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Abstract. We take on a Random Matrix theory viewpoint to study the spectrum
of certain reversible Markov chains in random environment. As the number of
states tends to infinity, we consider the global behavior of the spectrum, and the
local behavior at the edge, including the so called spectral gap. Results are obtained
for two simple models with distinct limiting features. The first model is built on
the complete graph while the second is a birth-and-death dynamics. Both models
give rise to random matrices with non independent entries.

1. Introduction

The spectral analysis of large dimensional random matrices is a very active do-
main of research, connected to a remarkable number of areas of Mathematics, see
e.g. Mehta (2004); Hiai and Petz (2000); Bai (1999); Bollobás (2001); Anderson
et al. (2009); Vu (2008). On the other hand, it is well known that the spectrum of
reversible Markov chains provides useful information on their trend to equilibrium,
see e.g. Saloff-Coste (1997); Boyd et al. (2005); Montenegro and Tetali (2006); Levin
et al. (2009). The aim of this paper is to explore potentially fruitful links between
the Random Matrix and the Markov Chains literature, by studying the spectrum
of reversible Markov chains with large finite state space in a frozen random en-
vironment. The latter is obtained by assigning random weights to the edges of a
finite graph. This approach raises a collection of stimulating problems, lying at
the interface between Random Matrix theory, Random Walks in Random Environ-
ment, and Random Graphs. We focus here on two elementary models with totally

Received by the editors September 1, 2009; accepted March 17, 2010.

2000 Mathematics Subject Classification. 15A52; 60K37; 60F15; 62H99; 37H10; 47B36.

Key words and phrases. random matrices, reversible Markov chains, random walks, random

environment, spectral gap, Wigner’s semi–circle law, arc–sine law, tridiagonal matrices, birth-and-

death processes, spectral analysis, homogenization.
41

http://alea.impa.br/english/index_v7.htm


42 Charles Bordenave, Pietro Caputo and Djalil Chafäı

different scalings and limiting objects: a complete graph model and a chain graph
model. The study of spectral aspects of random Markov chains or random walks
in random environment is not new, see for instance Cheliotis and Virag (2008);
Boivin and Depauw (2003); Zeitouni (2004); Bovier and Faggionato (2008, 2005);
Bolthausen and Sznitman (2002); Sznitman (2004) and references therein. Here we
adopt a Random Matrix theory point of view.

Consider a finite connected undirected graph G = (V,E), with vertex set V and
edge set E, together with a set of weights, given by nonnegative random variables

U = {Ui,j; {i, j} ∈ E}.
Since the graph G is undirected we set Ui,j = Uj,i. On the network (G,U), we
consider the random walk in random environment with state space V and transition
probabilities

Ki,j =
Ui,j

ρi
where ρi =

∑

j:{i,j}∈E

Ui,j . (1.1)

The Markov kernel K is reversible with respect to the measure ρ = {ρi , i ∈ V } in
that

ρiKi,j = ρjKj,i

for all i, j ∈ V . When the variables U are all equal to a positive constant this is
just the standard simple random walk on G, and K− I is the associated Laplacian.
If ρi0 = 0 for some vertex i0 then we set Ki0,j = 0 for all j 6= i0 and Ki0,i0 = 1 (i0
is then an isolated vertex).

The construction of reversible Markov kernels from graphs with weighted edges
as in (1.1) is classical in the Markovian literature, see e.g. Boyd et al. (2005); Doyle
and Snell (1984). As for the choice of the graph G, we shall work with the simplest
cases, namely the complete graph or a one–dimensional chain graph. Before passing
to the precise description of models and results, let us briefly recall some broad facts.

By labeling the n = |V | vertices of G and putting Ki,j = 0 if {i, j} 6∈ E, one
has that K is a random n × n Markov matrix. The entries of K belong to [0, 1]
and each row sums up to 1. The spectrum of K does not depend on the way we
label V . In general, even if the random weights U are i.i.d. the random matrix K
has non–independent entries due to the normalizing sums ρi. Note that K is in
general non–symmetric, but by reversibility, it is symmetric w.r.t. the scalar product
induced by ρ, and its spectrum σ(K) is real. Moreover, 1 ∈ σ(K) ⊂ [−1,+1], and
it is convenient to denote the eigenvalues of K by

−1 ≤ λn(K) ≤ · · · ≤ λ1(K) = 1.

If the weights Ui,j are all positive, thenK is irreducible, the eigenspace of the largest
eigenvalue 1 is one–dimensional and thus λ2(K) < 1. In this case ρi is its unique
invariant distribution, up to normalization. Moreover, since K is reversible, the
period of K is 1 (aperiodic case) or 2, and this last case is equivalent to λn(K) = −1
(the spectrum of K is in fact symmetric when K has period 2); see e.g. Seneta
(2006).

The bulk behavior of σ(K) is studied via the Empirical Spectral Distribution
(ESD)

µK =
1

n

n∑

k=1

δλk(K).
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Since K is Markov, its ESD contains probabilistic information on the corresponding
random walk. Namely, the moments of the ESD µK satisfy, for any ℓ ∈ Z+

∫ +1

−1

xℓµK(dx) =
1

n
Tr(Kℓ) =

1

n

∑

i∈V

rUℓ (i) (1.2)

where rUℓ (i) denotes the probability that the random walk on (G,U) started at i
returns to i after ℓ steps.

The edge behavior of σ(K) corresponds to the extreme eigenvalues λ2(K) and
λn(K), or more generally, to the k–extreme eigenvalues λ2(K), . . . , λk+1(K) and
λn(K), . . . , λn−k+1(K). The geometric decay to the equilibrium measure ρ of the
continuous time random walk with semigroup (et(K−I))t≥0 generated by K − I is
governed by the so called spectral gap

gap(K − I) = 1 − λ2(K).

In the aperiodic case, the relevant quantity for the discrete time random walk with
kernel K is

ς(K) = 1 − max
λ∈σ(K)

λ6=1

|λ| = 1 − max(−λn(K), λ2(K)) .

In that case, for any fixed value of n, we have (Kℓ)i,· → ρ as ℓ → ∞, for every
1 ≤ i ≤ n. We refer to e.g. Saloff-Coste (1997); Levin et al. (2009) for more details.

Complete graph model. Here we set V = {1, . . . , n} and E = {{i, j}; i, j ∈ V }.
Note that we have a loop at any vertex. The weights Ui,j , 1 ≤ i ≤ j ≤ n are
i.i.d. random variables with common law L supported on [0,∞). The law L is
independent of n. Without loss of generality, we assume that the marks U come
from the truncation of a single infinite triangular array (Ui,j)1≤i≤j of i.i.d. random
variables of law L. This defines a common probability space, which is convenient
for almost sure convergence as n→ ∞.

