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Abstract. Using recent results on the occurrence times of a stringrobsys in a stochas-
tic process with mixing properties, we present a new methothe search of rare words in
biological sequences modelled by a Markov chain. We obthimued on the error between
the distribution of the number of occurrences of a word inqus@ce and its Poisson ap-
proximation. A global bound is already given by a Chen-Ste@thod. Our approach, the
1-mixing method, gives local bounds. Since we only need thar @7 the tails of distribu-
tion, the global uniform bound of Chen-Stein is too large #@msla better way to consider
local bounds. It is the first time that local bounds are del/fee Poisson approximation.
We search for two thresholds on the number of occurrences fvhich we can regard a
studied word as an over-represented or an under-reprelsamte A biological role is sug-
gested for these over- or under-represented words. Ouoahgities such thresholds for a
panel of words much broader than the Chen-Stein method velichot give any resultin a
great number of cases where our method works. Comparingetieas, we observe a bet-
ter accuracy for thé-mixing method for the bound of the tails of distribution. ®oethod
can obviously be used in domains other than biology. We alssemt the softwar@ANOW
(available aht t p: / / st at . genopol e. cnrs. fr/ sg/ sof t war e/ panow ) dedi-
cated to the computation of the error term and the thresHotdsstudied word.

1. Introduction

Modelling DNA sequences with stochastic models and dewetpstatistical methods to
analyse the enormous set of data that results from the reuttipjects of DNA sequencing
are challenging questions for statisticians and biolsgisfiany DNA sequence analysis
are based on the distribution of the occurrences of patteavieng some special biological
function. The most popular model in this domain is the Markbain model that gives a
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description of the local behaviour of the sequence (see §dméL983); Blaisdell (1985);
Philips et al. (1987); Gelfand et al. (1992)). An importanblgem is to determine the
statistical significance of a word frequency in a DNA seq@endicodeme et al. (2002)
discuss about this relevance of finding over- or under-smpreed words. The naive idea is
the following: a word may have a significant low frequency iDIHA sequence because
it disrupts replication or gene expression, whereas afsignily frequent word may have
a fundamental activity with regard to genome stability. Méelown examples of words
with exceptional frequencies in DNA sequences are biokdgialindromes corresponding
to restriction sites avoided for instance n coli (Karlin et al. (1992)), the Cross-over
Hotspot Instigator sites in several bacteria (Smith etZ298(Q); El Karoui et al. (1999)),
and uptake sequences (Smith et al. (1999)) or polyadeaylatgnals (van Helden et al.
(2000)).

The exact distribution of the number of a word occurrenceeuthe Markovian model
is known and some softwares are available (Robin and Daud&89); Régnier (2000))
but, because of numerical complexity, they are often usetbtopute expectation and
variance of a given count (and thus use, in fact, Gaussiarogjpations for the dis-
tribution). In fact these methods are not efficient for lomgjsences or if the Markov
model order is larger tha® or 3. For such cases, several approximations are possible:
Gaussian approximations (Prum et al. (1995)), Binomiala@s$bn approximations (van
Helden et al. (1998); Godbole (1991)), compound Poissomcaqpations (Reinert and
Schbath (1998)), or large deviations approach (Nuel (2004)this paper we only focus
on the Poisson approximation. For the first time, we give allbound for the Poisson
approximation. We approximat&( N (A4) = k) by exp(—tP(A))[tP(A)]*(k!)~! where
P(N(A) = k) is the stationary probability under the Markov model tha ttumber of
occurrencesV(A) of word A is equal tok, P(A) is the probability that wordd occurs at
a given position, and is the length of the sequence. Intuitively, a binomial disttion
could be used to approximate the distribution of occurrede particular word. Length
t of the sequence is largB( A) is small if A is large. Thus, we use the more numerically
convenient Poisson approximation. Our aim is to bound thar &etween the distribution
of the number of occurrences of wortland its Poisson approximation. In Reinert and
Schbath (1998), the authors prove an upper bound for a comafoisson approximation.
They use a Chen-Stein method, which is the usual methoddptitpose. This method has
been developed by Chen on Poisson approximations (Cheb){l&ter a work of Stein on
normal approximations (Stein (1972)). Its principle is tnhd the difference between the
two distributions in total variation distance for all sutssef the definition domain. Since
we are interested in under- or over-represented words, everdy interested in this differ-
ence for the tails of the distributions. Then, the unifornuibd given by the Chen-Stein
method is too large for our purpose. We present here a newoahglased on the property
of mixing processes. Our method has the useful particylarigive a bound on the error
at each point of the distribution. More precisely, it offarserror tern¥, for the number
of occurrence#, of word A:

—tP(A k
e()ﬂ < e(A k).
k!
Moreovere(A, k) decays factorially fast with respectto

Abadi (2001a, 2004) presents lower and upper bounds fongherential approxima-
tion of the first occurrence time of a rare event, also calfigtihg time in a stationary
stochastic process on a finite alphabet witlor ¢-mixing property. (Abadi and Vergne, in
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preparation) describe the statisticgeturn timesof a string of symbols in such a process.
In (Abadi and Vergne, in preparation), the authors proveiag®a approximation for the
distribution of occurrence times of a string of symbols i-mixing process. The first part
of our present work is to determine some constants not estpliomputed in the results of
the above mentioned articles but necessary for the proafiofireorem and moreover for
its practical use. Theaoritical constants are useless iw#yeof numerical tests, that is why
we have to determine these constants. Our work is complemgetat all these articles, in
the sense that it relies on them for preliminary results aadapts them tg-mixing pro-
cesses. Since Markov chains are mixing processes, all thegks established for mixing
processes also apply to Markov chains which model bioldg®guences.

This paper is organised in the following way. In section 2,jmeoduce the Chen-Stein
method. In section 3, we define/amixing process and state some preliminary notations,
mostly on the properties of a word. We also present in this@ethe principal result of our
work: the Poisson approximation (Theorem 3.3). In sectiomelstate preliminary results.
Mainly, we recall results of Abadi (2004), but computing thié necessary constants and
we present lemmas and propositions necessary for the pfddfemrem 3.3. In section 5,
we establish the proof of our main result: Theorem 3.3 ond@oigpproximation. Using
1-mixing properties and preliminary results, we prove anargmund for the difference
between the exact distribution of the number of occurrerfiogard A and the Poisson
distribution of parametef(A). Section 6 is dedicated to numerical results. For the search
of over-represented words, we show how our method is bétterthe Chen-Stein method
on both synthetic and biological data. In this section, ve® @iresent results obtained by
a similar method, theé-mixing method. We end the paper presenting some examples of
biological applications, and some conclusions and petisesoof future works.

