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Abstract. We study two models consisting of reflecting one-dimensional Brownian
“particles” of positive radius. We show that the stationary empirical distributions
for the particle systems do not converge to the harmonic function for the generator
of the individual particle process, unlike in the case when the particles are infinitely
small.

1. Introduction

In this article we consider the dynamics of a collection of hard Brownian spheres
with drifts or boundary conditions that includes instantaneous reflections upon col-
lisions. The models are similar to existing ones in the literature that consider point
masses instead of spheres of a positive radius. We will show that the (empirical)
distribution of a family of Brownian spheres behaves differently from the (empirical)
distribution of the point Brownian particles in some natural models. In particular,
the distribution of Brownian spheres fails to satisfy the usual heat equation under
circumstances that lead to the heat equation for the infinitely many infinitesimally
small Brownian particles.

Various models of colliding Brownian particles have been considered in the sta-
tistical physics literature. One stream, pioneered by Harris (1965), considers a
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countable collection of Brownian point masses on the line that collide and reflect
instantaneously. Also see the follow-up work on tagged particle in the Harris model
by Dürr, Goldstein, & Lebowitz, Dürr et al. (1985). A variation on the theme has
been to replace the instantaneous reflection by a potential, and goes by the name
of gradient systems. In these gradient systems, one studies the behavior of count-
ably many particles under a repelling potential. Usually the potential is modeled
as smooth with a singularity at zero; see the article by Cépa and Lépingle (1997).
A particular example of this class includes the famous Dyson Brownian motion
from Random Matrix theory; see Dyson (1962), and Cépa and Lépingle (2001).
The other class of models, closer to our article, goes by the name of hard-core in-
teractions, in which the Brownian particles are assumed to be hard balls of small
radius, and consequently, there is instantaneous reflection whenever two such balls
collide (plus possible additional interactions). This is the spirit taken in the articles
by Dobrushin & Fritz in dimension one, Dobrushin and Fritz (1977), and Fritz &
Dobrushin in dimension two, Fritz and Dobrushin (1977), Lang (1977a,b) (with a
correction by Shiga, 1979). The main focus of these authors is the non-equilibrium
dynamics of the gradient systems. Also see the articles by Osada (1996, 1998), and
Tanemura (1996) all of which consider properties of a tagged particle in the infinite
system.

In the discrete case, the various models of symmetric and asymmetric exclusion
processes have been considered. Closest in spirit to the models discussed here is
the totally asymmetric exclusion process (TASEP) considered by Baik, Deift, &
Johansson, Baik et al. (1999), and Johansson (2000) in connection with random
matrices and the longest increasing subsequence problem. Specifically, if the initial
configuration in TASEP is Z

−, then the probability that a particle initially at −m
moves at least n steps to the right in time t equals the probability distribution of
the largest eigenvalue in a unitary Laguerre random matrix ensemble. In recent
subsequent articles Tracy and Widom (2008, 2009), Tracy & Widom explicitly
compute transition probabilities of individual particles in the asymmetric exclusion
process, extending Johansson’s work.

In this paper, we consider only one dimensional models, so our “spheres” are
actually intervals. The title of this paper reflects our intention to study multidi-
mensional models in future articles. We leave more detailed discussion to Section 4.
That section also contains references to related research projects.

We consider two models, which have the following common features. Informally
speaking, both models consist of families of Brownian “particles”. The k-th “par-
ticle” is represented by an interval Ik

t = (Xk
t − ε/2, Xk

t + ε/2), where Xk
t is a

Brownian-like process. The intervals Ik and Ij are always disjoint, for k 6= j. The
processes Xk are driven by independent Brownian motions. When two intervals
Ik and Ij collide, they reflect instantaneously. In the first model, the number of
particles is constant and they are pushed by a barrier moving at a constant speed.
In the second model, particles enter the interval [0, 1] at the left, they reflect at
0, and they are killed when they hit the right endpoint. The second model is our
primary focus because it is related to other models considered in mathematical
physics literature—see Section 4.

We are grateful to Thierry Bodineau, Pablo Ferrari, Claudio Landim, Mario
Primicerio and Jeremy Quastel for very helpful advice. We would like to thank the
referee for the suggestions for improvement.
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2. Extreme crowding

We start with an informal description of our first model, which consists of a
fixed number n of “particles”. The k-th leftmost “particle” is represented by an
interval Ik

t = (Xk
t −ε/2, Xk

t +ε/2). The intervals Ik and Ij are always disjoint. The
processes Xk are driven by independent Brownian motions. When two intervals Ik

and Ij collide, they reflect instantaneously. The intervals are pushed from the left
by a barrier with a constant velocity, that is, the leftmost interval reflects on the
line x = ct.