When L has finite mean
∫∞
0 xL(dx) = m we set m = 1. This is no loss of

generality since K is invariant under the linear scaling t → t Ui,j . If L has a finite

second moment we write σ2 =
∫∞
0 (x − 1)2 L(dx) for the variance. The rows of

K are equally distributed (but not independent) and follow an exchangeable law
on R

n. Since each row sums up to one, we get by exchangeability that for every
1 ≤ i, j 6= j′ ≤ n,

E(Ki,j) =
1

n
and Cov(Ki,j ,Ki,j′) = − 1

n− 1
Var(K1,1).

Note that L may have an atom at 0, i.e. P(Ui,j = 0) = 1−p, for some p ∈ (0, 1). In
this case K describes a random walk on a weighted version of the standard Erdős-
Rényi G(n, p) random graph. Since p is fixed, almost surely (for n large enough)
there is no isolated vertex, the row-sums ρi are all positive, and K is irreducible.

The following theorem states that if L has finite positive variance 0 < σ2 < ∞,
then the bulk of the spectrum of

√
nK behaves as if we had a Wigner matrix

with i.i.d. entries, i.e. as if ρi ≡ n. We refer to e.g. Bai (1999); Anderson et al.
(2009) for more on Wigner matrices and the semi–circle law. The ESD of

√
nK is

µ√
nK = 1

n

∑n
k=1 δ

√
nλk(K).
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Theorem 1.1 (Bulk behavior). If L has finite positive variance 0 < σ2 <∞ then

µ√
nK

w−→
n→∞

W2σ

almost surely, where “
w→” stands for weak convergence of probability measures and

W2σ is Wigner’s semi–circle law with Lebesgue density

x 7→ 1

2πσ2

√
4σ2 − x2 1[−2σ,+2σ](x) . (1.3)

The proof of Theorem 1.1, given in Section 2, relies on a uniform strong law
of large numbers which allows to estimate ρi = n(1 + o(1)) and therefore yields a
comparison of

√
nK with a suitable Wigner matrix with i.i.d. entries. Note that,

even though
λ1(

√
nK) =

√
n→ ∞ as n→ ∞, (1.4)

the weak limit of µ√
nK is not affected since λ1(

√
nK) has weight 1/n in µ√

nK . The-

orem 1.1 implies that the bulk of σ(K) collapses weakly at speed n−1/2. Concerning
the extremal eigenvalues λn(

√
nK) and λ2(

√
nK), we only get from Theorem 1.1

that almost surely, for every fixed k ∈ Z+,

lim inf
n→∞

√
nλn−k(K) ≤ −2σ and lim sup

n→∞

√
nλk+2(K) ≥ +2σ.

The result below gives the behavior of the extremal eigenvalues under the assump-
tion that L has finite fourth moment (i.e. E(U4

1,1) <∞).

Theorem 1.2 (Edge behavior). If L has finite positive variance 0 < σ2 < ∞ and
finite fourth moment then almost surely, for any fixed k ∈ Z+,

lim
n→∞

√
nλn−k(K) = −2σ and lim

n→∞

√
nλk+2(K) = +2σ.

In particular, almost surely,

gap(K − I) = 1 − 2σ√
n

+ o

(
1√
n

)
and ς(K) = 1 − 2σ√

n
+ o

(
1√
n

)
. (1.5)

The proof of Theorem 1.2, given in Section 2, relies on a suitable rank one
reduction which allows us to compare λ2(

√
nK) with the largest eigenvalue of a

Wigner matrix with centered entries. This approach also requires a refined version
of the uniform law of large numbers used in the proof of Theorem 1.1.

The edge behavior of Theorem 1.2 allows one to reinforce Theorem 1.1 by pro-
viding convergence of moments. Recall that for any integer p ≥ 1, the weak con-
vergence together with the convergence of moments up to order p is equivalent to
the convergence in Wasserstein Wp distance, see e.g. Villani (2003). For every real
p ≥ 1, the Wasserstein distance Wp(µ, ν) between two probability measures µ, ν on
R is defined by

Wp(µ, ν) = inf
Π

(∫

R×R

|x− y|p Π(dx, dy)

)1/p

(1.6)

where the infimum runs over the convex set of probability measures on R
2 = R×R

with marginals µ and ν. Let µ̃√
nK be the trimmed ESD defined by

µ̃√
nK =

1

n− 1

n∑

k=2

δ√nλk(K) =
n

n− 1
µ√

nK − 1

n− 1
δ√n.

We have then the following Corollary of theorems 1.1 and 1.2, proved in Section 2.
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Corollary 1.3 (Strong convergence). If L has positive variance and finite fourth
moment then almost surely, for every p ≥ 1,

lim
n→∞

Wp(µ̃√
nK ,W2σ) = 0 while lim

n→∞
Wp(µ√

nK ,W2σ) =





0 if p < 2

1 if p = 2

∞ if p > 2.

Recall that for every k ∈ Z+, the kth moment of the semi–circle law W2σ is zero
if k is odd and is σk times the (k/2)th Catalan number if k is even. The rth Catalan

number 1
r+1

(
2r
r

)
counts, among other things, the number of non–negative simple

paths of length 2r that start and end at 0.
On the other hand, from (1.2), we know that for every k ∈ Z+, the kth moment

of the ESD µ√
nK writes

∫

R

xk µ√
nK(dx) =

1

n
Tr
(
(
√
nK)k

)
= n−1+ k

2

n∑

i=1

rUk (i) .

Additionally, from (1.4) we get
∫

R

xk µ√
nK(dx) = n−1+ k

2 +

(
1 − 1

n

)∫

R

xk µ̃√
nK(dx)

where µ̃√
nK is the trimmed ESD defined earlier. We can then state the following.

Corollary 1.4 (Return probabilities). Let rUk (i) be the probability that the random
walk on V with kernel K started at i returns to i after k steps. If L has variance
0 < σ2 <∞ and finite fourth moment then almost surely, for every k ∈ Z+,

lim
n→∞

n−1+ k
2

(
n∑

i=1

rUk (i) − 1

)
=

{
0 if k is odd

σk

k/2+1

(
k

k/2

)
if k is even.

(1.7)

We end our analysis of the complete graph model with the behavior of the
invariant probability distribution ρ̂ of K, obtained by normalizing the invariant
vector ρ as

ρ̂ = (ρ1 + · · · + ρn)−1(ρ1δ1 + · · · + ρnδn).

Let U = n−1(δ1 + · · ·+δn) denote the uniform law on {1, . . . , n}. As usual, the total
variation distance ‖µ−ν‖tv between two probability measures µ =

∑n
k=1 µkδk and

ν =
∑n

k=1 νkδk on {1, . . . , n} is given by

‖µ− ν‖tv =
1

2

n∑

k=1

|µk − νk|.

