambos and Seneta (1973), we have the following equivalence.

Proposition 4.8. A sequence (un) of positive numbers is regularly varying of index α if and only
if (n−σun) is eventually (in the sense for n large enough) increasing for each σ < α and (n−τun) is
eventually decreasing for every τ > α.

5. A two dimensional martingale approach

This section is a preliminary section to prove the main theorems. We will present two martingales
that will be crucial for our analysis. To do this, we first assume, without the loss of generality, that
X is centred and normalised, i.e. E(X ) = 0 and σ2 = Var(X ) = 1. For what follows, we shall make
these two assumptions implicitly.

Lemma 5.1. For n ≥ 1, we define the following deterministic sequences

γn = 1 + p
µn+1

νn
, an =

n−1∏
k=1

γ−1
k , ηn =

n−1∑
k=1

1

akνk
.

Further, we set Yn =
∑n

k=1 µkXk. Then (Mn) and (Nn) defined by

Mn = anYn and Nn = Sn − pηnMn

are square-integrable martingales.

Proof : Since E(X2
k) < ∞ for all k ∈ N, the square integrability of Mn and Nn is immediate.
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Further, by (2.1) it follows that

E(Xn+1 | Fn) = pE(Xβn+1 | Fn)

= pE

(
n∑

k=1

Xk1βn+1=k | Fn

)

=
p

νn

n∑
k=1

µkXk

=
p

νn
Yn. (5.1)

In turn, (5.1) yields

E(Yn+1 | Fn) = Yn + µn+1E(Xn+1 | Fn)

=

(
1 + p

µn+1

νn

)
Yn

= γnYn. (5.2)

From (5.2) it is then immediate that Mn = anYn is a martingale. Furthermore,

E(Nn+1 | Fn) = Sn + E(Xn+1 | Fn)− pηn+1Mn

= Sn + p

(
Yn
νn

− ηn+1Mn

)
= Sn + p

(
1

νnan
− ηn+1

)
Mn

= Sn − pηnMn = Nn (5.3)

and (5.3) entails that (Nn)n≥0 is also a martingale. □

Observe that Lemma 5.1 allows us to rewrite Sn as

Sn = Nn + pηnMn (5.4)

and equation (5.4) allows us to establish the asymptotic behaviour of Sn via an extensive use of
martingale theory. In order to investigate the asymptotic behaviour of (Sn) via (5.4), we introduce
the two-dimensional martingale (Mn) defined by

Mn =

(
Nn

Mn

)
where (Mn) and (Nn) are the two square-integrable martingales introduced in Lemma 5.1.

Lemma 5.2. The quadratic variation of (Mn) is given by

⟨M⟩n =
n−1∑
k=0

(
(1− p) +

p

νk
Uk

)
Ak − ξn, (5.5)

where Un =
∑n

k=1 µkX
2
k , ξn =

∑n−1
k=0

p2

ν2k
Y 2
k Ak and

Ak =

(
(1− pak+1ηk+1µk+1)

2 ak+1µk+1 − pa2k+1ηk+1µ
2
k+1

ak+1µk+1 − pa2k+1ηk+1µ
2
k+1 a2k+1µ

2
k+1.

)
Proof : Denote the martingale increment tn+1 = Xn+1 − p

νn
Yn and observe that indeed

E(tn+1 | Fn) = 0.
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We obtain

∆Mn+1 = Mn+1 −Mn

=

(
Sn+1 − Sn − p(ηn+1Mn+1 − ηnMn)

an+1Yn+1 − anYn

)
=

(
Xn+1 − p(ηn+1an+1Yn+1 − ηnanYn)

an+1µn+1tn+1

)
=

(
(1− pan+1ηn+1µn+1)tn+1

an+1µn+1tn+1

)
=

(
1− pan+1ηn+1µn+1

an+1µn+1

)
tn+1. (5.6)

Further we have

E
(
t2n+1 | Fn

)
= E(X2

n+1 | Fn)−
p2

ν2n
Y 2
n

= (1− p) +
p

νn

n∑
k=1

µkX
2
k − p

ν2n
Y 2
n

= (1− p) +
p

νn
Un − p

ν2n
Y 2
n . (5.7)

In turn, this yields

E
(
(∆Mn+1)(∆Mn+1)