Formally, we define {X0, X1, . . . , Xn} to be continuous processes such that X0
t =

−ε/2 + ct, Xk
t − Xk−1

t ≥ ε for all k ≥ 1 and all t ≥ 0, and for k ≥ 1,

dXk
t = dBk

t + dLk
t − dMk

t ,

where {B1, . . . , Bn} are iid Brownian motions, and Lk and Mk are nondecreasing
processes such that

∫ ∞

0

1{Xk

t
−Xk−1

t
>ε} dLk

t = 0 and

∫ ∞

0

1{Xk+1

t
−Xk

t
>ε} dMk

t = 0.

(Here, we may interpret Xn+1 ≡ ∞.) The distributions of Xk
0 for 1 ≤ k ≤ n will

be specified later.
To construct the solution to this Skorohod problem, consider first the processes

Y k
t = Xk

t − (k − 1)ε− ε/2− ct. These processes satisfy Y 0 ≡ 0, Y k
t − Y k−1

t ≥ 0 for
all k ≥ 1 and all t ≥ 0, and for k ≥ 1, dY k

t = dBk
t − c dt + dLk

t − dMk
t , where

∫ ∞

0

1{Y k

t
−Y k−1

t
>0} dLk

t = 0 and

∫ ∞

0

1{Y k+1

t
−Y k

t
>0} dMk

t = 0.

We may therefore construct the processes {Y 1, . . . , Y n} using order statistics.
Namely, let {Z1, . . . , Zn} be defined by dZk

t = dBk
t − cdt, and reflected at 0. For

every fixed t ≥ 0, we let Y 1
t , Y 2

t , . . . , Y n
t be ordered Zk

t ’s, that is, {Y 1
t , . . . , Y n

t } =
{Z1

t , . . . , Zn
t } and Y 1

t ≤ Y 2
t ≤ · · · ≤ Y n

t . Finally, we let Xk
t = Y k

t +(k−1)ε+ε/2+ct
and Ik

t = (Xk
t − ε/2, Xk

t + ε/2).
Let nε = b. We will fix b > 0 and analyze the behavior of the system of intervals

{Ik} as n → ∞. In other words, we will keep the total length of all intervals Ik

constant.
The stationary distribution for Zk has the density ϕ(z) = ce−cz for z ≥ 0, with

c = 2c1, because

1

2

d2

dz2
ϕ(z) + c1

d

dz
ϕ(z) = 0.

Consider any 0 ≤ x1 < x2 < ∞, let λ denote the Lebesgue measure, and let

d([x1, x2]) = dt([x1, x2]) =
λ

(
[x1 + ct, x2 + ct] ∩

⋃
1≤k≤n Ik

t

)

x2 − x1
. (2.1)

The quantity d([x1, x2]) represents the average density of “particles” Ik on the
interval [x1, x2].

We will say that the intervals {Ik} have the pseudo-stationary distribution if
all Zk

t ’s are independent and have the stationary distribution ϕ for t = 0 and,
therefore, for every t ≥ 0.
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Theorem 2.1. Suppose that the intervals {Ik} have the pseudo-stationary distri-
bution. Fix arbitrary p1, d1 < 1, d2 > 0, and 0 ≤ x1 < x2 < b < x3 < x4 < ∞.
There exist c0, n0 < ∞ such that for c ≥ c0, n ≥ n0 and any t ≥ 0, we have

P (dt([x1, x2]) ≥ d1) ≥ p1, (2.2)

P (dt([x3, x4]) ≤ d2) ≥ p1. (2.3)

The theorem says that the “particles” Ik clump together and there is a sharp
transition in density of “mass” around x = b. This is in contrast with infinitely
small “particles” Zk whose empirical distribution is close to the distribution with
the density ϕ(z) = ce−cz that displays no sharp drop-off.

Proof of Theorem 2.1: Without loss of generality, we let t = 0. We define yk ∈
(0,∞) in an implicit way by the following formula, for k = 1, 2, 3, 4,

xk = b

∫ yk

0

ϕ(z)dz + yk.