2. The Chen-Stein method

2.1. Total variation distance.

Definition 2.1. For any two random variable¥ andY with values in the same discrete
spaceF, the total variation distance between their probabilistrdutions is defined by

dry (£(X), £(V)) = 3 37 [B(X = i)~ B(Y =i)|.
i€k
We remark that for any subsgtof £
IP(X € ) —P(Y € S)| < drv(L(X), L(Y)).

2.2. The Chen-Stein methodhe Chen-Stein method is used to bound the error between
the distribution of the number of occurrences of a wdrih a sequenc&” and the Poisson
distribution with parametefP(A) wheret is the length of the sequence afidA) the
stationary measure od. The Chen-Stein method for Poisson approximation has been
developed by Chen (1975); a friendly exposition is in Aaati al. (1989) and a description
with many examples can be found in Arratia et al. (1990) andi8ar et al. (1992). We
will use Theoreml in Arratia et al. (1990) with an improved bound by Bardour kt a
(1992) (Theorem.A and Theoren0.A).

First, we will fix a few notations. Le#d be a finite set (for example, in the DNA case
A = {a,c,g,t}). PutQ = A%, For each = (z,),,., € ©, we denote byX,,, them-th
coordinate of the sequenee X,,(z) = z,,. We denote byl : Q — Q the one-step-left
shift operator: so we will havél’(x)),, = ,+1. We denote byF the o-algebra ovef
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generated by strings and bfy; the o-algebra generated by strings with coordinate$ in
with I C Z. We consider an invariant probability measirrever . Consider a stationary
Markov chainX = (X;),., on the finite alphabetl. Let us fix a wordA = (a1, ..., ay).
Fori € {1,2,--- ,t — n+ 1}, letY; be the following random variable

Y; =Y;(A) = 1{word A appears at positionin the sequende
= (X, Xigna) = (a1, an)},

where1{F} denotes the indicator function of s&t We puty = Y'Y, the ran-
dom variable corresponding to the number of occurrencesvedra, E(Y;) = m, and
S, = m. ThenE(Y) = m. Let Z be a Poisson random variable with parameter
m: Z ~ P(m). For eachi, we arbitrarily define a se¥'(i) c {1,2,---,t —n + 1}
containing the point. The sefi/(:) will play the role of a neighbourhood of

Theorem 2.2(Arratia et al. (1990); Bardour et al. (1992))et | be an index set. For each
1 € I, letY; be a Bernoulli random variable with;, = P(Y; = 1) > 0. Suppose that, for
eachi € I, we have choseVi(i) C I withi € V(i). LetZ;,i € I, be independent Poisson
variables with mearp;. The total variation distance between the dependent Bdiinou
processY” = {Y;,i € I'} and the Poisson process= {Z,,i € I} satisfies

drv(L(Y), L(Z)) < b1 + b2 + b3

where
bi=> > EY)E(Y)),
i JEV(3)
=Y, > EWY),
i JEV(i),jF#1

by = ZElE(n —pilY;,5 £ V().

Moreover, ifiV = 3., YiandA = >, ; p; < oo, then

drv (LOV), POV) < X _;ﬂ (by + bs) + min (1, @) bs.

We think of V(¢) as a neighbourhood of strong dependenc#;ofintuitively, b; de-
scribes the contribution related to the size of the neighthmad and the weights of the
random variables in that neighbourhood; if &ll had the same probability of success,
thenb; would be directly proportional to the neighbourhood sizéne Termb, accounts
for the strength of the dependence inside the neighbourtasoid depends on the second
moments, it can be viewed as a “second order interactiomi.tefFinally, b3 is related
to the strength of dependencegfwith random variables outside its neighbourhood. In
particular, note thati; = 0 if Y; is independent ofY;|j ¢ V(¢)}.

One consequence of this theorem is that for any indicatastiom of an event, i.e. for
any measurable functionalfrom € to [0, 1], there is an error bound of the forliih(Y) —
Eh(Z)| < drv (LX), L(Z)). Thus, ifS(Y) is a test statistic then, for alle R,

P(S(Y) >t) —P(S(Z) > t) < by + by + b3,

which can be used to construct confidence intervals and tfivalues for tests based on
this statistic.
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3. Preliminary notations and Poisson Approximation

3.1. Preliminary notations.We focus on Markov processes in our biological applications
(see 6) but the theorem given in the following subsectiorsialdished for more general
mixing processes: the so callgdmixing processes.

Definition 3.1. Lety = (¢(¢)),~, be a sequence of real numbers decreasing to zero. We
say that( X, ), is ay-mixing process if for all integeré > 0, the following holds
P(BNT-++)(C)) — P(B)P(C
w B (€) ~PBFC) _

nEN,BG}—{OMn},CG]‘—{nZO} ]P)(B)]P)(C)

where the supremum is taken over the g@¢@ndC, such thal(B)P(C) > 0.

For a wordA of 2, that is to say a measurable subsefofve say thatd € C,, if and
only if
A={Xo=ao,..., Xn-1=0an 1},

with a; € A,i = 1,...,n. Then, the integen is the length of wordd. For A € C,,
we define the hitting time4 :  — NU {oco}, as the random variable defined on the
probability space(,F ,P):

Ve eQ, 7a(z)=inf{k>1:Tkz) e A}.

T4 IS the first time that the process hits a given measurdbl&Ve also use the classical
probabilistic shorthand notations. We writes = m} instead of{z € Q : 74(x) = m},
T—F(A)instead of{x € Q : T*(x) € A} and{X? = x3} instead o X,, = x;, ..., X =
x5 }. Also we write for two measurable subsetandB of (2, the conditional probability of
BgivenA asP(B|A) =P4(B) = P(BnA)/P(A) and the probability of the intersection
of AandB by P(A N B) or P(4; B). ForA = {XJ' =z~ '} and1 < w < n, we
write A) = {X~L = 2"~1 1 for the event consisting of tHastw symbols ofA. We

also writea V b for the supremum of two real numbersandb. We define the periodicity
pa Of A € C,, as follows:

pa = inf{k € N*|[ANT*(A) # 0}.

pa is called the principal period of word. Then, we denote bR, = R,(n) the set of
words A € C,, with periodicityp and we also defing,, as the set of wordd € C,, with
periodicity less thaifvn/2], where].] defines the integer part of a real number:

(3]
Ry ={A€Culpa=p}. B = | Ry
p=1

B, is the set of words which are self-overlapping before hairttength (see Example 3.2).
We defineR (A) the set of return times of which are not a multiple of its periodicifya:

R(A) = {k € {[n/palpa +1,....,n — LHANT*(A) £ 0}.