T | Fn

)
=

(
(1− p) +

p

νn
Un − p

ν2n
Y 2
n

)
Ak. (5.8)

Thanks to (5.8) we immediately arrive at (5.5). □

Then, we find that:

Corollary 5.3. We have

⟨M⟩n =
n∑

k=1

(
(1− p) +

p

νk
Uk

)
(akµk)

2 − ζn, (5.9)

where ζn = p2
n∑

k=1

a2k
ν2k−1

µ2
kY

2
k−1

and

⟨N⟩n =

n∑
k=1

(
(1− p) +

p

νk
Uk

)
(1− pakηkµk)

2 − χn

where χn =

n∑
k=1

p2

ν2k−1

(1− pakηkµk)
2 Y 2

k−1.

The asymptotic behaviour of Mn is closely related to the one of

w̃n =

n∑
k=1

(
(1− p) +

p

νk
Uk

)
(akµk)

2 (5.10)

as one can observe from (5.9) that we always have ⟨M⟩n ≤ w̃n and that ζn is negligible when
compared to w̃n. By the same token, the asymptotic behaviour of Nn is closely related to the one
of tildezn where

z̃n =
n∑

k=1

(
(1− p) +

p

νk
Uk

)
(1− pakηkµk)

2 . (5.11)
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6. Proof of main results

In this section we give detailed proofs of our main Proposition and Theorems.
We first show that we are in the diffusive regime by showing the mean square displacement are of

order n (Proposition 3.1). Then, we need to establish a proof of the law of large numbers (Theorem
3.2) as this result is a requirement in order to establish a proof of our main result (Theorem 3.3).

6.1. Proof of Proposition 3.1.

Proof of Proposition 3.1: Using the decomposition (5.4), we are left to compute

E(S2
n) = E(N2

n) + 2pηnE(NnMn) + p2η2nE(M2
n).

All the required information can be be taken from Lemma 5.2 and Corollary 5.3 respectively. Specif-
ically, we have:

E(N2
n) =

n∑
k=1

(1− pakηkµk)
2 −

n∑
k=1

(1− pakηkµk)
2E(Y 2

k−1),

E(M2
n) =

n∑
k=1

(akµk)
2 − p2

n∑
k=1

a2k
ν2k−1

µ2
kE(Y 2

k−1),

E(NnMn) =
n∑

k=1

akµk(1− pakηkµk)−
n∑

k=1

akµk(1− pakηkµk)
p2

η2k
E(Y 2

k ).

Further, we know that

⟨M⟩n = An + o(An),

this entails that, as n tends to infinity, it suffices to estimate

E(N2
n) ∼

n∑
k=1

(1− pakηkµk)
2, E(M2

n) ∼
n∑

k=1

(akµk)
2, E(NnMn) ∼

n∑
k=1

akµk(1− pakηkµk).

Thanks to the asymptotic behaviour established in A.3 we have

E(N2
n) ∼ n

(
(1− α)2

(1− α(1− p))2

)
,

p2η2nE(M2
n) ∼ p2

n(anµnηn)
2

2α(1− p)− 1
∼ n

(
p2α2

(1− α(1− p))2(2α(1− p)− 1)

)
,

2pηnE(NnMn) ∼ n

(
2pα(1− α)

(1− α(1− p))2

)
and the result readily follows. □

6.2. Proof of Theorem 3.2. We now give the proof of the strong law of large numbers (Theorem
3.2).

Proof of Theorem 3.2: Recall from (5.4) that we have the decomposition

Nn = Sn + pηnMn.

It follows from Corollary 5.3 together with Corollary A.3 that almost surely(ηn
n

)2
a2n+1µ

2
n+1E(t2n+1 | Fn) = O

( 1

n2

)
and ( 1

n

)2
(1− pan+1ηn+1µn+1)

2 E(t2n+1 | Fn) = O
( 1

n2

)
.
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Hence, we have almost surely∑
n≥1

(ηn
n

)2
E((∆Mn+1)

2 | Fn) < ∞ and
∑
n≥1

( 1
n

)2
E((∆Nn+1)

2 | Fn) < ∞.