Note that y1 < y2, and that for ε > 0 sufficiently small (that is, for n = bε−1

sufficiently large), it is possible to choose y5, y6 such that y1 < y5 < y6 < y2, and

b
∫ y6

y5
ϕ(z)dz − 2ε

y2 − y1 + b
∫ y2

y1
ϕ(z)dz

≥
b
∫ y2

y1
ϕ(z)dz

y2 − y1 + b
∫ y2

y1
ϕ(z)dz

− (1 − d1)/2. (2.4)

Since b − x2 > 0, we can find c so large that,

c(b − x2)

1 + c(b − x2)
≥ 1 − (1 − d1)/2. (2.5)

Let ⌈a⌉ denote the smallest integer greater than or equal to a. By the law of large
numbers, if n is sufficiently large, the number of Zk

0 ’s in the interval [0, y1] is smaller
than or equal to n

∫ y5

0 ϕ(z)dz, with probability greater than 1− (1 − p1)/2. If this

event holds then there are exactly
⌈
n

∫ y5

0 ϕ(z)dz
⌉

processes Zk
0 in some (random)

interval [0, y7] with y7 ≥ y1. This implies that there are exactly
⌈
n

∫ y5

0
ϕ(z)dz

⌉

processes Xk
0 in [0, ε

⌈
n

∫ y5

0
ϕ(z)dz

⌉
+ y7]. Note that

ε

⌈
n

∫ y5

0

ϕ(z)dz

⌉
+ y7 ≥ b

∫ y5

0

ϕ(z)dz + y7 ≥ b

∫ y1

0

ϕ(z)dz + y1 = x1.

Hence, the number of Xk
0 ’s in the interval [0, x1] is smaller than or equal to

n
∫ y5

0
ϕ(z)dz + 1, with probability greater than 1− (1 − p1)/2. A completely anal-

ogous argument shows that, if n is sufficiently large, then the number of Xk
0 ’s in

the interval [x2,∞] is smaller than or equal to n
∫ ∞

y6
ϕ(z)dz + 1, with probabil-

ity greater than 1 − (1 − p1)/2. Both events hold with probability greater than
1 − 2(1 − p1)/2 = p1, and then the number of Xk

0 ’s in [x1, x2] is greater than or
equal to n

∫ y6

y5
ϕ(z)dz − 2. This and (2.4) imply that

d([x1, x2]) ≥
εn

∫ y6

y5
ϕ(z)dz − 2ε

x2 − x1
=

b
∫ y6

y5
ϕ(z)dz − 2ε

b
∫ y2

0
ϕ(z)dz + y2 − b

∫ y1

0
ϕ(z)dz − y1

=
b
∫ y6

y5
ϕ(z)dz − 2ε

y2 − y1 + b
∫ y2

y1
ϕ(z)dz

≥
b
∫ y2

y1
ϕ(z)dz

y2 − y1 + b
∫ y2

y1
ϕ(z)dz

− (1 − d1)/2. (2.6)
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We have

x2 = b

∫ y2

0

ϕ(z)dz + y2 = b

∫ y2

0

ce−czdz + y2 = y2 + b − be−cy2,

so e−cy2 = (y2 − x2 + b)/b and, therefore, for z ≤ y2,

ϕ(z) = ce−cz ≥ ce−cy2 = (c/b)(y2 − x2 + b).

We combine this estimate with (2.6) and (2.5) to see that, with probability greater
than p1,

d([x1, x2]) ≥
b
∫ y2

y1
ϕ(z)dz

y2 − y1 + b
∫ y2

y1
ϕ(z)dz

− (1 − d1)/2

≥
b
∫ y2

y1
(c/b)(y2 − x2 + b)dz

y2 − y1 + b
∫ y2

y1
(c/b)(y2 − x2 + b)dz

− (1 − d1)/2

=
c(y2 − y1)(y2 − x2 + b)

y2 − y1 + c(y2 − y1)(y2 − x2 + b)
− (1 − d1)/2

=
c(y2 − x2 + b)

1 + c(y2 − x2 + b)
− (1 − d1)/2

≥
c(b − x2)

1 + c(b − x2)
− (1 − d1)/2

≥ 1 − (1 − d1)/2 − (1 − d1)/2 = d1.