Letus denote 4 = #R(A), the cardinality of the seéR (A). Define alsov4 = min R(A)

if R(A) # 0 andn4 = n otherwiseR(A) is called the set of secondary periods/band
n4 is the smallest secondary period 4f Finally, we introduce the following notation.
For an integes € {0,...,t — 1}, let N* = 32! 1{T~%(A)}. The random variablé/’
counts the number of occurrencesAbetweens andt¢ (we omit the dependence of).
For the sake of simplicity, we also pit’ = N{.
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TABLE 3.1. Periods and overlapping@maat aaat aaa
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Example3.2 Consider the wordd = aaataaataaa. Sincepy = 4, we haved € B,
wheren = 11. See RBLE 3.1 to note thaR(A) = {9;10},r4 =2andny = 9.

3.2. The mixing methodWe present a theorem that gives an error bound for the Poisson
approximation. Compared to the Chen-Stein method, it hasdlvantage to present non
uniform bounds that strongly control the decay of the tatrbution of N'¢.

Theorem 3.3(y-mixing approximation) Let (X,,), ., be ay-mixing process. There
exists a constant’y, = 254, such that for alld € C,, \ B,, and all non negative intege¥s
andt, the following inequality holds:

—FA)(1P(A))"
]P)(Nt:k)_e ]E:' ( )) < O¢6¢(A)€ (t—(3k+1)n)P(A (A k)
k-1 ke {gtay
whereg, (A, k) = (2))F 1 e[ a2y
i — (@) n
() (et
ot =t [l 0P (49) 1+ oo~

and\ = tP(A)(1 + ¢(n)).

This resultis at the core of our study. It shows an upper béarithe difference between
the distribution of the number of occurrences of werdh a sequence of lengthand the
Poisson distribution of parametét(A). Proof is postponed in Section 5.

4., Calculation of the constants

Our goal is to compute a bound as small as possible to coieottror between the
Poisson distribution and the distribution of the number ofworences of a word. Thus,
we determine the global constatif, appearing in Theorem 3.3 by means of intermediary
bounds appearing in the proof. General bounds are integestiymptotically im, but for
biological applicationsy is approximately betweein0 or 20, which is too small. Then
along the proof, we will indicate the intermediary boundsttive compute. Before estab-
lishing the proof of that Theorem 3.3, we point out here, fas\ereferences, some results
of Abadi (2004), and some other useful results. In Abadi @0these results are given
only in the¢-mixing context. Moreover exact values of the constantsatagiven, while
these are necessary for practical use of these methods. Wel@the values of all the
constants appearing in the proofs of these results.
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Proposition 4.1(Proposition 11 in Abadi (2004))Let (X, ),,., be ay-mixing process.
There exist two finite constants, > 0 andC; > 0, such that for any., any wordA € C,,,

and anyc € {471, ﬁ} satisfying

¥ (c/4) <P ({TA <c/ayN{raoTt > c/2}) ,

there existsA, with n < A < ¢/4, such that for all positive integers, the following
inequalities hold:

]P(m > ke)—P(ra > c— m)k‘ < Cae(A)KP(ra > c—20)F . (4.1)

\P(TA > ke) =P (14 > c)k‘ < Cye(A)KP (14 > c—2A)°,  (4.2)
withe(A) = inf  [(P(A) + ().

1
<L Fray

Both inequalities provide an approximation of the hittinge distribution by a geo-
metric distribution at any point of the formt¢ = kc. The difference between these dis-
tributions is that in 4.1, the geometric term inside the nmosgiis the same as in the upper
bound, while in 4.2, the geometric term inside the moduluarger than the one in the
upper bound. That is, the second bound gives a larger ermmwilluse both in the proof
of Theorem 4.3.

Proposition 4.2. We have’, = 24 andC), = 25.
Proof. For the details of the proof of Proposition 4.1, we refer togdsition11 in Abadi
(2004).

For anyc € [471, ﬁ} andA € [n, ¢/4], we denoteV; = {74 o TH2 > ¢ — jA}

andN = {74 > ¢ — 2A} for the sake of simplicity. Abadi (2004) obtains the follogi
bound:

VE > 2, ‘p(m > ke) — 11»(]\/)’“’ < (a) + (b) + (c), with

>
|
I\

(a) =Y PN

P(ra > (k—j)c) —P(TA > (k—j— 1)c;J\/2k_j_1)‘,

E
Il
N O

P (N

(]

(b) = P (TA > (k—j— 1)c;N2k_j_1) —P(ra>(k—j— 1)C)P(N§)‘,
j=0

(©) =PN)* VB (r4 > ) P (V).

First, for any measurablB € F{(y41)c,(¢+2)c+n—1},» We haveP (B) + 9 (A) < 3¢ (A) <

3¢ (A). We can also remark th@(N) > P(r4 > ¢) > Pra > 1/(2P(A)) > 1/2. Then,

by iteration of the mixing property, we have the followingguality for all¢ € N:

L
P (ﬂNf,B) < 6P (N) e (A).
i=0
We apply this bound in the inequalities (14) and (15) of Al@di04) to get
k—2
(a) < Z]P)(N)j (6P (N)FTI 72 g (A)) =6(k —1)e (A)P(N)FD,
7=0

k—2
() <Y PWY (6]P’ (NI e (A)) — 6(k — 1)e (A)P(A)FD,
j=0
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We also havéc) <P (N)* ' P (N;74 0 T¢722 < 2A) < e (A)P(N)* ',

We obtain (4.1):‘P(TA > ke) — P (V)| < 24ke (A) P (V)"

We deduce (4.2)‘:]? (Ta > ke) =P (14 > c)k‘ < 25ke (A)P (M),

Then,C, = 24 andC}, = 25. O

Theorem 4.3(Theorem 1 in Abadi (2004))Let (X,,),, ., be ay-mixing process. Then,
there exist constants;, > 0 and0 < =; < 1 < =y < oo, such that for alln € N and any
A € C,, there existg 4 € [Z1, 2], for which the following inequality holds for all> 0:

s L) otEa)
‘P ( n §A>
withe(A) = inf  [(P(A)+¢(0)] and fi(A4,t) = (tP(A) v 1) FD.

n<l<pray

< Che(A) f1(A, 1),

We prove an upper bound for the distance between the reshitad) time and the
exponential law of expectation equal to one. The faetot) in the upper bound shows
that the rate of convergence to the exponential law is given lrade off between the
length of this time and the velocity of loosing memory of thegess.