Next observe by the proof of Corollary A.3 we know that η−1
n ∼ canµn for some positive constant

c. Further, the sequence (anµn) is regularly varying of index α(1 − p) − 1. Trivially, it holds that
ρ = α(1− p)− 1 > −1 = δ. By Proposition 4.8 we thus know that ( n

ηn
) is eventually increasing.

Then, (2.17) from Hall and Heyde (1980, Theorem 2.18) ensures that

lim
n→∞

ηnMn

n
= 0 and lim

n→∞

Nn

n
= 0

and we conclude from the definition of (Nn) that

lim
n→∞

(
Sn − pηnMn

n

)
= 0 a.s.

which achieves the proof.
□

6.3. Proof of Theorem 3.3. Recall that we are working with the two-dimensional martingale (Mn)
defined by

Mn =

(
Nn

Mn

)
,

where (Mn) and (Nn) are the two square-integrable martingales introduced in Lemma 5.1. By
Corollary 5.3 the main difficulty we face is that the predictable quadratic variation processes of (Mn)
and (Nn) increase to infinity at two different rates. Hence we will require a matrix normalisation
technique in order to establish the asymptotic behaviour of the amnesic step-reinforced random
walk.

To simplify the proofs, they are provided here under the assumption that the steps are bounded,
i.e. ∥Xk∥∞ < ∞ for any k ≥ 1. This assumption can be lifted through a truncation argument
detailed in Appendix B.

Lemma 6.1. Let (Vn) be the sequence of positive definite diagonal matrices of order 2 given by

Vn =
1√
n

(
1 0
0 pηn

)
, (6.1)

then ∥Vn∥∞ converges to zero as n tends to infinity.
Further, let v =

(
1
1

)
such that

vTVnMn =
Sn√
n
.

The quadratic variation ⟨M⟩n of (Mn) satisfies in the diffusive regime (i.e. p < 2α−1
2α ),

lim
n→∞

Vn⟨M⟩nV T
n = V a.s.

where the matrix V is given by

V =

(
(1−α)2

(1−α(1−p))2
p(1−α)

(1−p)(1−α(1−p))2

p(1−α)
(1−p)(1−α(1−p))2

p2α2

(1−α(1−p))2(2α(1−p)−1)

)
(6.2)
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Proof : For two sequence (un) and (vn) we say that un ∝ vn if there exists a constant C such that
un ∼ Cvn. By Corollary A.3 we have that

ηn ∝ 1

anµn

and the latter is a regularly varying sequence of index ρ = 1 − α(1 − p). Further, it holds that
ρ < δ = 1/2, because p < 2α−1

2α . It then follows that (n−1/2ηn) is eventually decreasing. Hence it
follows that indeed ∥Vn∥∞ → 0 as n → ∞.

Note that by Lemma 5.2 and Lemma A.1, we have for large enough n

⟨M⟩n = An − ξn,

where

An =

n−1∑
k=0

(
(1− pak+1ηk+1µk+1)

2 ak+1µk+1 − pa2k+1ηk+1µ
2
k+1

ak+1µk+1 − pa2k+1ηk+1µ
2
k+1 a2k+1µ

2
k+1

)(
(1− p) +

p

νk
Uk

)
and

ξn =
n−1∑
k=0

p2

ν2k
Y 2
k

(
(1− pak+1ηk+1µk+1)

2 ak+1µk+1 − pa2k+1ηk+1µ
2
k+1

ak+1µk+1 − pa2k+1ηk+1µ
2
k+1 a2k+1µ

2
k+1

)
.

Thanks to Theorem 3.2, we immediately have that ξn = o(An) since this is true for each coefficient
of the matrix. In particular ξn is negligible as n tends to infinity. Hence we only need to consider
VnAnVn and thanks to the asymptotic rates established in Corollary A.3 we arrive at

lim
n→∞

Vn⟨M⟩nV T
n = V a.s.

with V given by (6.2). □

Corollary 6.2 ((H.1) of Theorem C.1). In the diffusive regime, the quadratic variation of (Mn)
satisfies for all t ≥ 0,

lim
n→∞

Vn⟨M⟩⌊nt⌋V T
n = Vt a.s.

where the matrix Vt is given by

Vt =
1

(1− α(1− p))2

 (1− α)2t
p(1− α)

1− p
tα(1−p)

p(1− α)

1− p
tα(1−p) p2α2

2α(1− p)− 1
t2α(1−p)−1

 .