This completes the proof of (2.2). The proof of (2.3) is completely analogous. 2

3. Brownian gas under pressure

In this model, “particles” Ik are confined to the interval [0, 1]. More precisely,
their centers are confined to this interval. The k-th leftmost “particle” is represented
by an interval Ik

t = (Xk
t −ε/2, Xk

t +ε/2). The intervals Ik and Ij are always disjoint.
The processes Xk are driven by independent Brownian motions with the diffusion
coefficient σ2. When two intervals Ik and Ij collide, they reflect instantaneously.
The particles are added to the system at the left endpoint of [0, 1] at a constant
rate. In other words, they are pushed in at the speed a, so that a new particle enters
the interval every ε/a units of time. As soon as Xk reaches 0, it starts moving as
a Brownian motion reflected at 0. The k-th interval is removed from the system
when Xk hits the right endpoint of [0, 1].

Formally, we define {X1, X2, . . .} to be a collection of right-continuous, [0,∞]-
valued processes such that

Xk
0 = −kε + ε/2 for all k, (3.1)

If Sk = inf{t > 0 : Xk
t− = 1 − ε/2},

then Xk
t is continuous on [0, Sk) and Xk

t = ∞ for all t > Sk, (3.2)

Xk
t − Xk+1

t ≥ ε for all k ≥ 1 and all t ≥ 0, and (3.3)

dXk
t =

{
a dt if t ∈ [0, kε/a),

σ dBk
t + dLk

t − dMk
t if t ∈ [kε/a, Sk),

(3.4)
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where a and σ are positive constants, {B1, B2, . . .} are iid Brownian motions, and
Lk and Mk are nondecreasing processes such that

∫ Sk

kε/a

1{Xk

t
−Xk+1

t
>ε} dLk

t = 0 and

∫ Sk

kε/a

1{Xk−1

t
−Xk

t
>ε} dMk

t = 0.

(Here, we may interpret X0 ≡ ∞.)
To construct the solution to this Skorohod problem, consider first the processes

Y k
t = Xk

t + kε − ε/2 − at. These processes satisfy

Y k
0 = 0 for all k, (3.5)

If Sk = inf{t > 0 : Y k
t− = 1 − at + (k − 1)ε},

then Y k
t is continuous on [0, Sk) and Y k

t = ∞ for all t > Sk, (3.6)

Y k
t − Y k+1

t ≥ 0 for all k ≥ 1 and all t ≥ 0, and (3.7)

dY k
t =

{
0 if t ∈ [0, kε/a),

σ dBk
t − a dt + dLk

t − dMk
t if t ∈ [kε/a, Sk),

(3.8)

where

∫ Sk

kε/a

1{Y k

t
−Y k+1

t
>0} dLk

t = 0 and

∫ Sk

kε/a

1{Y k−1

t
−Y k

t
>0} dMk

t = 0.

Again, we shall construct the processes {Y 1, Y 2, . . .} using order statistics.
Let Zk be a [0,∞)-valued process, satisfying the SDE dZk

t = σdBk
t − adt, and

reflected at 0. The process Zk
t is defined on the time interval t ∈ [kε/a,∞), and

starts at Zk
kε/a = 0. At any time t ∈ [kε/a, (k+1)ε/a), only processes Zj, 1 ≤ j ≤ k,

are defined. Let ⌊a⌋ denote the greatest integer less than or equal to a, and

S0 = 0,

A1
t = {j ∈ Z : 1 ≤ j ≤ ⌊ta/ε⌋}, t ≥ 0,

S1 = inf{t > 0 : sup
j∈A1

t

Zj
t ≥ 1 − at},

Ak
t = Ak−1

t \ {m ∈ Z : Zm
Sk−1

= 1 − at + (k − 2)ε}, t ≥ Sk−1, k ≥ 2,

Sk = inf{t > Sk−1 : sup
j∈Ak

t

Zj
t ≥ 1 − at + (k − 1)ε}, k ≥ 2.

Note that it is possible that Ak
t = ∅ for some random k and t > 0.

Convention (C). For the sake of future reference, it is convenient to say that the

process Zm is killed at the time Sk−1, where {m} = Ak−1
Sk−1

\ Ak
Sk−1

. In other

words, Zm is killed when the corresponding interval Ik, defined below, hits the
right endpoint of the interval [0, 1].

For every t ∈ [Sk−1, Sk), note that there are ⌊ta/ε⌋− (k−1) elements in Ak
t . Let

Y k
t , Y k+1

t , . . . , Y
⌊ta/ε⌋
t be reverse-ordered Zj

t ’s, j ∈ Ak
t , that is, {Y k

t , . . . , Y
⌊ta/ε⌋
t } =

{Zj
t , j ∈ Ak

t } and Y k
t ≥ Y k+1

t ≥ · · · ≥ Y
⌊ta/ε⌋
t . Let Y j

t = ∞ for j < k and Y j
t = 0

for j > ⌊ta/ε⌋.
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It is elementary to check that {Y 1, Y 2, . . .} satisfy (3.5)-(3.8). We may therefore
define

Xk
t = Y k

t − kε + ε/2 + at,

Ik
t = (Xk

t − ε/2, Xk
t + ε/2).