Proposition 4.4. We have’;, = 105.
Proof. We fixc = ﬁ andA given by Proposition 4.1. We define
—logP(14 > c—2A)
§a= :
cP(A)

There are three steps in the proof of the theorem. First, wsidert of the formt = k¢
with k& a positive integer. Secondly, we prove the theorem for @any the formt¢ =
(k 4+ p/q)c with k, p positive integers and < p < g with g = [Wlm} , where].] defines
the integer part of a real number. Finally, we consider timeaiaing cases. Here, for the
sake of simplicity , we do not detail the two first steps (foatttrsee Abadi (2004)), but
only the last one. Letbe any positive real number. We write= kc + r, with k a positive

integer and- such that) < r < ¢. We can choose &such that < t andt = (k + p/q)c
with p, ¢ as before. Abadi (2004) obtains the following bound:

P(ra>t) = e ¥ < P (ry > ) = P(ra > D) + [P (ra > 1) — e 8P

T ‘e—gAIP’(A)E _ e—gAIP’(A)t‘ _
The first term in the triangular inequality is bounded in tbkdwing way:

[P(ra >t)—P(ra>1)] = P(TA>E;TAOTE§t—f)

IN

P (TA > ke;Ta o Tt < A)
P (N)" 72 (AP(A) + 1(A)))
4P (N)Fe(A)
< de(A)e AR
The second term is bounded like in the two first steps of thefgmAbadi (2004). We
apply inequalities (4.1) and (4.2) to obtain
P (14 > 1) — e AP < (34 O tP(A) + C, + 2C3)e(A)e 64T AL,

VASVANRVAN
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Finally, with the definition of 4 and knowing thah® < r < ¢, the third term is bounded
using the Mean Value Theorem (see for example Douglass J1996

AT _ 6P| < ¢ p(a) <,, _ 720> e EAPAT < o(4)e—EAP(A)
g

Thus we haveP (14 > t) — e $4F(A!| < 105¢(A) f1(A, €at) and the theorem follows
by the change of variablés= ¢ 4t. ThenC), = 105. O

Lemma 4.5. (X,,),,c, be ay-mixing process. Suppose thBtC A € Fq
Fibtg,....00} With b, g € N. The following inequality holds:

PA(BNC) < Pa(B)P(C)(1 + 4(g)).
Proof. SinceB C A, obviouslyP(A N BN C) = P(BNC). By they-mixing property

P(BNC) < P(B)(P(C)+1(g)). We divide the above inequality lB(A) and the lemma
follows. O

p, C €

.

For all the following propositions and lemmas, we recalt tha

ew(A) = inf [(TA-l-n)P (A<w>) 1+ (na —w))| .

1<w<na

Proposition 4.6. Let(X,,),, ., be ay-mixing process. Lefl € R, (n). We recall thap 4
is the principal period of wordd. Then the following holds:

(a) Forall M, M’ > g > n,
[Pa(ta>M+M)=Ps(1a>M)P (14 > M)
< Pa(ra>M—g)29P(A)[1+9(g)],
and similarly
[Pa(ta>M+M)—Py(ra>M)P (14 > M —g)]
< Pa(ra>M—g)[gP(A) +2¢(g)].
(b) Forallt > ps € N,with{a =Pa(14 > pa),
[Pa(Ta >1t) —CaP (14 > t)| < 2e4(A).
The above proposition establishes a relation betweemditthd return times with an

error bound uniform with respect to In particular,(b) says that these times coincide if
and only if(4 = 1, namely, the stringl is non-self-overlapping.

Proof. In order to simplify notation, fot € Z, TK] stands for4 o Tt. We introduce a gap
of lengthg after coordinaté/ to construct the following triangular inequality

[Pa(ra>M+ M) =Py (14> M)P (14 > M)

< ‘PA (TA>M+M)—TPy (TA > M;TXMJFQ] > M’—g)’ (4.3)
+ }]P’A (TA > M;TXW-’_Q] > M’ —g) —Pa(ra>M)P (14 > M’—g)’ (4.4)
+ Pa(ra>M)|P(ra>M —g)—P(ra > M. (4.5)

Term (4.3) is bounded with Lemma 4.5 by
Pa (ra > M7 < g) <Pa(ra > M= g) gP(4) [1+(9)] .

Term (4.4) is bounded using themixing property byP4 (74 > M) ¥(g). The modulus
in (4.5) is bounded using stationarity B(74 < g) < gP(A). This ends the proof of both
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inequalities of item(a).
Item (b) for ¢ > 2n is proven similarly to itenfa) witht = M + M’, M = p4, andg = w
with 1 < w < n4. Considernow 4 <t < 2n.

QA—]P’A(TA >t) ZPA(p<TA St)Z]P’A(TA ER(A)U(TLSTA St)) Sew(A).

The first equality follows directly by definition gf4. The second one follows by definition
of R(A) and the commentaries previous to Example 3.2. The inegualibws by an
application of Lemma 4.5 WitlB = A, C' = Ujcr(aynin,...nT A andg = ny —
w. (Il
Let{y =Pa(7a > pa)andh = 1/(2P(A)) — 2A, thenf s = —2logP(74 > h).
Lemma4.7. Let(X,,) be ay-mixing process. Then the following inequality holds:

|§A — CA| < 11€w(A).

mEZ

Hence, we have
Ca —1ley(A) <€a < Ca+1ley(A).

Proof.

h h )
P(ra>h) = [[PGa>ilra>i-1)=]]Q-P (T (A)ra>i-1))
=1 =1
h
= H (1 - pP(A)),

=1

wherep; < M. Therefore

]ID(TA>i—1)

PA h
Ea+2) log(l—pP(A) =2 > CaP(A)

i=1 i=pa+1

h
< 2 > |=log(l = piP(A)) — CaP(A)] .

1=pa+1

The above modulus is bounded by
|=log(1 — piP(A)) — piP(A)] + [pi — Ca| P(A).