Proposition 1.5 (Invariant probability measure). If L has finite second moment,
then a.s.

lim
n→∞

‖ρ̂− U‖tv = 0. (1.8)

The proof of Proposition 1.5, given in Section 2, relies as before on a uniform law
of large numbers. The speed of convergence and fluctuation of ‖ρ̂− U‖tv depends
on the tail of L. The reader can find in Lemma 2.3 of Section 2 some estimates in
this direction.
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Chain graph model (birth-and-death). The complete graph model discussed earlier
provides a random reversible Markov kernel which is irreducible and aperiodic. One
of the key feature of this model lies in the fact that the degree of each vertex is
n, which goes to infinity as n → ∞. This property allows one to use a law of
large numbers to control the normalization ρi. The method will roughly still work
if we replace the complete graphs sequence by a sequence of graphs for which the
degrees are of order n. See e.g. Vu (2008) for a survey of related results in the
context of random graphs. To go beyond this framework, it is natural to consider
local models for which the degrees are uniformly bounded. We shall focus on a
simple birth-and-death Markov kernel K = (Ki,j)1≤i,j≤n on {1, . . . , n} given by

Ki,i+1 = bi, Ki,i = ai, Ki,i−1 = ci

where (ai)1≤i≤n, (bi)1≤i≤n, (ci)1≤i≤n are in [0, 1] with c1 = bn = 0 , bi +ai + ci = 1
for every 1 ≤ i ≤ n, and ci+1 > 0 and bi > 0 for every 1 ≤ i ≤ n − 1. In other
words, we have

K =




a1 b1
c2 a2 b2

c3 a3 b3
. . .

. . .
. . .

cn−1 an−1 bn−1

cn an




. (1.9)

The kernel K is irreducible, reversible, and every vertex has degree ≤ 3. For an
arbitrary ρ1 > 0, the measure ρ = ρ1δ1 + · · ·+ ρnδn defined for every 2 ≤ i ≤ n by

ρi = ρ1

i−1∏

k=1

bk
ck+1

= ρ1
b1 · · · bi−1

c2 · · · ci

is invariant and reversible for K, i.e. for 1 ≤ i, j ≤ n, ρiKi,j = ρjKj,i. For every
1 ≤ i ≤ n, the ith row (ci, ai, bi) of K belongs to the 3-dimensional simplex

Λ3 = {v ∈ [0, 1]3; v1 + v2 + v3 = 1}.

For every v ∈ Λ3, we define the left and right “reflections” v− ∈ Λ3 and v+ ∈ Λ3 of
v by

v− = (v1 + v3, v2, 0) and v+ = (0, v2, v1 + v3).

The following result provides a general answer for the behavior of the bulk.

Theorem 1.6 (Global behavior for ergodic environment). Let p : Z → Λ3 be
an ergodic random field. Let K be the random birth-and-death kernel (1.9) on
{1, . . . , n} obtained from p by taking for every 1 ≤ i ≤ n

(ci, ai, bi) =





p(i) if 2 ≤ i ≤ n− 1

p(1)+ if i = 1

p(n)− if i = n.

Then there exists a non-random probability measure µ on [−1,+1] such that almost
surely,

lim
n→∞

Wp(µK , µ) = 0
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for every p ≥ 1, where Wp is the Wasserstein distance (1.6). Moreover, for every
ℓ ≥ 0, ∫ +1

−1

xℓ µ(dx) = E[rpℓ (0)]

where rpℓ (0) is the probability of return to 0 in ℓ steps for the random walk on Z with
random environment p. The expectation is taken with respect to the environment
p.

The proof of Theorem 1.6, given in Section 3, is a simple consequence of the
ergodic theorem; see also Boivin and Depauw (2003) for an earlier application to
random conductance models. The reflective boundary condition is not necessary
for this result on the bulk of the spectrum, and essentially any boundary condition
(e.g. Dirichlet or periodic) produces the same limiting law, with essentially the same
proof. Moreover, this result is not limited to the one–dimensional random walks
and it remains valid e.g. for any finite range reversible random walk with ergodic
random environment on Z

d. However, as we shall see below, a more precise analysis
is possible for certain type of environments when d = 1.

Consider the chain graph G = (V,E) with V = {1, . . . , n} and E = {(i, j); |i−
j| ≤ 1}. A random conductance model on this graph can be obtained by defining K
with (1.1) by putting i.i.d. positive weights U of law L on the edges. For instance, if
we remove the loops, this corresponds to define K by (1.9) with a1 = · · · = an = 0,
b1 = cn = 1, and, for every 2 ≤ i ≤ n− 1,

bi = 1 − ci = Vi =
Ui,i+1

Ui,i+1 + Ui,i−1
.

where (Ui,i+1)i≥1 are i.i.d. random variables of law L supported in (0,∞). The
random variables V1, . . . , Vn are dependent here.

Let us consider now an alternative simple way to make K random. Namely, we
use a sequence (Vi)i≥1 of i.i.d. random variables on [0, 1] with common law L and
define the random birth-and-death Markov kernel K by (1.9) with

b1 = cn = 1 and bi = 1 − ci = Vi for every 2 ≤ i ≤ n− 1.

In other words, the random Markov kernel K is of the form

K =




0 1
1 − V2 0 V2

1 − V3 0 V3

. . .
. . .

. . .

1 − Vn−1 0 Vn−1

1 0




. (1.10)

This is not a random conductance model. However, the kernel is a particular case
of the one appearing in Theorem 1.6, corresponding to the i.i.d. environment given
by

p(i) = (1 − Vi, 0, Vi)

for every i ≥ 1. This gives the following corollary of Theorem 1.6.

Corollary 1.7 (Global behavior for i.i.d. environment). Let K be the random birth-
and-death Markov kernel (1.10) where (Vi)i≥2 are i.i.d. of law L on [0, 1]. Then
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there exists a non-random probability distribution µ on [−1,+1] such that almost
surely,

lim
n→∞

Wp(µK , µ) = 0

for every p ≥ 1, where Wp is the Wasserstein distance as in (1.6). The limiting
spectral distribution µ is fully characterized by its sequence of moments, given for
every k ≥ 1 by ∫ +1

−1

x2k−1 µ(dx) = 0 and

∫ +1

−1

x2k µ(dx) =
∑

γ∈Dk

∏

i∈Z

E

(
V Nγ(i)(1 − V )Nγ(i−1)

)

where V is a random variable of law L and where

Dk = {γ = (γ0, . . . , γ2k) : γ0 = γ2k = 0, and

|γℓ − γℓ+1| = 1 for every 0 ≤ ℓ ≤ 2k − 1}
is the set of loop paths of length 2k of the simple random walk on Z, and

Nγ(i) =

2k−1∑

ℓ=0

1{(γℓ,γℓ+1)=(i,i+1)}

is the number of times γ crosses the horizontal line y = i + 1
2 in the increasing

direction.

When the random variables (Vi)i≥2 are only stationary and ergodic, Corollary
1.7 remains valid provided that we adapt the formula for the even moments of µ
(that is, move the product inside the expectation).