We have to modify slightly the definition (2.1) of density to match the current
model. For t ∈ [Sk−1, Sk), let

d([x1, x2]) = dt([x1, x2]) =
λ

(
[x1, x2] ∩

⋃
k≤j≤⌊ta/ε⌋ Ij

t

)

x2 − x1
. (3.9)

Theorem 3.1. Fix arbitrary 0 < x1 < x2 < 1, p1 < 1 and a, σ, c0 > 0. There exist
t0 < ∞ and ε0 > 0 such that for t ≥ t0 and ε ∈ (0, ε0),

P

(
1 − x2

1 − x2 + σ2/(2a)
− c0 ≤ dt([x1, x2]) ≤

1 − x1

1 − x1 + σ2/(2a)
+ c0

)
≥ p1. (3.10)

Intuitively speaking, the theorem says that the mass density at x ∈ (0, 1) is close
to (1 − x)/(1 − x + σ2/(2a)), for large t and small ε.

Proof of Theorem 3.1: We will use the coupling technique. Recall processes
Z1, Z2, . . . used in the definition of Y k’s—we will use the same Zk’s to construct

auxiliary processes. Fix some v1 > 0, let Ŝk = inf{t ≥ 0 : Zk
t = v1}, and let Ẑk

t be

the process Zk killed at the time Ŝk. Let nt be the number of processes Ẑk alive at

time t. Let Ŷ 1
t , Ŷ 2

t , . . . , Ŷ nt

t be ordered Ẑj
t ’s, that is, {Ŷ 1

t , . . . , Ŷ nt

t } = {Ẑj
t , Ŝj > t}

and Ŷ 1
t ≤ Ŷ 2

t ≤ · · · ≤ Ŷ nt

t . For t ∈ [Ŝk−1, Ŝk) and j = k, . . . , k + nt − 1, we let

X̂j
t = Ŷ nt+k−j

t + (nt + k − j − 1)ε + ε/2 + (t − ⌊ta/ε⌋ε/a)a,

Îj
t = (X̂j

t − ε/2, X̂j
t + ε/2).

Every process X̂j
t is defined on the interval [jε/a, Ŝj) and it is continuous on this

interval. Although it may not be apparent from the above formulas, the processes

Ŷ j , X̂j and Îj are constructed from Ẑj ’s in the same way as Y j , Xj and Ij were
constructed from Zj ’s. We leave the verification of this claim to the reader.

We will find the Green function Gv1
(v) of Ẑk, i.e., the density of its occupation

measure. Consider a process V with values in [−v1, v1], satisfying the SDE dVt =
dBt − a sign(Vt)dt, where B is Brownian motion, V0 = 0, and such that V is killed
when it hits −v1 or v1. Note that the Green function GV

v1
(v) of V is one half of

Gv1
(v) for v > 0. The scale function S(v) and the speed measure m(v) for V can

be calculated as follows (see Karlin and Taylor, 1981, pp. 194-195),

s(v) = exp

(∫ v

0

−(−2a sign(x)/σ2)dx

)
= exp(2av sign(v)/σ2),

S(v) =

∫ v

0

s(x)dx =
sign(v)σ2

2a

(
exp(2av sign(v)/σ2) − 1

)
,

m(v) = 1/(σ2s(v)) = (1/σ2) exp(−2av sign(v)/σ2).

We will use formula (3.11) on page 197 of Karlin and Taylor (1981). In that formula,
we take x = 0, so u(0) = 1/2, by symmetry. We apply the formula to functions g(v)
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of the form g(v) = 1[v3,v4](v), to conclude that for v ∈ (0, v1), the Green function

GV
v1

(v) is given by

GV
v1

(v) = (S(v1) − S(v))m(v)

=
1

2a
(exp(2av1/σ2) − exp(2av/σ2)) exp(−2av/σ2)

=
1

2a
(exp(2a(v1 − v)/σ2) − 1).

It follows that

Gv1
(v) = 2GV

v1
(v) =

1

a
(exp(2a(v1 − v)/σ2) − 1).