Lemma 6.3 ((H.2) of Theorem C.1: Lindeberg’s condition). For all t ≥ 0 and ϵ > 0

τ(nt)∑
k=1

E
(
∥Vn∆Mk∥21{∥Vn∆Mk∥>ϵ} | Fk−1

) a.s.−−−→
n→∞

0,

where ∆Mn = Mn −Mn−1.

Proof : First of all, we have from (6.1), (5.6) and (5.7) that

∥Vn∆Mk∥2 =
1

n

(
(1− pakηkµk)

2 + (pηnakµk)
)2
t2k.

Since tk+1 = Xk+1 − p
νk
Yk, we immediately have, by the assumption that our underlying steps X

are bounded a.s., that supk |tk| ≤ ∥X∥∞ < ∞, and this ensures that

E
[
∥Vn∆Mk∥4

]
≤ 1

n2

(
(1− pakηkµk)

2 + p2η2na
2
kµ

2
k

)2∥X∥2∞.
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It follows from the regularly varying properties of the sequences ηn, an and µn, and the fact that
p < 2α−1

2α that,

η−2
n

⌊nt⌋∑
k=1

(akµk)
2 = O(n), η−4

n

⌊nt⌋∑
k=1

(akµk)
4 = O(n)

Hence, we find that
⌊nt⌋∑
k=1

E
[
∥Vn∆Mk∥4

]
= O

(
1

n

)
a.s.

and we deduce that
⌊nt⌋∑
k=1

E
[
∥Vn∆Mk∥21{∥Vn∆Mk∥>ε}

∣∣Fk−1

]
≤ 1

ε2

⌊nt⌋∑
k=1

E
[
∥Vn∆Mk∥4]

a.s.−−−→
n→∞

0.

This concludes the proof. □

The next Lemma establishes how we can decompose the matrix Vt.

Lemma 6.4 ((H.3) of Theorem C.1). The matrix Vt can be written as Vt = tK1 + tα2K2 + tα3K3

where α2 = α(1− p) > 0 and α3 = 2α(1− p)− 1 > 0 as p < 2α−1
2α , and the matrix are symmetric,

K1 =
(1− α)2

(1− α(1− p))2

(
1 0
0 0

)
, K2 =

p(1− α)

(1− p)(1− α(1− p))2

(
0 1
1 0

)
,

K3 =
p2α2

(1− α(1− p))2(2α(1− p)− 1)

(
0 0
0 1

)
.

Proof : This is an immediate consequence of Corollary 6.2 and Display (6.2). □

Lemma 6.5. We have the following convergence in the Skorokhod space of càdlàg functions
D([0,+∞)), (

VnM⌊nt⌋, t ≥ 0
)
=⇒

(
Gt, t ≥ 0

)
where G =

(
Gt, t ≥ 0

)
is a continuous R2-valued centered Gaussian process starting at 0 with

covariance, for 0 ≤ s ≤ t,
E(GsGT

t ) = Vs. (6.3)

Proof : Thanks to Corollary 6.2 and Lemmas 6.3, 6.4, the claim follows immediately with an appeal
to Theorem C.1. □

We are now in a position to give a proof of our main result.

Proof of Theorem 3.3: Thanks to Lemma 6.5 we have the distributional convergence in the sense of
Skorokhod as n tends to infinity(

VnM⌊nt⌋, t ≥ 0
)
=⇒

(
Gt, t ≥ 0

)
(6.4)

Further, thanks to (5.4) we can use the fact that S⌊nt⌋ is asymptotically equivalent to

N⌊nt⌋ +
pα

1− α(1− p)
t1−α(1−p)ηnM⌊nt⌋

Let now ut = (1, t1−α(1−p))T , then by multiplying (6.4) by uTt from the left we obtain that(
S⌊nt⌋√

n
, t ≥ 0

)
=⇒ (Wt, t ≥ 0),
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where Wt = uTt Gt. In order to fully characterise the Gaussian process W = (Wt, t ≥ 0) it suffices
to compute its covariance function. With an appeal to Lemma 6.4 and Display (6.3) we obtain for
0 ≤ s ≤ t

E(WsWt) = uTs E(GsGT
t )ut

= uTs Vsut

= uTs (sK1 + sα(1−p)K2 + s2α(1−p)−1K3)