Remark 1.8 (From Dirac masses to arc–sine laws). Corollary 1.7 gives a formula
for the moments of µ. This formula is a series involving the “Beta-moments” of
L. We cannot compute it explicitly for arbitrary laws L on [0, 1]. However, in the
deterministic case L = δ1/2, we have, for every integer k ≥ 1,
∫ +1

−1

x2kµ(dx) =
∑

γ∈Dk

2−
P

i Nγ(i)−
P

i Nγ(i−1) = 2−2k

(
2k

k

)
=

∫ +1

−1

x2k dx

π
√

1 − x2

which confirms the known fact that µ is the arc–sine law on [−1,+1] in this
case (see e.g. Feller, 1968, III.4 page 80). More generally, a very similar com-
putation reveals that if L = δp with 0 < p < 1 then µ is the arc–sine law on

[−2
√
p(1 − p) , +2

√
p(1 − p)]. Figures 3.1-3.2-3.3 display simulations illustrating

Corollary 1.7 for various other choices of L.

Remark 1.9 (Non–universality). The law µ in Corollary 1.7 is not universal, in the
sense that it depends on many “Beta-moments” of L, in contrast with the complete
graph case where the limiting spectral distribution depends on L only via its first
two moments.

We now turn to the edge behavior of σ(K) where K is as in (1.10). Since
K has period 2, one has λn(K) = −1 and we are interested in the behavior of
λ2(K) = −λn−1(K) as n goes to infinity. Since the limiting spectral distribution
µ is symmetric, the convex hull of its support is of the form [−αµ,+αµ] for some
0 ≤ αµ ≤ 1. The following result gives information on αµ. The reader may forge
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many conjectures in the same spirit for the map L 7→ µ from the simulations given
by Figures 3.1-3.2-3.3.

Theorem 1.10 (Edge behavior for i.i.d. environment). Let K be the random birth-
and-death Markov kernel (1.10) where (Vi)i≥2 are i.i.d. of law L on [0, 1]. Let µ be
the symmetric limiting spectral distribution on [−1,+1] which appears in Corollary
1.7. Let [−αµ,+αµ] be the convex hull of the support of µ. If L has a positive
density at 1/2 then αµ = 1. Consequently, almost surely,

λ2(K) = −λn−1(K) = 1 + o(1).

On the other hand, if L is supported on [0, t] with 0 < t < 1/2 or on [t, 1] with
1/2 < t < 1 then almost surely lim supn→∞ λ2(K) < 1 and therefore αµ < 1.

The proof of Theorem 1.10 is given in Section 3. The speed of convergence of
λ2(K) − 1 to 0 is highly dependent on the choice of the law L. As an example, if
e.g.

E

[
log

V

1 − V

]
= 0 and E

[(
log

V

1 − V

)2
]
> 0

where V has law L, then K is the so called Sinai random walk on {1, . . . , n}. In
this case, by a slight modification of the analysis of Bovier and Faggionato (2008),
one can prove that almost surely,

−∞ < lim inf
n→∞

1√
n

log(1 − λ2(K)) ≤ lim sup
n→∞

1√
n

log(1 − λ2(K)) < 0.

Thus, the convergence to the edge here occurs exponentially fast in
√
n. On the

other hand, if for instance L = δ1/2 (simple reflected random walk on {1, . . . , n})
then it is known that 1 − λ2(K) decays as n−2 only.

We conclude with a list of remarks and open problems.

Fluctuations at the edge. An interesting problem concerns the fluctuations of
λ2(

√
nK) around its limiting value 2σ in the complete graph model. Under suitable

moments conditions on L, one may seek for a deterministic sequence (an), and a
probability distribution D on R such that

an

(
λ2(

√
nK) − 2σ

) d−→
n→∞

D (1.11)

where “
d→” stands for convergence in distribution. The same may be asked for the

random variable λn(
√
nK) + 2σ. Computer simulations suggest that an ≈ n2/3

and that D is close to a Tracy-Widom distribution. The heuristics here is that
λ2(

√
nK) behaves like the λ1 of a centered Gaussian random symmetric matrix.

The difficulty is that the entries of K are not i.i.d., not centered, and of course not
Gaussian.

Symmetric Markov generators. Rather than considering the random walk with
infinitesimal generator K − I on the complete graph as we did, one may start with
the symmetric infinitesimal generator G defined by Gi,j = Gj,i = Ui,j for every
1 ≤ i < j ≤ n and Gi,i = −∑j 6=i Gi,j for every 1 ≤ i ≤ n. Here (Ui,j)1≤i<j

is a triangular array of i.i.d. real random variables of law L. For this model, the
uniform probability measure U is reversible and invariant. The bulk behavior of
such random matrices has been investigated in Bryc et al. (2006).
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Non–reversible Markov ensembles. A non–reversible model is obtained when
the underlying complete graph is oriented. That is each vertex i has now (besides
the loop) n − 1 outgoing edges (i, j) and n − 1 incoming edges (j, i). On each of
these edges we place an independent positive weight Vi,j with law L, and on each
loop an independent positive weight Vi,i with law L. This gives us a non–reversible
stochastic matrix

K̃i,j =
Vi,j∑n

k=1 Vi,k
.

The spectrum of K̃ is now complex. If L is exponential, then the matrix K̃ describes
the Dirichlet Markov Ensemble considered in Chafäı (2010). Numerical simulations

suggest that if L has, say, finite positive variance, then the ESD of n1/2K̃ converges
weakly as n→ ∞ to the uniform law on the unit disc of the complex plane (circular
law). At the time of writing, this conjecture is still open. Note that the ESD of the
i.i.d. matrix (n−1/2Vi,j)1≤i,j≤n is known to converge weakly to the circular law; see
Tao and Vu (2008) and references therein.

Heavy–tailed weights. Recently, remarkable work has been devoted to the spec-
tral analysis of large dimensional symmetric random matrices with heavy–tailed
i.i.d. entries, see e.g. Soshnikov (2004); Auffinger et al. (2009); Ben Arous and
Guionnet (2008); Zakharevich (2006); Biroli et al. (2007). Similarly, on the com-
plete graph, one may consider the bulk and edge behavior of the random reversible
Markov kernels constructed by (1.1) when the law L of the weights is heavy–tailed
(i.e. with at least an infinite second moment). In that case, and in contrast with
Theorem 1.1, the scaling is not

√
n and the limiting spectral distribution is not

Wigner’s semi–circle law. We study such heavy–tailed models elsewhere Bordenave
et al. (2009). Another interesting model is the so called trap model which corre-
sponds to put heavy–tailed weights only on the diagonal of U (holding times), see
e.g. Bovier and Faggionato (2005) for some recent advances.

2. Proofs for the complete graph model

Here we prove Theorems 1.1, 1.2, Proposition 1.5 and Corollary 1.3. In the whole
sequel, we denote by L2(1) the Hilbert space R

n equipped with the scalar product

〈x, y〉 =

n∑

i=1

xi yi.

The following simple lemma allows us to work with symmetric matrices when
needed.

Lemma 2.1 (Spectral equivalence). Almost surely, for large enough n, the spec-
trum of the reversible Markov matrix K coincides with the spectrum of the sym-
metric matrix S defined by

Si,j =

√
ρi

ρj
Ki,j =

Ui,j√
ρiρj

.