Define v0 ∈ (0,∞) by setting

ϕ(v) = aGv0
(v) =

1

a
(exp(2a(v0 − v)/σ2) − 1),

and the following condition,

1 =

∫ v0

0

ϕ(v)dv + v0 =

∫ v0

0

(exp(2a(v0 − v)/σ2) − 1)dv + v0 (3.11)

= (σ2/2a)(exp(2av0/σ2) − 1).

We define yk ∈ (0,∞), k = 1, 2, by the following formula,

xk =

∫ yk

0

ϕ(v)dv + yk

=

∫ yk

0

(exp(2a(v0 − v)/σ2) − 1)dv + yk

= (−(σ2/2a) exp(2a(v0 − v)/σ2) − v)
∣∣∣
v=yk

v=0
+ yk

= (σ2/2a)(exp(2av0/σ2) − exp(2a(v0 − yk)/σ2)). (3.12)

Choose y1 < y3 < y4 < y2 and v1 < v0 such that,

a
∫ y4

y3
Gv1

(v)dv

y2 − y1 +
∫ y2

y1
ϕ(z)dz

≥

∫ y2

y1
ϕ(z)dz

y2 − y1 +
∫ y2

y1
ϕ(z)dz

− c0. (3.13)

Recall that ⌈a⌉ denotes the smallest integer greater than or equal to a. Let ⌊a⌋
denote the largest integer smaller than or equal to a.

Let c1 = 1 − p1 and p2 = 1 − c1/8. By the law of large numbers, we can find a
large t0 and make ε0 > 0 smaller, if necessary, such that if t ≥ t0 and ε ∈ (0, ε0)

then with probability greater than p2, the number of processes Ẑk
t in the interval

[0, y1] is smaller than or equal to (a/ε)
∫ y3

0
Gv1

(v)dv. If this event holds then there

are exactly
⌈
(a/ε)

∫ y3

0 Gv1
(v)dv

⌉
processes Ẑk

0 in some (random) interval [0, y5] with

y5 ≥ y1. This implies that there are exactly
⌈
(a/ε)

∫ y3

0 Gv1
(v)dv

⌉
processes X̂k

0 in

[0, ε
⌈
(a/ε)

∫ y3

0 Gv1
(v)dv

⌉
+ y5]. For fixed y1 and y3, we make v1 < v0 larger, if

necessary, so that

ε

⌈
(a/ε)

∫ y3

0

Gv1
(v)dv

⌉
+ y5 ≥ a

∫ y3

0

Gv1
(v)dv + y5 ≥ a

∫ y3

0

Gv1
(v)dv + y1

≥ a

∫ y1

0

Gv0
(v)dv + y1 =

∫ y1

0

ϕ(v)dv + y1 = x1.
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Hence, the number of X̂k
0 ’s in the interval [0, x1] is smaller than or equal to

(a/ε)
∫ y3

0
Gv1

(v)dv, with probability greater than p2.
We can make t0 larger and ε0 > 0 smaller, if necessary, so that by the law of large

numbers, if t ≥ t0 and ε ∈ (0, ε0) then with probability greater than p2, the number

of processes Ẑk
t3 in the interval [0, y2] is greater than or equal to (a/ε)

∫ y4

0 Gv1
(v)dv.

If this event holds then there are exactly
⌊
(a/ε)

∫ y4

0
Gv1

(v)dv
⌋

processes Ẑk
0 in

some (random) interval [0, y6] with y6 ≤ y2. This implies that there are exactly⌊
(a/ε)

∫ y4

0 Gv1
(v)dv

⌋
processes X̂k

0 in [0, ε
⌈
(a/ε)

∫ y4

0 Gv1
(v)dv

⌉
+ y6]. Note that,

ε

⌊
(a/ε)

∫ y4

0

Gv1
(v)dv

⌋
+ y6 ≤ a

∫ y4

0

Gv1
(v)dv + y2 ≤ a

∫ y2

0

Gv0
(v)dv + y2 = x2.