=
(1− α)2

(1− α(1− p))2
s+

p(1− α)

(1− p)(1− α(1− p))2
s

+
p(1− α)

(1− p)(1− α(1− p))2
sα(1−p)t1−α(1−p)

+
p2α2

(1− α(1− p))2(2α(1− p)− 1)
s2α(1−p)−1(st)1−α(1−p)

=

(
(1− α)2(1− p) + p(1− α)

(1− p)(1− α(1− p))2

)
s

+
p(1− α)

(1− p)(1− α(1− p))2
s

(
t

s

)1−α(1−p)

+

(
p2α2

(1− α(1− p))2(2α(1− p)− 1)

)
s

(
t

s

)1−α(1−p)

=

(
1− α

(1− p)(1− α(1− p))

)
s+

(
p(α(2− p)− 1)

(1− p)(2α(1− p)− 1)(1− α(1− p)

)
s

(
t

s

)1−α(1−p)

This concludes the proof of Theorem 3.3. □

Appendix A. Technical Lemmas

We provide here some technical results that are useful for our study but not directly related to
the proofs or the martingale approach.

Lemma A.1. It holds that

lim
n→∞

Un

νn
= 1 a.s.

Proof : Thanks to the proof of Theorem 3.2, we know that

lim
n→∞

ηnMn

n
= lim

n→∞

anηnYn
n

= 0 a.s.

By Corollary A.3 we know that (anηn/n) ∼ 1/νn, hence it follows that

lim
n→∞

Yn
νn

= 0 a.s.

By assumption, we require our steps to be centred and of variance one. If this is no longer the
case we instead modify the process such that these conditions are satisfied again. For example:

Sn = X2
1 + · · ·+X2

n
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is a step-reinforced random walk with steps distributed as X2, see the robustness in equation (2.2).
In order to apply the LLN, we then instead work with

S̃n = X2
1 − E(X2

1 ) + · · ·+X2
n − E(X2

n)

= X2
1 + · · ·+X2

n − nE(X2
1 )

= X2
1 + · · ·+X2

n − n.

The above, by the robustness of SRRW detailed in (2.2), is again a step-reinforced random walk,
this time centred and hence the LLN applies and yields

lim
n→∞

S̃n

n
= 0 a.s.

which is equivalent to

X2
1 + · · ·+X2

n

n

a.s.−−−→
n→∞

1.

The exact same argument now holds for the process Un which is just a modification of Yn where
instead of working with steps X we work with steps X2 − E(X2). It then follows that

lim
n→∞

∑n
k=1 µk(X

2
k − E(X2

k))

νn
= lim

n→∞

∑n
k=1 µkX

2
k −

∑n
k=1 µkE(X2

k)

νn

= lim
n→∞

∑n
k=1 µkX

2
k −

∑n
k=1 µk

νn

= lim
n→∞

∑n
k=1 µkX

2
k − νn

νn
= 0, a.s.

Or, equivalently,

lim
n→∞

Un

νn
= 1 a.s.

□

In light of Lemma A.1, we see that the asymptotic behaviour of (w̃n), (z̃n) defined in Eq. (5.10)
and (5.11) is fully characterised by

wn =

n∑
k=1

(akµk)
2

and

zn =
n∑

k=1

(1− pakηkµk)
2

respectively.
We now discuss the relevant asymptotic rates more closely.

Lemma A.2. The sequence (an) is regularly varying of index −pα.
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Proof : By assumption, we have that (νn) is regularly varying of index α > 0, it follows that

n

(
1− an−1

an

)
= n (1− γn−1)

= −pn

(
νn
νn−1

− 1

)
= −pn

(
α

n
+ o

(
1

n

))
= −pα+ o(1).

By Theorem 4.6 the claim follows. □

Corollary A.3. We record the following asymptotics:

(1) lim
n→∞

anµnηn =
α

1− α(1− p)
.

(2) lim
n→∞

1

n(anµn)2
wn =

1

2α(1− p)− 1
.

(3) lim
n→∞

1

n
zn =

(1− α)2

(1− α(1− p))2
.

Proof : We give the proof for each statement separately.
(1) We have

ηn =
n−1∑
k=1

1

akνk
.