Moreover, the corresponding eigenspaces dimensions also coincide.

Proof : Almost surely, for large enough n, all the ρi are positive and K is self–
adjoint as an operator from L2(ρ) to L2(ρ), where L2(ρ) denotes Rn equipped with
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the scalar product

〈x, y〉ρ =

n∑

i=1

ρi xi yi.

It suffices to observe that a.s. for large enough n, the map x 7→ x̂ defined by

x̂ = (x1
√
ρ1, . . . , xn

√
ρn)

is an isometry from L2(ρ) to L2(1) and that for any x, y ∈ R
n and 1 ≤ i ≤ n, we

have

(Kx)i =

n∑

j=1

Ki,jxj

and

〈Kx, y〉ρ =

n∑

i,j=1

Ki,jxjyiρi =

n∑

i,j=1

Ui,jxjyi =

n∑

i,j=1

Si,j x̂iŷj = 〈Sx̂, ŷ〉 .

�

The random symmetric matrix S has non–centered, non–independent entries.
Each entry of S is bounded and belongs to the interval [0, 1], since for every 1 ≤
i, j ≤ n, we have Si,j ≤ Ui,j/

√
Ui,jUj,i = 1. In the sequel, for any n × n real

symmetric matrix A, we denote by

λn(A) ≤ · · · ≤ λ1(A)

its ordered spectrum. We shall also denote by ‖A‖ the operator norm of A, defined
by

‖A‖2 = max
x∈Rn

〈Ax,Ax〉
〈x, x〉 .

Clearly, ‖A‖ = max(λ1(A),−λn(A)). To prove Theorem 1.1 we shall compare the
symmetric random matrix

√
nS with the symmetric n× n random matrices

Wi,j =
Ui,j − 1√

n
and W̃i,j =

Ui,j√
n
. (2.1)

Note that W defines a so called Wigner matrix, i.e. W is symmetric and it has
centered i.i.d. entries with finite positive variance. We shall also need the non–

centered matrix W̃ . It is well known that under the sole assumption σ2 ∈ (0,∞)
on L, almost surely,

µW
w−→

n→∞
W2σ and µfW

w−→
n→∞

W2σ

where µW and µfW are the ESD of W and W̃ , see e.g. Bai (1999, Theorems 2.1 and

2.12). Note that W̃ is a rank one perturbation of W , which implies that the spectra

of W and W̃ are interlaced (Weyl-Poincaré inequalities, see e.g. Horn and Johnson,
1991; Bai, 1999). Moreover, under the assumption of finite fourth moment on L, it
is known that almost surely

λn(W ) → −2σ and λ1(W ) → +2σ.

In particular, almost surely,

‖W‖ = 2σ + o(1) . (2.2)
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On the other hand, and still under the finite fourth moment assumption, almost
surely,

λ1(W̃ ) → +∞ while λ2(W̃ ) → +2σ and λn(W̃ ) → −2σ

see e.g. Bai and Yin (1988); Füredi and Komlós (1981); Bai (1999). Heuristically,
when n is large, the law of large numbers implies that ρi is close to n (recall that

here L has mean 1), and thus
√
nS is close to W̃ . The main tools needed for a

comparison of the matrix
√
nS with W̃ are given in the following subsection.

Uniform law of large numbers. We shall need the following Kolmogorov-
Marcinkiewicz-Zygmund strong uniform law of large numbers, related to Baum-
Katz type theorems.

Lemma 2.2. Let (Ai,j)i,j≥1 be a symmetric array of i.i.d. random variables. For

any reals a > 1/2, b ≥ 0, and M > 0, if E(|A1,1|(1+b)/a) <∞ then

max
1≤i≤Mnb

∣∣∣∣
n∑

j=1

(Ai,j − c)

∣∣∣∣ = o(na) a.s. where c =

{
E(A1,1) if a ≤ 1

any number if a > 1.

Proof : This result is proved in Bai and Yin (1993, Lemma 2) for a non–symmetric
array. The symmetry makes the random variables (

∑n
j=1 Ai,j)i≥1 dependent, but a

careful analysis of the argument shows that this is not a problem except for a sort
of converse, see Bai and Yin (1993, Lemma 2) for details. �

Lemma 2.3. If L has finite moment of order κ ∈ [1, 2] then

max
1≤i≤nκ−1

∣∣∣ρi

n
− 1
∣∣∣ = o(1) (2.3)

almost surely, and in particular, if L has finite second moment, then almost surely

max
1≤i≤n

∣∣∣ρi

n
− 1
∣∣∣ = o(1). (2.4)

Moreover if L has finite moment of order κ with 2 ≤ κ < 4, then almost surely

max
1≤i≤n

∣∣∣ρi

n
− 1
∣∣∣ = o(n

2−κ
κ ). (2.5)

Additionally, if L has finite fourth moment, then almost surely
n∑

i=1

(ρi

n
− 1
)2

= O(1) . (2.6)

Proof : The result (2.3) follows from Lemma 2.2 with

Ai,j = Ui,j , a = M = 1, b = κ− 1.

We recover the standard strong law of large numbers with κ = 1. The result (2.5)
– and therefore (2.4) setting κ = 2 – follows from Lemma 2.2 with this time

Ai,j = Ui,j , a = 2/κ, b = M = 1.

Proof of (2.6). We set ǫi = n−1ρi − 1 for every 1 ≤ i ≤ n. Since L has finite
fourth moment, the result (2.2) for the centered Wigner matrix W defined by (2.1)
gives that

n∑

i=1

ǫ2i =
〈W1,W1〉

〈1, 1〉 ≤ ‖W‖2 = 4σ2 + o(1) = O(1)
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almost surely. �

We are now able to give a proof of Proposition 1.5.

Proof of Proposition 1.5: Since L has finite first moment, by the strong law of large
numbers,

ρ1 + · · · + ρn =
n∑

i=1

Ui,i + 2
∑

1≤i<j≤n

Ui,j = n2(1 + o(1))

almost surely. For every fixed i ≥ 1, we have also ρi = n(1 + o(1)) almost surely.
As a consequence, for every fixed i ≥ 1, almost surely,

ρ̂i =
ρi

ρ1 + · · · + ρn
=

n(1 + o(1))

n2(1 + o(1))
=

1

n
(1 + o(1)).

Moreover, since L has finite second moment, the o(1) in the right hand side above is
uniform over 1 ≤ i ≤ n thanks to (2.4) of Lemma 2.3. This achieves the proof. �

Note that, under the second moment assumption, ρ̂i = n−1(1 + O(δ)) for 1 ≤
i ≤ n, where

δ := max
1≤i≤n

|ǫi| = o(1) , with ǫi := n−1ρi − 1. (2.7)

We will repeatedly use the notation (2.7) in the sequel.

Bulk behavior. Lemma 2.1 reduces Theorem 1.1 to the study of the ESD of
√
nS,

a symmetric matrix with non independent entries. One can find in the literature
many extensions of Wigner’s theorem to symmetric matrices with non–i.i.d. entries.
However, none of these results seems to apply here directly.