Hence, the number of X̂k
0 ’s in the interval [0, x2] is greater than or equal to

(a/ε)
∫ y4

0 Gv1
(v)dv, with probability greater than p2.

Let d̂ be defined as in (3.9) but relative to Îk in place of Ik. The two events
described in the last two paragraphs hold simultaneously with probability greater
than 1 − c1/4. Then the number of Xk

0 ’s in [x1, x2] is greater than or equal to
(a/ε)

∫ y4

y3
Gv1

(v)dv. This and (3.13) imply that

d̂t([x1, x2]) ≥
ε
(
(a/ε)

∫ y6

y5
Gv1

(v)dv
)

x2 − x1
=

a
∫ y6

y5
Gv1

(v)dv
∫ y2

0 ϕ(z)dz + y2 −
∫ y1

0 ϕ(z)dz − y1

=
a

∫ y6

y5
Gv1

(v)dv

y2 − y1 +
∫ y2

y1
ϕ(z)dz

≥

∫ y2

y1
ϕ(z)dz

y2 − y1 +
∫ y2

y1
ϕ(z)dz

− c0. (3.14)

It follows from (3.12) that

exp(2a(v0 − y2)/σ2) = exp(2av0/σ2) − 2ax2/σ2

and, therefore, for v ≤ y2,

ϕ(v) = exp(2a(v0 − v)/σ2) − 1 ≥ exp(2a(v0 − y2)/σ2) − 1

= exp(2av0/σ2) − 2ax2/σ2 − 1.

We combine this estimate with (3.14) to see that, with probability greater than
1 − c1/4,

d̂t([x1, x2]) ≥

∫ y2

y1
ϕ(v)dv

y2 − y1 +
∫ y2

y1
ϕ(v)dv

− c0

≥

∫ y2

y1
(exp(2av0/σ2) − 2ax2/σ2 − 1)dv

y2 − y1 +
∫ y2

y1
(exp(2av0/σ2) − 2ax2/σ2 − 1)dv

− c0

=
(y2 − y1)(exp(2av0/σ2) − 2ax2/σ2 − 1)

y2 − y1 + (y2 − y1)(exp(2av0/σ2) − 2ax2/σ2 − 1)
− c0

=
exp(2av0/σ2) − 2ax2/σ2 − 1

exp(2av0/σ2) − 2ax2/σ2
− c0

=
(σ2/2a)(exp(2av0/σ2) − 1) − x2

(σ2/2a)(exp(2av0/σ2) − 1) − x2 + σ2/2a
− c0

=
1 − x2

1 − x2 + σ2/2a
− c0. (3.15)



202 Krzysztof Burdzy, Soumik Pal and Jason Swanson

The last equality follows from (3.11).

Recall that nt is the number of processes Ẑk alive at time t. Note that for any
0 ≤ t1 < t2 < ∞ with t2 − t1 ≥ ε/a, we have,

nt2 − nt1 ≤ (a/ε)(t2 − t1). (3.16)

Fix arbitrary t1 ≥ t0 and choose δ > 0 such that
∫ v1

0

Gv1
(v)dv + δ ≤

∫ v0

0

Gv0
(v)dv. (3.17)

We make ε0 > 0 smaller, if necessary, so that, by the law of large numbers, if
ε ∈ (0, ε0) then with probability greater than 1 − c1/4, for all sk of the form
sk = kδ/2, k = 0, . . . , ⌊t1/δ⌋ + 1, we have nsk

< (a/ε)
(∫ v1

0 Gv1
(v)dv + δ/2

)
. It

follows from (3.16) and (3.17) that for ε < aδ/2,

sup
0≤t≤t1

nt < (a/ε)

(∫ v1

0

Gv1
(v)dv + δ

)
≤ (a/ε)

∫ v0

0

Gv0
(v)dv.

Suppose that this event holds. Then, for every t ≤ t1, the right edge of the rightmost

interval Îk
t is to the left of

ε(a/ε)

∫ v0

0

Gv0
(v)dv + v1 =

∫ v0

0

Gv0
(v)dv + v0 + (v1 − v0) = 1 + (v1 − v0) < 1.

(3.18)

The second equality in the above formula follows from (3.11).
Recall the definitions given before the statement of the theorem. A process Zk

is killed when the right end of the rightmost interval Ik hits 1. Since the processes

Ẑk are driven by the same Brownian motions as Zk, (3.18) implies that every Zk

has a longer lifetime than Ẑk. This implies that dt1([x1, x2]) ≥ d̂t1([x1, x2]). We
combine this with (3.15) to conclude that, with probability greater than 1 − c1/2,

dt1([x1, x2]) ≥ d̂t1([x1, x2]) ≥
1 − x2

1 − x2 + σ2/2a
− c0.

A completely analogous argument shows that, with probability greater than 1−c1/2,

dt1([x1, x2]) ≤
1 − x1

1 − x1 + σ2/2a
+ c0.