By definition, the sequence (νn) is regularly varying of index α and by Lemma A.2 the
sequence (an) is regularly varying of index −pα. It follows that (anνn)−1 is regularly varying
of index −α(1−p) and it holds that −α(1−p) > −1 for α < 1

1−p or, equivalently, for p > α−1
α .

By Theorem 4.5 it follows that

lim
n→∞

anνn
n

ηn =
1

1− α(1− p)
.

Further, as νn ∼ n
αµn, the claim follows.

(2) Recall that

wn =

n∑
k=1

(akµk)
2

and the sequence (an) is regularly varying of index −pα, whereas the sequence (µn) is
regularly varying of index α− 1. Hence (anµn)

2 is regularly varying of index 2α(1− p)− 2.
We obverse that 2α(1−p)−2 > −1 because p < 2α−1

2α and hence, by Theorem 4.5, it follows
that

lim
n→∞

1

n(anµn)2
wn =

1

2α(1− p)− 1
.

(3) Here we have

zn =

n∑
k=1

(1− pakηkµk)
2.

It is then immediate, from the Stolz–Cesàro theorem and the first item, that

lim
n→∞

1

n
zn =

(1− α)2

(1− α(1− p))2
.
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This concludes the proof. □

The reduction argument relies on the following lemma taken from Jacod and Shiryaev (2003),
that we state for the reader’s convenience:

Lemma A.4 (Lemma 3.31 in Chapter VI of Jacod and Shiryaev, 2003).
Let (Zn) be a sequence of d-dimensional rcll (càdlàg) processes and suppose that

∀N > 0, ∀ϵ > 0 lim
n→∞

P

(
sup
s≤N

|Zn
s | > ϵ

)
= 0.

If (Y n) is another sequence of d-dimensional rcll processes with Y n ⇒ Y in the sense of Skorokhod,
then Y n + Zn ⇒ Y in the sense of Skorokhod.

Appendix B. Truncation argument for removing the boundness assumption

We have established our main result Theorem 3.3 under the simplifying assumption that the
underlying steps are bounded, that is ∥Xk∥∞ < ∞ for all k ∈ N. In this section we present an
argument to lift this restriction, inspired by Bertoin (2020); Bertenghi and Rosales-Ortiz (2022).
As such, we only make the assumption that E(X ) = 0 and 0 < Var(X ) = σ2 < ∞.

First, we require the following bound:

Lemma B.1. Let α−1
α < p < 2α−1

2α , then we have the bound

E

(
sup
k≤n

|Sk|2
)

≤ σ2
(
4zn + 4p2η2nwn + 8p

√
wnznη2n

)
.

Proof : Recall the decomposition from (5.4)

Sn = Nn + pηnMn.

Since (ηn) is an increasing function and (Mn), (Nn) are martingales, (Sn) is a submartingale.
Thanks to Doob’s martingale inequality and the Cauchy-Schwarz inequality, we then have

E

(
sup
k≤n

|Sk|2
)

≤ 4E(|Sn|2)

= 4
(
E(N2

n) + p2η2nE(M2
n) + 2pηnE(NnMn)

)
≤ 4E(N2

n) + 4pη2nE(M2
n) + 8p

√
η2nE(M2

n)E(N2
n).

Recall from Corollary 5.3, Display 5.10 and Display 5.11 that respectively,

E(N2
n) = E(⟨N⟩n) ≤ σ2

n∑
k=0

(1− pakηkµk)
2 = σ2zn

E(M2
n) = E (⟨M⟩n) ≤ σ2

n∑
k=0

a2kµ
2
k = σ2wn

Using these bounds the claim follows. □

Corollary B.2. There exists a non-negative constant C such that

lim
n→∞

1

n
E

(
sup
k≤n

|Sk|2
)

≤ Cσ2.
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Proof : This is now an immediate consequence of Corollary A.3. Indeed we have

1

n
E

(
sup
k≤n

|Sk|2
)

≤ σ2

(
4
1

n
zn + 4p2

1

n
wnη

2
n + 8p

√
1

n
zn × 1

n
wzη2n

)
∼ σ2

(
c1 + c2(anµnηn)

2 + c3
)

∼ Cσ2.