Proof of Theorem 1.1: We first recall a standard fact about comparison of spectral
densities of symmetric matrices. Let L(F,G) denote the Lévy distance between two
cumulative distribution functions F and G on R, defined by

L(F,G) = inf{ε > 0 such that F (· − ε) − ǫ ≤ G ≤ F (· + ǫ) + ǫ)} .
It is well known Billingsley (1999) that the Lévy distance is a metric for weak
convergence of probability distributions on R. If FA and FB are the cumulative
distribution functions of the empirical spectral distributions of two hermitian n×n
matrices A and B, we have the following bound for the third power of L(FA, FB)
in terms of the trace of (A−B)2:

L3(FA, FB) ≤ 1

n
Tr((A−B)2) =

1

n

n∑

i,j=1

(Ai,j −Bi,j)
2 . (2.8)

The proof of this estimate is a consequence of the Hoffman-Wielandt inequality
Hoffman and Wielandt (1953), see also Bai (1999, Lemma 2.3). By Lemma 2.1, we
have

√
nλk(K) = λk(

√
nS) for every 1 ≤ k ≤ n. We shall use the bound (2.8) for

the matrices A =
√
nS and B = W̃ , where W̃ is defined in (2.1). We will show

that a.s.
1

n

∑

i,j=1

(Ai,j −Bi,j)
2 = O(δ2) , (2.9)

where δ = maxi |ǫi| as in (2.7). Since L has finite positive variance, we know
that the ESD of B tends weakly as n → ∞ to the semi–circle law on [−2σ,+2σ].
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Therefore the bound (2.9), with (2.8) and the fact that δ → 0 as n→ ∞ is sufficient
to prove the theorem. We turn to a proof of (2.9). For every 1 ≤ i, j ≤ n, we have

Ai,j −Bi,j =
Ui,j√
n

(
n

√
ρiρj

− 1

)
.

Set, as usual ρi = n(1 + ǫi) and define ψi = (1 + ǫi)
− 1

2 − 1. Note that by Lemma
2.3, almost surely, ψi = O(δ) uniformly in i = 1, . . . , n. Also,

n
√
ρiρj

− 1 = (1 + ψi)(1 + ψj) − 1 = ψi + ψj + ψiψj .

In particular, n√
ρiρj

− 1 = O(δ). Therefore

1

n

∑

i,j=1

(Ai,j −Bi,j)
2 ≤ O(δ2)


 1

n2

n∑

i,j=1

U2
i,j


 .

By the strong law of large numbers, 1
n2

∑n
i,j=1 U

2
i,j → σ2 + 1 a.s., which implies

(2.9). �

Edge behavior. We turn to the proof of Theorem 1.2 which concerns the edge of
σ(
√
nS).

Proof of Theorem 1.2: Thanks to Lemma 2.1 and the global behavior proven in
Theorem 1.1, it is enough to show that, almost surely,

lim sup
n→∞

√
nmax(|λ2(S)|, |λn(S)|) ≤ 2σ .

Since K is almost surely irreducible for large enough n, the eigenspace of S of the
eigenvalue 1 is almost surely of dimension 1, and is given by R(

√
ρ1, . . . ,

√
ρn). Let

P be the orthogonal projector on R
√
ρ. The matrix P is n× n symmetric of rank

1, and for every 1 ≤ i, j ≤ n,

Pi,j =

√
ρiρj∑n

k=1 ρk
.

The spectrum of the symmetric matrix S − P is

{λn(S), . . . , λ2(S)} ∪ {0}.
By subtracting P from S we remove the largest eigenvalue 1 from the spectrum,
without touching the remaining eigenvalues. Let V be the random set of vectors of
unit Euclidean norm which are orthogonal to

√
ρ for the scalar product 〈·, ·〉 of Rn.

We have then
√
nmax(|λ2(S)|, |λn(S)|) = max

v∈V

∣∣〈√nSv, v
〉∣∣ = max

v∈V
|〈Ãv, v〉|

where Ã is the n× n random symmetric matrix defined by

Ãi,j =
√
n(S − P )i,j =

√
n

(
Ui,j√
ρiρj

−
√
ρiρj∑n

k=1 ρk

)
.

In Lemma 2.4 below we establish that almost surely 〈v, (Ã − W )v〉 = O(δ) +
O(n−1/2) uniformly in v ∈ V , where W is defined in (2.1) and δ is given by (2.7).
Thus, using (2.2),

|〈Wv, v〉| ≤ max(|λ1(W )|, |λn(W )|) = 2σ + o(1) ,
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we obtain that almost surely, uniformly in v ∈ V ,

|〈Ãv, v〉| ≤ |〈Wv, v〉| + |〈(Ã −W )v, v〉| = 2σ + o(1) +O(δ).

Thanks to Lemma 2.3 we know that δ = o(1) and the theorem follows. �

Lemma 2.4. Almost surely, uniformly in v ∈ V, we have, with δ := maxi |ǫi|,
〈v, (Ã−W )v〉 = O(δ) +O(n−1/2).

Proof : We start by rewriting the matrix

Ãi,j =

√
nUi,j√
ρiρj

−
√
n
√
ρiρj∑

k ρk

by expanding around the law of large numbers. We set ρi = n(1+ ǫi) and we define

ϕi =
√

1 + ǫi − 1 and ψi =
1√

1 + ǫi
− 1.

Observe that ϕi and ψi are of order ǫi and by Lemma 2.3, cf. (2.6) we have a.s.

〈ϕ,ϕ〉 =
∑

i

ϕ2
i = O(1) and 〈ψ, ψ〉 =

∑

i

ψ2
i = O(1) . (2.10)

We expand √
ρiρj = n(1 + ǫi)

1
2 (1 + ǫj)

1
2 = n(1 + ϕi)(1 + ϕj) .

Similarly, we have
1

√
ρiρj

= n−1(1 + ψi)(1 + ψj).

Moreover, writing
n∑

k=1

ρk = n2

(
1 +

1

n

∑

k

ǫk

)

and setting γ := (1 + 1
n

∑
k ǫk)−1 − 1 we see that
(

n∑

k=1

ρk

)−1

=
1

n2
(1 + γ) .

Note that γ = O(δ). Using these expansions we obtain
√
nUi,j√
ρiρj

=
1√
n
Ui,j(1 + ψi)(1 + ψj)

and √
n
√
ρiρj∑

k ρk
=

1√
n

(1 + ϕi)(1 + ϕj)(1 + γ) .

From these expressions, with the definitions

Φi,j = ϕi + ϕj + ϕiϕj and Ψi,j = ψi + ψj + ψiψj ,

we obtain

Ãi,j = Wi,j(1 + Ψi,j) +
1√
n

[Ψi,j − Φi,j(1 + γ) + γ] .