This completes the proof of the theorem. 2

4. Discussion

Remark 4.1. In the following remarks we will refer to the model analyzed in Sec-
tion 3 as model (C). We will present another model, which we will call (R). Here,
C represents the “constant” rate of influx of new particles, and R stands for the
“random” rate of influx. Model (R) consists of a constant number n of “particles”
Ik which are confined to the interval [0, 1]. The k-th leftmost “particle” is rep-
resented by an interval Ik

t = (Xk
t − ε/2, Xk

t + ε/2). The intervals Ik and Ij are
always disjoint. The processes Xk are driven by independent Brownian motions
with the diffusion coefficient σ2. When two intervals Ik and Ij collide, they reflect
instantaneously. The number of particles n is such that nε = b, a constant. When
Xk hits 1, it jumps to 0. We conjecture that as ε → 0, the mass density d in the



Crowding of Brownian spheres 203

stationary regime for this process has the density (1 − x)/(1 − x + σ2/(2a)), just
like in model (C), where a, σ and b are related by the following formula,

∫ 1

0

1 − x

1 − x + σ2/(2a)
= b.

Heuristically, we expect processes Xk in model (R) to jump at a more or less
constant rate in the stationary regime, so this is why we believe that models (R)
and (C) have the same hydrodynamic limit. We chose not to analyze model (R)
in this paper as it appears to be harder from the technical point of view while it
seems to illustrate the same phenomenon as model (C).

Remark 4.2. Model (R) is closely related to a model studied by T. Bodineau,
B. Derrida and J. Lebowitz (Bodineau et al., 2010). In their model, one considers a
periodic system of L sites with N particles. The particles perform random walks but
cannot cross each other—it is the symmetric simple exclusion process. At some fixed
edge, the jump rates are no longer symmetric but jumps occur with rates p in one
direction and 1−p in the other direction. The case p = 1 corresponds to model (R)
described in the previous remark. In the stationary state, the rescaled density varies
linearly on the unit line segment, with a discontinuity located where the jump rates
are biased. Hence, away from the singularity, the stationary empirical distribution
is harmonic for the generator of the single particle process, i.e., Laplacian. This
does not apply to the density of mass d in our models (C) and (R).

Remark 4.3. Since the density d of the intervals Ik has the form (1 − x)/(1 −
x + σ2/(2a)), it is elementary to check that the typical gap size between Ik’s is
εσ2/(2a(1 − x)). In a model with infinitely small particles Xk, the gap size is
also c/(1− x) but we do not have any heuristic explanation why the two functions
representing the typical gap size should have the same form in both models.

Remark 4.4. We conjecture that the motion of an individual tagged particle Ik

in model (C) converges, as ε → 0, to a deterministic motion with fluctuations
having the “fractional Brownian motion” structure. In other words, we conjecture
that the fluctuations are Gaussian with the local scaling of space and time given by
∆x = (∆t)1/4. Our conjecture is inspired by the results in Dürr et al. (1985); Harris
(1965); Swanson (2007, 2008) on families of one dimensional Brownian motions
reflecting from each other.

Remark 4.5. A d-dimensional counterpart of model (C) can be represented as fol-
lows. Let Ik be balls with radius ε and center Xk. Our d-dimensional model
consists of a constant number n of Ik’s which are confined to the cube [0, 1]d. The
balls Ik and Ij are always disjoint. The processes Xk are driven by independent d-
dimensional Brownian motions with the diffusion coefficient σ2. When two balls Ik

and Ij collide, they reflect instantaneously. Let Sℓ and Sr be two opposite (d− 1)-
dimensional sides on the boundary of [0, 1]d. Balls Ik are pushed into the cube
through Sℓ at a constant rate a, i.e., ε−(d−1) balls are pushed into the cube every
ε/a units of time, uniformly over Sℓ. Once inside the cube, the balls reflect from all
sides except Sr. When a ball hits Sr, it is removed from the cube. We conjecture
that in the stationary regime, when ε is small, the density of the mass analogous
to d will be a function of the distance x from Sℓ, i.e., a function of depending only
on one coordinate. We do not see any obvious reason why the density should have
the form (1 − x)/(1 − x + σ2/(2a)). In relation to Remark 4.4, we conjecture that
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the motion of a tagged particle in the present model is diffusive, with the diffusion
coefficient depending on x. If this is true, it means that the “pressure” applied to
particles in one direction can have a dampening effect on the size of oscillations of
an individual particle in orthogonal directions.
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E. Cépa and D. Lépingle. Diffusing particles with electrostatic repulsion. Probab.

Theory Related Fields 107 (4), 429–449 (1997). MR1440140.
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