□

We now split each underlying step Xi for i ∈ N as

Xi = X≤K
i +X>K

i

where respectively,

X≤K
i := Xi1{|Xi|≤K} − E

(
Xi1{|Xi|≤K}

)
X>K

i := Xi1{|Xi|>K} − E
(
Xi1{|Xi|>K}

)
,

yields a natural decomposition for (Sn) in terms of two step-reinforced random walks

S̃n = S≤K
n + S>K

n ,

where (S≤K
n ), (S>K

n ) are step-reinforced versions with typical step centred and distributed respec-
tively as

X≤K = X1{|X|≤K} − E
(
X1{|X|≤K}

)
and

X>K = X1{|X|>K} − E
(
X1{|X|>K}

)
.

Moreover, X≤K is centred with variance σ2
K and σ2

K → σ2 as K ↗ ∞. Similarly X>K is centred
and we denoted it’s variance by ς2K , which converges towards zero as K ↗ ∞. We will also write
the respective truncated random walks as

S≤K
n = X≤K

1 + · · ·+X≤K
n ,

S>K
n = X>K

1 + · · ·+X>K
n .

Note, that thanks to Theorem 3.3 we know that(
S≤K
⌊nt⌋

σK
√
n
, t ≥ 0

)
=⇒ (Wt, t ≥ 0),

where (Wt, t ≥ 0) is the Gaussian process specified in Theorem 3.3.
In order to apply Lemma A.4, we need the following Lemma:

Lemma B.3. For any sequence (Kn) increasing towards infinity, we have

lim
n→∞

1

n
E

(
sup
k≤nt

∣∣∣S>Kn
k

∣∣∣2) = 0.

Proof : Recall that we denoted by ς2K the variance of X>K and further that ς2K → 0 as K ↗ ∞.
Thanks to Corollary B.2 we know that there exists some non-negative constant C such that

lim
n→∞

1

n
E

(
sup
k≤nt

∣∣∣S>Kn
k

∣∣∣2) ≤ C lim
n→∞

ς2Kn
t = 0.

□
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We can now apply Lemma A.4 to the processes

Y n
t =

S≤Kn

⌊nt⌋√
n

, Zn
t =

S>Kn

⌊nt⌋√
n

, t ≥ 0.

We see from Lemma B.3 and the Markov inequality that Lemma A.4 applies to said process. It
then follows by the decomposition

n−1/2S⌊nt⌋ = Y n
t + Zn

t =⇒ σW (t), t ≥ 0, as n → ∞.

This shows that Theorem 3.3 holds for general, possibly unbounded, steps as long as X ∈ L2(P).

Appendix C. A non-standard result on martingales

The proof of our main result, Theorem 3.3, relies on a non-standard functional central limit
theorem for multi-dimensional martingales. A simplified version of Theorem 1 part2) of Touati
Touati (1992) is as follows.

Theorem C.1. Let (Mn) be a locally square-integrable martingale of Rd adapted to a filtration
(Fn), with predictable quadractic variation ⟨M⟩n. Let (Vn) be a sequence of non-random square
matrices of order d such that ∥Vn∥ decreases to 0 as n tends to infinity. Moreover, let τ : R+ → R+

be a non-decreasing function going to infinity at infinity. Assume that there exists a symmetric and
positive semi-definite matrix Vt that is deterministic and such that for all t ≥ 0

Vn⟨M⟩τ(nt)V T
n

P−−−→
n→∞

Vt. (H.1)

Moreover, assume that Lindeberg’s condition is satisfied, that is for all t ≥ 0 and ϵ > 0,
τ(nt)∑
k=1

E
(
∥Vn∆Mk∥21{∥Vn∆Mk∥>ϵ} | Fk−1

) P−−−→
n→∞

0, (H.2)

where ∆Mn = Mn −Mn−1.
Finally, assume that for some q ∈ N∗

Vt =

q∑
j=1

tαjKj (H.3)

where αj > 0 and Kj is a symmetric matrix.
Then, we have the distributional convergence in the Skorokhod space D([0,∞)) of right-continuous
functions with left-hand limits, (

VnMτ(nt), t ≥ 0
)

=⇒ (Gt, t ≥ 0)

where G = (Gt, t ≥ 0) is a continuous Rd-valued centered Gaussian process starting at 0 with
covariance function given for 0 ≤ s ≤ t for,

E
(
GsGT

t

)
= Vs.
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