Now note thatly — (1 — e )| < (1 — e ¥)2 for y > 0 small enough. Apply it with
y = —log(1 — p;IP(A)) to bound the most left term of the above expressionhp(4))2.
Further by Proposition 4.6) and the fact thaP (4 > h) > 1/2 (see in Proposition 4.2
thatP (V) > 1/2) we have

2e4(A)

lpi — Cal < m < dey(A).

foralli =ps +1,...,h. Yetas before

— “log(1 = piP(A)) < pa (piP(A) + (piP(A))?) < ey (A).
=1
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Finally, by definition ofh

h
2 ) CaP(A) — Ca| < AAP(A) + 2paP(A) < bey(A).
i=pa+1

This ends the proof of the lemma. O

Proposition 4.8. Let (X,,),, ., be ay-mixing process. Then the following inequality
holds:

IP(14 > t) — e FA| < Chey(A)(tP(A) V 1)e (Ca—1lew (AR
Proof. We bound the first term with Theorem 4.3 and the second withrha 4.7 :

|P(ra >t) —e P < |P(1yg > t) — e $aPA)| 4 |e—8atP(A) _ o—tF(4))
[P(r4 > t) — e*éAtIP’(A)| < OhE(A)e*EAtIP’(A) < Chey (A)e*(CAfllew(A))tIP’(A)
le=6atP(A) _ o=tF(A)| < {P(A)|Eq — 1]e min{LEa}tP(A)
< 11tP(A)ew(A)e—(CA—llew(A))tIF’(A)'
This ends the proof of the proposition wit), = Cj, + 11. O

Definition 4.9. Given A € C,, we define forj € N, the j-th occurrence time oft as
the random variableﬁf) : ) — NU {o0}, defined on the probability spa¢g, F,P) as
follows: for anyz € ©, 7" (z) = 74 () and forj > 2,

(@) =inf {k > 77V (w) : TH(x) € A}.

Proposition 4.10. Let (X, ),, ., be ay-mixing process. Then, forall ¢ B,,, all k € N,
and all0 < t; <t < ... < t < tfor which21<n_i£1k{tj —tj—1} > 2n, there exists a
J

positive constant’; independent ofl, n, t andk such that
k k+1
P (ﬂ (ng) = tj) ;TXCJFI) > t) — P(A)k H P;
j=1 =1
< CHE(P(A)(1+ (n))) ey (A)e™ (1 ERFDMFEA)
whereP; = P(t4 > (t; —tj—1) — 2n).

Proof. We will show this proposition by induction oh. We putA; = t; — ¢;_; for
j=2, ...k, Ay =t; andAg; =t — ti. Firstly, we note that by stationarity

P(ra=t)=P(A4;74 >t —1).

Fork = 1, by a triangular inequality we obtain

2
P (TA = tl;T1(42) > t) —P(4) H P;

Jj=1

< ’]P’ (TA = t1;71(42) > t) - P (TA = t1;Nttl+2n = 0)} (4.6)
B = Ny = 0) =B (ra = 1) Py @)
+ ’]P)(A;T >t —1)—P (4 Nt = 0) ‘ P (4.8)

2
+ P (AN =0)P - P(A) [P (4.9)

J=1
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Term (4.6) is equal t& (TA =ty U2 T (A) VY, o, = 0) and then

I€R(A)Ui=1

(4.6) =P (A; Lj T7'(A); N}, = 0) .

SinceA ¢ B, for 1 < i < p4, the above probability is zero. Thus, using mixing property

2n
P (A; U  777AsNg, = o)

PIER(A)Ui=pa
2P(A)P(A)(ra +n)(1 + ¥ (n))P (N5, =0)
2P (A)ey(A)e™ (= BrHINEA)
Term (4.7) is bounded using-mixing property
4.7 < Y1 +9(n))P(A)P P,
< PP(A)ey(A)e - EFIME),

Analogous computations are used to bound terms (4.8) agy (4.
Now, Iet us suppose that the proposition holdsifer1 and let us prove it fok. We put

S = {TX) = t;}. We use a triangular inequality again to bound the term ifdftehand
side of the inequality of the proposition by a sum of five terms

k k+1
P (ﬂ (Tg):tj);fgkﬂ) St _P(A)kHPj ST+ IT+IIT+1V + V.

Jj=1 j=1

(4.6)

IN

IN N

=P ﬂ SjiTa T > f) - (ﬂ 837Ntt: 1247-11 = O§T_tk(A)§Nttk+1 = 0) |
j=1
k—1 trp—1 )
=P (SN =0 | T7(ART " (A); N, 4 =0
j=1 1=t —2n+1
< (P(A) (1 +9(m)" (1 = (n)) (npa + (ra + n)B(AM)) e~ EFDDED
k—1
IT=|P Sy N2 = 0; T~ " (A); Nf 1 =0
j=1
k—1
—P | (SN2 =0 P (AN =0)
Jj=1
k—1
<P ()iNST =0 | P (AN = 0) g(n)
j=1

< (P(A)(1 4 1(n)))F(n)e= (= BRrHmEA)
k—1

- k—1
HI=P ( i Ny = 0) - P (ﬂ i Nie 1 = 0) P (A; Ny~ =0)
o i
k—1 tp—1 )
<PlO)spNH=00 U T7(4) | P
Jj=1 tp—2n+1
< 2P(A)(P(A)(1 + ¢(n)))Fe(t=Bk+1MP(A)
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We use the inductive hypothesis for the tefin and the case with = 1 for the termV/.

w o= Pl SNt L =0 - ’“HP P (A; N{~™ =0)

tp—1+

IN

& (k—l)(lP’( )(1+1(n)) ey (A)e - (3’”1)”)]“),

Vo= BT 1HP [P (A; N7 = 0) = P(A) Py
j=1
< 2(P(A)(1 + ¢(n))) ey (A)e (= BrFDMEA),
Finally, we obtain

T+IT+IIT+ 1V +V < 3+ Ci(k—1) 4 2)(P(A) + ¢(n)) e, (A).

To conclude the proof, it is sufficient that k = 3 + C1(k — 1) + 2, thereforeC; = 5.
This ends the proof of the proposition. O

5. Proof of Theorem 3.3

In this section, we prove the main result of our work (seeie@.2): an upper bound
for the difference between the exact distribution of the harnof occurrences of word
and the Poisson distribution of paramet®(A). Throughout the proof, we will note in
italic the terms computed by our softwdPANOW(see Section 6.1).

Proof. Fork = 0, the result comes from Proposition 4B (V! = 0) = P(14 > t)).
Fork > 2t/n, sinceA ¢ B,,, we haveP(N* = k) = 0. Hence,

e—tP(4) k o—tP(A) k
P(N' = k) — w _ w
(tP(A))F~1 tP(A)
= k-1 &k
(tP(A)*!