Therefore, we have

〈v, (W − Ã)v〉 = −
∑

i,j

viWi,jΨi,jvj +
1 + γ√
n

〈v,Φv〉 − 1√
n
〈v,Ψv〉 − γ√

n
〈v, 1〉2.
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Let us first show that

〈v, 1〉 = O(1) . (2.11)

Indeed, v ∈ V implies that for any c ∈ R,

〈v, 1〉 = 〈v, 1 − c
√
ρ〉.

Taking c = 1/
√
n we see that

1 − c
√
ρi = 1 −

√
1 + ǫi = −ϕi.

Thus, Cauchy–Schwarz’ inequality implies

〈v, 1〉2 ≤ 〈v, v〉〈ϕ,ϕ〉
and (2.11) follows from (2.10) above. Next, we show that

〈v,Φv〉 = O(1). (2.12)

Note that

〈v,Φv〉 = 2〈v, 1〉〈v, ϕ〉 + 〈v, ϕ〉2.
Since 〈v, ϕ〉2 ≤ 〈v, v〉〈ϕ,ϕ〉 we see that (2.12) follows from (2.10) and (2.11). In the
same way we obtain that 〈v,Ψv〉 = O(1). So far we have obtained the estimate

〈v, (W − Ã)v〉 = −
∑

i,j

viWi,jΨi,jvj +O(n−1/2). (2.13)

To bound the first term above we observe that
∑

i,j

viWi,jΨi,jvj = 2
∑

i

ψivi(Wv)i +
∑

i,j

ψiviWi,jψjvj

= 2〈ψ̂,Wv〉 + 〈ψ̂,Wψ̂〉 ,

where ψ̂ denotes the vector ψ̂i := ψivi. Note that

〈ψ̂, ψ̂〉 =
∑

i

ψ2
i v

2
i ≤ O(δ2)〈v, v〉 = O(δ2).

Therefore, by definition of the norm ‖W‖

|〈ψ̂,Wψ̂〉| ≤
√
〈ψ̂, ψ̂〉

√
〈Wψ̂,Wψ̂〉 ≤ ‖W‖ 〈ψ̂, ψ̂〉 = O(δ2) ‖W‖ .

Similarly, we have

|〈ψ̂,Wv〉| ≤
√
〈ψ̂, ψ̂〉

√
〈Wv,Wv〉 ≤ O(δ) ‖W‖

√
〈v, v〉 = O(δ) ‖W‖ .

From (2.2), ‖W‖ = 2σ + o(1) = O(1). Therefore, going back to (2.13) we have
obtained

〈v, (W − Ã)v〉 = O(δ) +O(n−1/2).

�

We end this section with the proof of Corollary 1.3.

Proof of Corollary 1.3: By Theorem 1.2, almost surely, and for any compact subset
C of R containing strictly [0, 2σ], the law µ̃√

nK is supported in C for large enough

n. On the other hand, since µ√
nK = (1 − n−1)µ̃√

nK + n−1δ√n, we get from
Theorem 1.1 that almost surely, µ̃√

nK tends weakly to W2σ as n → ∞. Now,
for sequences of probability measures supported in a common compact set, by



Spectrum of large random reversible Markov chains 57

Weierstrass’ theorem, weak convergence is equivalent to Wasserstein convergence
Wp for every p ≥ 1. Consequently, almost surely,

lim
n→∞

Wp(µ̃√
nK ,W2σ) = 0. (2.14)

for every p ≥ 1. It remains to study Wp(µ√
nK ,W2σ). Recall that if ν1 and ν2 are

two probability measures on R with cumulative distribution functions Fν1
and Fν2

with respective generalized inverses F−1
ν1

and F−1
ν2

, then, for every real p ≥ 1, we
have, according to e.g. Villani (2003, Remark 2.19 (ii)),

Wp(ν1, ν2)
p =

∫ 1

0

∣∣F−1
ν1

(t) − F−1
ν2

(t)
∣∣p dt. (2.15)

Let us take ν1 = µ√
nK = (1 − n−1)µ̃√

nK + n−1δ√n and ν2 = W2σ. Theorem 1.2

gives λ2(
√
nK) <∞ a.s. Also, a.s., for large enough n, and for every t ∈ (0, 1),

F−1
ν1

(t) = F−1
µ√

nK
(t) =

√
n1[1−n−1,1)(t) + F−1

eµ√
nK

(t+ n−1)1(0,1−n−1)(t).

The desired result follows then by plugging this identity in (2.15) and by using
(2.14). �

3. Proofs for the chain graph model

In this section we prove the bulk results in Theorem 1.6 and Corollary 1.7 and
the edge results in Theorem 1.10.

Bulk behavior.

Proof of Theorem 1.6: Since µK is supported in the compact set [−1,+1] which
does not depend on n, Weierstrass’ theorem implies that the weak convergence of
µK as n→ ∞ is equivalent to the convergence of all moments, and is also equivalent
to the convergence in Wasserstein distance Wp for every p ≥ 1. Thus, it suffices to
show that a.s. for any ℓ ≥ 0, the ℓth moment of µK converges to E[rpℓ (0)] as n→ ∞.
The sequence (E[rpℓ (0)])ℓ≥0 will be then necessarily the sequence of moments of a
probability measure µ on [−1,+1] which is the unique adherence value of µK as
n→ ∞.

For any ℓ ≥ 0 and i ≥ 1 let rp,n
ℓ (i) be the probability of return to i after ℓ steps

for the random walk on {1, . . . , n} with kernel K. Clearly, rp,n
ℓ (i) = rpℓ (i) whenever

1 + ℓ < i < n − ℓ. Therefore, for every fixed ℓ, the ergodic theorem implies that
almost surely,

lim
n→∞

1

n

n∑

i=1

rp,n
ℓ (i) = lim

n→∞
1

n

n∑

i=1

rpℓ (i) = E[r
p(0)
ℓ ].

This ends the proof. �

Proof of Corollary 1.7: The desired convergence follows immediately from Theorem
1.6 with p(i) = (1 − Vi, 0, Vi) for every i ≥ 1. The expression of the moments of µ
follows from a straightforward path–counting argument for the return probabilities
of a one-dimensional random walk. �

Let us mention that the proof of Corollary 1.7 could have been obtained via
the trace-moment method for symmetric tridiagonal matrices. Indeed, an analog of
Lemma 2.1 allows one to replace K by a symmetric tridiagonal matrix S. Although
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the entries of S are not independent, the desired result follows from a variant of the
proof used by Popescu for symmetric tridiagonal matrices with independent entries
Popescu (2009, Theorem 2.8). We omit the details.

Remark 3.1 (Computation of the moments of µ for Beta environments). As noticed
in Remark 1.8, the limiting spectral distribution µ is the arc–sine law when L = δ1/2.
Assume now that L is uniform on [0, 1]. Then for every integers m ≥ 0 and n ≥ 0,

E(V m(1 − V )n) =

∫ 1

0

um(1 − u)n du = Beta(n+ 1,m+ 1) =
Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 2)

which gives

E(V m(1 − V )n) =
n!m!