1
S 3 oo W

Indeed, since: < 2 thenZtA) < nEA) < culd),

Now, let us con5|det < k < 2t/n We consider a sequence which contains exdctly
occurrences ofl. These occurrences can be isolated or can be in clumps. Wedeé
following set:

k
T =T(ty, to, ..., ty) = {ﬂ(ﬂ{) =t;); 74D > t} .

j=1

We recall that we puP; = P(74 > (t; —tj—1) —2n), A; =t; —t;_1 forj =2,..k,
Ay =ty andAgyq =t — tg. Definel(7) = 2mm {A;}. We say that the occurrences of

A are isolated iff (7)) > 2n and we say that there exists at least one clunif7f) < 2n.
We also denote

B, ={T|I(T)<2n} and Gy={T|I(T)>2n}.
The set{ Nt = k} is the disjoint union betweeB;, andG, then
]P)(Nt = k) = P(Bk) + ]P)(Gk),
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e P (kP(A))"* e P (rp(A))"*
k! k!

We will prove an upper bound for the two quantities on the trigdind side of the above
inequality to conclude the proof of the theorem.

We prove an upper bound for P(By). DefineC(7) = 2?22 Tia;>2ny + 1. C(T)
computes how many clusters there are in a gieSuppose thaf is such thaC(7) =1
and fix the positiort; of the first occurrence ofi. Further, each occurrence inside the
cluster (with the exception of the most left one which is fiedd, ) can appear at distance
d of the previous one, with 4 < d < 2n. Therefore, the)-mixing property leads to the
bound

P(N' = k) — < P(By) + [P(Gk) —

A

k
1}»( U T(tl,tg,...,tk)> < Pl U Tt (A) (5.1)

=1 n/2<t; 41—t <2n;
=2,k

P(A)ew (A)k716¢ (A)ef(t7(3k+1)n)IF’(A).

Suppose now thaf is such that’(7) = i. Assume also that the most left occurrence of
thei clusters of7 occurs at(1),...,¢(i), with1 < #(1) < --- < t(i) < t fixed. By the
same argument used above, we have the inequalities

P( U T(tl,...,tk)>
{t1, ot Nt (1)t (0) }

< (P(A)(1 4 ¥(n))) ey (A)Fiem (- BR)mEA),

To obtain an upper bound fd¥(Bj;) we must sum the above bound overZAllsuch that
C(T) = i with 4 running from1 to k — 1. FixedC(7T) = i, the locations of the most left
occurrences ofd of each one of the clusters can be chosen in at mést many ways.
The cardinality of each one of theclusters can be arranged di’j;ll many ways. (This
corresponds to breaking the interal/2, k + 1/2) in i intervals at points chosen from
{1+1/2,...,k—1/2}.) Collecting these informations, we have tiatB;,) is bounded

by

to,.. otk

IN

k—1
3" CICILB(A) (1 + () ey (A)F e (- (BrEDmE)
=1

i k—1
< e (=GEHIMPA), (A)k max (/\/eqp.'(A)) chiill
StSk— 1.

2N k<
k—1)! ol
e~ (t=EHDRP(A) g (A) ( : (2/\)’“_1

( N )'( N )k*lfﬁ ey (A)
ey (A) )7\ ey (A)

This ends the proof of the bound fBr( By,).
k—1

IN

We comput@(By,) < Y~ CiCL_1(P(A)(1 +1)(n))) ey (A)F e (- BRDmEA),
i=1
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e~ (1p(A))"

We prove an upper bound for o

P(Gy) — . It is bounded by four

terms by the triangular inequality

k k+1
S PINEY =) > ) —r)* [P (5.2)
TEG) j=1 j=1
k+1 k+1
+ Y P [P - [ e @ W (5.3)
TEG j=1 j=1
i Z P(A)F e (t=20+1mP(A) _ eftIP’(A)’ (5.4)
TeGy
L[ #CR e D EP(A)* e T (1P(A))" (5.5)
tk k! k! ' '

We will bound these terms to obtain Theorem 3.3.
First, we bound the cardinal ¢f;,
k tk

#Gk S Ct S E

Term (5.2) is bounded with Proposition 4.10
k

(k—1)!
Term (5.3) is bounded with Proposition 4.8

(5.2) <4 (P(A)(L + 1 (n))) ey (A)e~ - GEFDMP(A)

tk k+1j-1 k+1
(53) < FPAW Y ]7 Pj—e*@ﬂ")P(A)’ [ e @2
’ j=1i=1 i=j+1

k
< %P(A)k(k+1)Cpew(A)e—<cA—new(A))ﬂP(A)

(tP(4)"
k—1)r
whereC), is defined in Proposition 4.8.
We compute

< 2G, (A)e*(ﬁAfllew(A))tIP’(A)

(tP(A)* k+1
= k-1! k
[(8 4+ CutP(A) + Cy + 2Cy)e(A) 4 11tP(A)ey, (A)] e~ (Ca—Liew (ANEA),

(5.3)

Term (5.4) is bounded by

ik
(5.4) < —P(A)*(k + 1)2nP(A)e A 2(k+1nB(4),

~ k!
To bound term (5.5), we bound the following difference
| _ k
#Grk! 1| < (t —Fk(n))" 1 < k(k+ 4n)'
tk - tk - t
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Then, we have
k (k + 4n) e~ A (tP(A))"
t k! '
Now, we just have to add the five bounds to obtain the theoremtive constant’y, =

1+ Ci 4+ 2C, + 8 + 8. Proposition 4.10 shows that; = 5 and Proposition 4.8 with
Theorem 4.3 that’, = 116 . Then, we prove the theorem wih, = 254. O

(5.5) <

6. Biological applications

With the explicit value of the constaft, of Theorem 3.3, and more particularly thanks
to all the intermediary bounds given in the proof of this tteen, we can develop an al-
gorithm to apply this formula to the study of rare words inlbgical sequences. In order
to compare different methods, we also compute the boundssmrnding to @&-mixing,
process for which a proof of Poisson approximation is giverfAbadi and Vergne, in
preparation). Let us recall the definition of such a mixingqass.

Definition 6.1. Let¢ = (¢(¢)),~, be a sequence decreasing to zero. We say g
is a¢-mixing process if for all integers > 0, the following holds
P(BNT-+41)(C)) — P(B)P(C
- IB( (C) ~PBPON _ 4

neEN,BEF (o, n},CEFn>0} ]P)(B)

meZ

where the supremum is taken over the 8sndC, such that(B) > 0.

Note that obviouslyy-mixing implies¢-mixing. Then, we obtain two new methods for
the detection of over- or under-represented words in bioldgequences and we compare
them to the Chen-Stein method.

We recall that Markov models arg-mixing processes and then algemixing pro-
cesses. Then, we first need to know the functivrede for a Markov model. It turns out
that we can use

() = ¢(¢) = Kv* with K > 0and0 < v < 1,

where K andv have to be estimated (see Meyn and Tweedie (1993)). Thergeaezal
estimations of’ andv. We chooser equal to the second eigenvalue of the transition

.....

order of the Markov model and the stationary distribution of the Markov model.

We recall that we aim at guessing a relevant biological réle word in a sequence
using its number of occurrences. Thus we compare the nunilmmcarrences expected
in the Markov chain that models the sequence and the obsemwbler of occurrences.
It is recommended to choose a degree of significante quantify this relevance. We
fix arbitrarily a degree of significance and we want to caltuthe smallest number of
occurrences necessary foP(V > u) < s, whereN is the number of occurrences of the
studied word. If the number of occurrences counted in theesecg is larger than this,
we can consider the word to be relevant with a degree of sigmifies. We have

+oo
P(N >u) <Y (Pp(N =k) + Error(k))
k=u
wherePp(N = k) is the probability under the Poisson model thétis equal tok
and Error(k) is the error between the exact distribution and its Poisggmaximation,
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bounded using Theorem 3.3. Then, we search the smalleshtiide; such that
+oo
Z (Pp(N = k) + Error(k)) < s. (6.1)
k=u
Then, we hav®(N > u) < s and we consider the word relevant with a degree of signifi-
cances if it appears more than times in the sequence.

In order to compare the different methods, we compare theskimids that they give.
Obviously, the smaller the degree of significance, the melevant the studied word is.
But for a fixed degree of significance, the best method is tleevdrich gives the smallest
thresholdu. Indeed, to give the smallestis equivalent to give the smallest error in the tail
of the distribution between the exact distribution of thentner of occurrences of word
and the Poisson distribution with paramef(A).

6.1. Software availabilityWe develope®ANOW dedicated to the determination of thresh-
old u for given words. This software is written in ANSI++ and developed on x86
GNU/Linux systems with GCC 3.4, and successfully testeth W @CC latest versions on
Sun and Apple Mac OSX systems. It reliessag++ library (Miele et al. (2005)).

Compilation and installation are compliant with the GNUnstard procedure. It is
available athtt p: // st at. genopol e. cnrs. fr/ sg/ sof t war e/ panow . On-
line documentation is also availabl®ANOWis licensed under the GNU General Public
License Oitt p: / / www. gnu. or g).

6.2. Comparisons between the three different methods.

6.2.1. Comparisons using synthetic daté&/e can compare the mixing methods and the
Chen-Stein method through the values of threshotdbtained withPANOWusing (Abadi
and Vergne, in preparation) in the first case and Reinert ahti&8h (1998) in the second
one. We recall that the method which gives the smallest ltolds; is the best method
for a fixed degree of significance. Table 6.2 offers a goodrmutyf the possibilities and
limits of each method. It displays some results on diffekgotds randomly selected (no
biological meaning for any of these words). Table 6.2 has ledtained with an order one

TABLE 6.2. Table of thresholds obtained by the three methods (se-
guence lengtht equal to10%). For each one of the three methods and for
each word, we compute the threshold which permits to consideword as an
over-represented word or not, for degree of significanegual t00.1 or 0.01.
IMP means that the method can not return a result.

t=10°
Words s=0.1 s=0.01
CS ¢ ¥ CS o ¥
cceg IMP IMP IMP IMP IMP IMP
aagcgc IMP 1301 378 IMP 1304 392
cgagcttc 18 38 18 IMP 40 22
ttgggctg 14 27 14 18 29 17
gtgcggag 16 32 16 22 34 20
agcaaata 19 39 19 IMP 41 23
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Markov model using a random transition matrix and for a de@fesignificance 0.1 and
0.01. IMP means that the method can not return a result. Thereegezad reasons for that
and we explain them in the following paragraph. Analysingineesults, we notice some
differences between the methods.

Firstly, none of the methods gives us a result in all the ca¥ésrecall that the Chen
Stein method gives a bound'§) using the total variation distance. If the degree of signif
icances that we choose is smaller than the bound of Chen-Stein, wer fiiesd a threshold

u such that
+oo

CS+Y Pp(N=k)<s.
k=u

Then, each time that the given bound is higher than the sigmifie degree, use of the Chen
Stein method is impossible. Therefore there are many examtipat we can not study with
this method. Obviously, it is interesting to have a smallrdegof significance and that
may be impossible by this restriction of the Chen-Stein meétt-or example, this problem
appears for the wordsagcgc andcgagct t ¢ in Table 6.2. For this second word, the
Chen-Stein bound is equal @0107954. Hence, we can use this method for a significance
degrees equal to0.1 but not for a significance degree 6f01. The same phenomena
appears for the wordgcaaat a (the Chen-Stein bound is equald®120193).

The ¢- and y-mixing methods are not based on the total variation diganthen,
whatever the degree of significancand if the studied word satisfies the three following
weak properties, we always give a threshe)dontrary to the Chen Stein method. In spite
of these three conditions, our methods enable us to studych bmeader panel of words
than the Chen-Stein method. Indeed, for these two methbdrily problematic cases
arise either when functiogy, (see Theorem 3.3) is larger tharor for a “high” parameter
of the Poisson distribution (“high” means larger th#®) or when the word periodicity is
smaller than half its length (see assumptions in Theorem 3.8 B5,,). In fact, the first
case does not occur very frequently (in any case in Table Bt reason why the function
ey (Or a similar function in the-mixing case) has to be smaller thhis that, for numerical
reasons, the error term has to be decreasing with the nurhbecarrence& and without
this condition ore,, we can not ensure this decrease. We have to compute errc fizran
finite number of values of but in order to reduce the computation time, when error term
becomes smaller than a certain value (we chddse’), we suppose all the following
error terms equals to this value. That is why error term hdsetdecreasing. The second
problem, a “high” parameter of the Poisson distributiorju a computational difficulty
and once again it does not occur very frequently (only fomied cccg in Table 6.2 for
instance). We would like to insist on the main advantage ofroethods: we can fix any
significance degree and, except in the very rare cases mentioned above, we wdllafin
thresholdu, contrary to the Chen-Stein method.