(n+m+ 1)!
=

1

(n+m+ 1)
(
n+m

m

) .

The law of
(
n+m

m

)
V m(1 − V )n is the law of the probability of having m success in

n+m tosses of a coin with a probability of success p uniformly distributed in [0, 1].
Similar formulas may be obtained when L is a Beta law Beta(α, β).

Edge behavior.

Proof of Theorem 1.10: Proof of the first statement. It is enough to show that for
every 0 < a < 1, there exists an integer ka such that for all k ≥ ka,

∫ +1

−1

x2kµ(dx) ≥ a2k. (3.1)

By assumption, there exists C > 0 and 0 < t0 < 1/2 such that for all 0 < t < t0,

P(V ∈ [1/2 − t, 1/2 + t]) ≥ Ct

where V is random variable of law L. In particular, for all 0 < t < t0,

E

[
V Nγ(i)(1 − V )Nγ(i−1)

]
≥ Ct

(
1

2
− t

)Nγ(i)+Nγ(i−1)

,

and, if
‖γ‖∞ = max{i ≥ 0 : max(Nγ(i), Nγ(−i)) ≥ 1}

then
∫ +1

−1

x2kµ(dx) ≥
∑

γ∈Dk

∏

i∈Z

Ct

(
1

2
− t

)Nγ(i)+Nγ(i−1)

≥
∑

γ∈Dk

(Ct)2‖γ‖∞

(
1

2
− t

)P
i Nγ(i)+Nγ(i−1)

≥
(

1

2
− t

)2k ∑

γ∈Dk

(Ct)2‖γ‖∞

≥
(

1

2
− t

)2k

|Dk,α|(Ct)2kα

,

where Dk,α = {γ ∈ Dk : ‖γ‖∞ ≤ kα}. Now, from the Brownian Bridge version of
Donsker’s Theorem (see e.g. Marckert, 2008 and references therein), for all α > 1/2,

lim
k→∞

|Dk,α|
|Dk|

= 1.
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Since |Dk| = Card(Dk) =
(
2k
k

)
, Stirling’s formula gives |Dk| ∼ 4k(πk)−1/2, and

thus ∫ +1

−1

x2kµ(dx) ≥ (πk)−1/2(1 − 2t)2k(Ct)2kα

(1 + o(1)).

We then deduce the desired result (3.1) by taking t small enough such that 1−2t > a
and 1/2 < α < 1. This achieves the proof of the first statement.

Proof of the second statement. One can observe that if L = δp for some p ∈ (0, 1)
with p 6= 1/2, an explicit computation of the spectrum will provide the desired
result, in accordance with Remark 1.8. For the general case, we get from Miclo
(1999), for any 2 ≤ k ≤ n− 1,

1 − λ2(K) ≥ 1

4 max(B+
k , B

−
k )

where

B+
k = max

i>k






i∑

j=k+1

1

ρj(1 − Vj)


∑

j≥i

ρj


 and

B−
k = max

i<k






k−1∑

j=i

1

ρjVj


∑

j≤i

ρj




with the convention V1 = 1 − Vn = 1. Here we have fixed the value of n and ρ is
any invariant (reversible) measure for K. It is convenient to take ρ1 = 1 and for
every 2 ≤ i ≤ n

ρi =
V2 · · ·Vi−1

(1 − V2) · · · (1 − Vi)
.

By symmetry, it suffices to consider the case where L is supported in [0, t] with
0 < t < 1/2. Let us take k = 2. In this case, B−

2 = 1, and the desired result will
follow if we show that B+

2 is bounded above by a constant independent of n. To

this end, we remark first that for any ℓ > j we have ρℓ = ρj

∏ℓ−1
m=j(Vm/(1−Vm+1)).

Therefore, setting e−γ = t/(1 − t) < 1, we have ρℓ ≤ ρje
−γ(ℓ−j). It follows that,

for any k < i,

i∑

j=k+1

∑

ℓ≥i

ρℓ

ρj(1 − Vj)
≤ 1

1 − t

i∑

j=k+1

e−γ(i−j)
∑

ℓ≥i

e−γ(ℓ−i)

≤ (1 − e−γ)−2

1 − t
=

1 − t

(1 − 2t)2
.

In particular, B+
2 ≤ (1 − t)/(1 − 2t)2, which concludes the proof. �
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45 (3), 589–610 (2009). ISSN 0246-0203. doi:10.1214/08-AIHP188. MR2548495.

Z. D. Bai. Methodologies in spectral analysis of large-dimensional random ma-
trices, a review. Statist. Sinica 9 (3), 611–677 (1999). ISSN 1017-0405. With
comments by G. J. Rodgers and J. W. Silverstein; and a rejoinder by the author;
MR1711663.

Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions for almost sure
convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16 (4),
1729–1741 (1988). MR958213.

Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large-dimensional
sample covariance matrix. Ann. Probab. 21 (3), 1275–1294 (1993). ISSN 0091-
1798. MR1235416.

G. Ben Arous and A. Guionnet. The spectrum of heavy tailed random matrices.
Comm. Math. Phys. 278 (3), 715–751 (2008). MR2373441.

P. Billingsley. Convergence of probability measures. Wiley Series in Probability
and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York,
second edition (1999). ISBN 0-471-19745-9. A Wiley-Interscience Publication;
MR1700749.

G. Biroli, J.-P. Bouchaud and M. Potters. On the top eigenvalue of heavy-tailed
random matrices. Europhys. Lett. EPL 78 (1), Art. 10001, 5 (2007). ISSN 0295-
5075. MR2371333.

D. Boivin and J. Depauw. Spectral homogenization of reversible random walks on
Z

d in a random environment. Stochastic Process. Appl. 104 (1), 29–56 (2003).
ISSN 0304-4149. MR1956471.

B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, second edition (2001). ISBN
0-521-80920-7; 0-521-79722-5. MR1864966.

E. Bolthausen and A.-S. Sznitman. Ten lectures on random media, volume 32
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Figure 3.1. Plots illustrating Corollary 1.7. Each histogram cor-
responds to the spectrum of a single realization ofK with n = 5000,
for various choices of L. From left to right L is the uniform law on
[0, t] ∪ [1 − t, 1] for t = 1/8, t = 1/4.
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Figure 3.2. Plots illustrating Corollary 1.7 and the second state-
ment of Theorem 1.10. Each histogram corresponds to the spec-
trum of a single realization of K with n = 5000, for various choices
of L. From left to right and top to bottom, L is uniform on [0, t]
with t = 1/8, t = 1/4, t = 1/2, and t = 1.
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0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

Figure 3.3. Plots illustrating Corollary 1.7. Each histogram cor-
responds to the spectrum of a single realization ofK with n = 5000,
for various choices of L. From left to right and top to bottom, L
is uniform on [t, 1 − t] with t = 0, t = 1/8, t = 1/4, t = 1/2. The
last case corresponds to the arc–sine limiting spectral distribution
mentioned in Remark 1.8.
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