Also, we can use our methods for any Markov chain order. lddeANOWruns fast
enough contrary to the R program used to compute the Chemt&iand of Reinert and
Schbath (1998). Note that, in progrd®ANOW we give another method to compute the
Chen-Stein bound (see Abadi (2001b)) and this method gippsoaimately the same
Chen-Stein bound.

The second main observation we can make is that, when it wdnksChen-Stein
method gives either a similar threshaldthan they-mixing method, or a smaller one.
This means that th¢-mixing method out-performs the Chen-Stein method.

Thirdly we notice that the)-mixing method is always better than tilemixing one.
Obviously, this result was expected by the definitions of#mixing processes and also by
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the theorems because of the extra faetdf ~(3k+1))P(4) (see Theorem 3.3 and Theorem
2 in (Abadi and Vergne, in preparation). We are interestethbyreal impact of this factor
on the threshold: it is significantly better in the case ofyamixing process.

Finally, let us remember you that Chen-Stein method giverasylt in a great number
of cases where our method works. And it is more the case whemodel of interest is
a Markov model of order greater thanIindeed, Chen-Stein bounds for Markov model of
order greater thal are very high and then cannot give any result whereas ourmueiod
works easily.

6.2.2. Biological comparisonsNow, we present a few results obtained on real biological
examples with order one Markov models. There are many cae=gaf words which have
relevant biological functions (promoters, terminatoepeat sequences, chi sites, uptake
sequences, bend sites, signal peptides, binding sitégcties sites, ...). Some of them
are highly present in the sequence, some others are almsshtabThen, it turns out
to be interesting to consider the over or the under-reptaten of words to find words
biologically relevant.

In this section, we test our methods on words already knovireteelevant. We focus
our study on Chi sites or uptake sequences. Chi sites of fieigrotect the genome by
stopping its degradation performed by a particular enzyie function of this enzyme
is to destroy viruses which could appear into the bacteriaisés do not contain Chi sites
and then are exterminated. It turns out that Chi sites arehhigresent in the bacterial
genome. Uptake sequences are abundant sequence motfs)axfated downstream of
OREFs, that are used to facilitate the within-species hotaldransfer of DNA.

Example 1
First, we consider the Chi dgscherichia coligct ggt gg, (see Table 6.3), for different
degrees of significance. We use complete sequengsaiferichia coli K1ZBlattner et al.
(1997)). Sequence length is equal4639221. We recall that for a fixed significance

TABLE 6.3. Table of thresholds obtained by the three methods for
the Chi of Escherichia coli gct ggt gg (sequence length equal to
4639221). For each one of the three methods we compute the threshotdhwhi
permits to consider the word as an over-represented wordtorfar degree of
significances. IMP means that the method can not return a result. “counts”
correspond to the number of occurrences observed in thesegu

s Chen-Stein ¢-mixing -mixing counts

0.1 87 193 83 499
0.01 IMP 195 92 499
0.0001 IMP 197 99 499
1029 IMP 549 498 499

degree, the smaller the threshaldthe best the method is. Then, we can conclude that
they-mixing method gives the most interesting results. CHtofoli could be considered
as an over-represented one fré@ occurrences for a significance degreef 0.0001.
Because Chen-Stein bound is equabt@67726, Chen-Stein method does not permit to
conclude for significance degrees @01 and0.001. Moreover, it is well known that
Chi of E. coli is a very relevant word in this bacteria. Then, we expect § genall
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significance degree for this word. Unfortunately, the mialisignificance degree which
could be obtained by Chen-Stein method is, in fact, the CBteim bound0.067726. Our
method allows to obtain very small significance degree aadtinimal significance degree
for which Chi ofE. coliis considered as an over-represented word by th@xing method,
is given at the last line of Table 6.3: it is equaliio~23°. Note also that the thresholds
increase with the significance degreesto understand this fact, it is sufficient to look at
inequality (6.1). But they increase slowly while significerdegrees decreases. It could
be surprising but it is due to the error term which decreasggfast from a certain number
of occurrences.

Example 2
Second, we consider the Childaemophilus influenzaand its uptake sequence (see Table
6.4), for a significance degreesqual to0.01. We use complete sequencertdemophilus
influenzagFleishmann et al. (1995)). Sequence length is equak30138. We observe

TABLE 6.4. Table of thresholds obtained by the three methods for
the Chi and the uptake sequenceHzemophilus influenza@equence
lengtht equal t01830138). For each one of the three methods and for each
word, we compute the threshold which permits to considenthiel as an over-
represented word or not, for degree of significance equaldo. IMP means
that the method can not return a result. “counts” corresgorttie number of
occurrences observed in the sequence.

Words Chen-Stein ¢-mixing -mixing counts
gatggtgg (chi) 23 36 22 20
gctggtgg (chi) 21 32 20 44
ggtggtgg (chi) 16 IMP IMP 57
gttggtgg (chi) 30 45 26 37

aagtgcggt (uptake) 13 17 13 737

that in all the cases the¢-mixing method is the best one because it gives the smallest
except for the wordygt ggt gg which has a periodicity less tha{rg] (and then we can
not study it: see assumptions in Theorem 3.3). We can nobesthe good significance of
the first Chi gat ggt gg) because we count onf) occurrences in the sequence, whereas
23 occurrences are necessary to consider this word as excaption the other hand,
the uptake sequence is very significant (and then very nefevdndeed, we could fix

a significance degree equal 16~22* and consider it as an over-represented word from
736 occurrences with theé-mixing method. Asaagt gcggt is countedr37 times in the
sequence, we obtain the well-known fact that this word isolgjizally relevant.

7. Conclusions and perspectives

To conclude this paper, we recall the advantages of our nethads. We give an
error valid for all the value$ of the random variabléV? corresponding to the number of
occurrences of word! in a sequence of length Then, we can find a minimal number of
occurrences to consider a word as biologically relevantfeery large number of words
and for all degrees of significance. That is the main advantfgur methods on the
Chen-Stein one which is based on the total variation digtanc for which small degrees
of significance can not be obtained. Results of ptmixing method and the Chen-Stein
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method remain similar but our method has less limitatiorsteNhat our methods provide
performing results for general modelling processes sudfiaakov chains as well as every
¢- andiy-mixing processes.

In terms of perspectives, as we expect more significantteesu hope to improve these
methods adapting them directly to Markov chains insteag-air ¢-mixing. Moreover, it
is well-known that a compound Poisson approximation issodttr self-overlapping words
(see Reinert et al. (2000) and Reinert and Schbath (1998)¢r#r term for the compound
Poisson approximation for self-overlapping words can [s#yderived from our results.
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